Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm

The aim of the present analysis is to implement a relatively recent computational algorithm, reproducing kernel Hilbert space, for obtaining the solutions of systems of first-order, two-point boundary value problems for ordinary differential equations. The reproducing kernel Hilbert space is constru...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Calcolo Ročník 55; číslo 3; s. 1 - 28
Hlavný autor: Abu Arqub, Omar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.09.2018
Springer Nature B.V
Predmet:
ISSN:0008-0624, 1126-5434
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of the present analysis is to implement a relatively recent computational algorithm, reproducing kernel Hilbert space, for obtaining the solutions of systems of first-order, two-point boundary value problems for ordinary differential equations. The reproducing kernel Hilbert space is constructed in which the initial–final conditions of the systems are satisfied. Whilst, three smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems compared with other numerical methods.
AbstractList The aim of the present analysis is to implement a relatively recent computational algorithm, reproducing kernel Hilbert space, for obtaining the solutions of systems of first-order, two-point boundary value problems for ordinary differential equations. The reproducing kernel Hilbert space is constructed in which the initial–final conditions of the systems are satisfied. Whilst, three smooth kernel functions are used throughout the evolution of the algorithm in order to obtain the required grid points. An efficient construction is given to obtain the numerical solutions for the systems together with an existence proof of the exact solutions based upon the reproducing kernel theory. In this approach, computational results of some numerical examples are presented to illustrate the viability, simplicity, and applicability of the algorithm developed. Finally, the utilized results show that the present algorithm and simulated annealing provide a good scheduling methodology to such systems compared with other numerical methods.
ArticleNumber 31
Author Abu Arqub, Omar
Author_xml – sequence: 1
  givenname: Omar
  orcidid: 0000-0001-9526-6095
  surname: Abu Arqub
  fullname: Abu Arqub, Omar
  email: o.abuarqub@bau.edu.jo
  organization: Department of Mathematics, Faculty of Science, Al-Balqa Applied University
BookMark eNp9kE1LAzEQQIMo2FZ_gLeAV6PJJpvuHrX4BUU9qNeQbmbb1G1SkyzSf29qBUHQy8yEmZcZ3hDtO-8AoRNGzxml44uYY10QyipCi7EgfA8NGCskKQUX-2hAKc0dWYhDNIxxmZ-lqMQAzR_6FQTb6A5H3_XJehexb3HcxASrr7K1ISbig4FwhtOHJ2tvXcJXr08Rz3QEg73DaQE4wDp40zfWzfEbBAcd1t3cB5sWqyN00OouwvF3HqGXm-vnyR2ZPt7eTy6npOFMJmJKTaVujGQltDUwakwj66bSQlamZm1OFdetNGLbqKQEUZcaDIeyNnU54yN0uvs3n_LeQ0xq6fvg8kpV0LHklHNR5Sm2m2qCjzFAq9bBrnTYKEbV1qfa-VTZp9r6VDwz419MY5PeCktB2-5fstiRMW9xcwg_N_0NfQIqx40-
CitedBy_id crossref_primary_10_1016_j_asoc_2021_107105
crossref_primary_10_1016_j_chaos_2018_10_013
crossref_primary_10_3389_fphy_2022_1010428
crossref_primary_10_1007_s12190_020_01381_0
crossref_primary_10_1016_j_future_2019_12_053
crossref_primary_10_1007_s40819_021_00957_z
crossref_primary_10_1016_j_enganabound_2022_09_035
crossref_primary_10_1140_epjp_s13360_020_00405_9
crossref_primary_10_1080_00207160_2020_1803297
crossref_primary_10_1140_epjp_s13360_020_00654_8
crossref_primary_10_1186_s13662_020_2529_y
crossref_primary_10_1016_j_geomphys_2022_104512
crossref_primary_10_1063_1_5143937
crossref_primary_10_1007_s40819_022_01334_0
crossref_primary_10_1038_s41598_021_83990_8
crossref_primary_10_1016_j_apnum_2022_05_015
crossref_primary_10_1016_j_chaos_2019_07_023
crossref_primary_10_1007_s11082_022_03617_8
crossref_primary_10_1016_j_chaos_2021_110891
crossref_primary_10_1186_s13662_020_02930_4
crossref_primary_10_3846_mma_2021_11436
crossref_primary_10_1016_j_chaos_2021_111127
crossref_primary_10_1017_S0950268820002174
crossref_primary_10_1016_j_compeleceng_2020_106893
crossref_primary_10_3390_sym14061218
crossref_primary_10_1016_j_amc_2021_125980
crossref_primary_10_1155_2024_6302827
crossref_primary_10_1016_j_compeleceng_2021_107127
crossref_primary_10_1007_s11071_021_06288_4
crossref_primary_10_1016_j_apnum_2021_10_008
crossref_primary_10_1016_j_compeleceng_2021_107007
crossref_primary_10_1016_j_heliyon_2021_e07600
crossref_primary_10_1140_epjp_s13360_020_00392_x
crossref_primary_10_1155_2022_8116282
crossref_primary_10_1016_j_chaos_2018_10_007
crossref_primary_10_1088_1402_4896_ac0867
crossref_primary_10_1108_HFF_10_2017_0394
crossref_primary_10_1002_mma_5530
crossref_primary_10_1007_s00500_020_04687_0
crossref_primary_10_1016_j_chaos_2019_05_025
crossref_primary_10_1016_j_apnum_2020_05_020
crossref_primary_10_1002_mma_7338
crossref_primary_10_1088_1572_9494_ab8a29
crossref_primary_10_3390_math6110245
crossref_primary_10_1002_num_22578
crossref_primary_10_1007_s12190_020_01438_0
crossref_primary_10_1016_j_aml_2025_109636
crossref_primary_10_1016_j_enganabound_2021_06_023
Cites_doi 10.2514/1.1329
10.1007/s00521-016-2484-4
10.3233/FI-2016-1384
10.1002/num.22209
10.1002/mma.3884
10.1002/oca.953
10.1016/j.camwa.2016.11.032
10.1016/j.apm.2015.01.021
10.1145/383738.383742
10.1137/0714006
10.1002/num.22236
10.1016/j.cam.2013.04.040
10.1016/j.aml.2013.05.006
10.1007/s00521-015-2110-x
10.1016/S0377-0427(02)00873-7
10.1007/978-1-4419-9096-9
10.1007/s00521-017-2845-7
10.1016/j.aml.2005.10.010
10.1016/j.cam.2009.01.012
10.1007/s00500-015-1707-4
10.1137/1.9781611971231
10.1109/AERO.2004.1368069
10.1137/0912052
10.1007/s12190-018-1176-x
10.1002/num.21809
10.1007/s00500-016-2262-3
10.1108/HFF-07-2016-0278
10.1016/j.aml.2011.10.025
10.1007/BFb0097244
ContentType Journal Article
Copyright Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10092-018-0274-3
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1126-5434
EndPage 28
ExternalDocumentID 10_1007_s10092_018_0274_3
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7U
ZMTXR
ZWQNP
~8M
~EX
88I
8AO
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ABUWG
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-d5a06acd615ef9e10ddc69c8a468d91f46883af6d4ddc6866e495aed3e59d95b3
IEDL.DBID RSV
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440088900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-0624
IngestDate Wed Sep 17 23:55:09 EDT 2025
Tue Nov 18 21:43:46 EST 2025
Sat Nov 29 07:49:33 EST 2025
Fri Feb 21 02:38:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Boundary value problems
34B15
Gram–Schmidt process
Reproducing kernel algorithm
34K28
47B32
Initial–final conditions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d5a06acd615ef9e10ddc69c8a468d91f46883af6d4ddc6866e495aed3e59d95b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9526-6095
PQID 2076303348
PQPubID 43695
PageCount 28
ParticipantIDs proquest_journals_2076303348
crossref_primary_10_1007_s10092_018_0274_3
crossref_citationtrail_10_1007_s10092_018_0274_3
springer_journals_10_1007_s10092_018_0274_3
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Milano
PublicationTitle Calcolo
PublicationTitleAbbrev Calcolo
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Abu ArqubOFitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditionsComput. Math Appl.20177312431261362311910.1016/j.camwa.2016.11.032
GengFZCuiMA reproducing kernel method for solving nonlocal fractional boundary value problemsAppl. Math. Lett.201225818823288807910.1016/j.aml.2011.10.025
Trent, A., Venkataraman, R., Doman, D.: Trajectory generation using a modified simple shooting method. In: Aerospace Conference, Proceedings: 2004 IEEE, vol. 4, pp. 2723–2729 (2004)
Alsayyed, O.: Numerical Solution of Temporal Two-Point Boundary Value Problems Using Continuous Genetic Algorithms, Ph.D. Thesis, University of Jordan, Jordan (2006)
JiangWChenZA collocation method based on reproducing kernel for a modified anomalous subdiffusion equationNumer. Methods Partial Differ. Equ.201430289300314941210.1002/num.21809
GengFZQianSPModified reproducing kernel method for singularly perturbed boundary value problems with a delayAppl. Math. Model.20153955925597337609210.1016/j.apm.2015.01.021
CashJRWrightMHA deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluationSIAM J. Sci. Stat. Comput.199112971989110241810.1137/0912052
Abo-HammourZSAsasfehAGAl-SmadiAMAlsmadiOMKA novel continuous genetic algorithm for the solution of optimal control problemsOptim. Control Appl. Methods201132414432285073410.1002/oca.953
YangLHLinYReproducing kernel methods for solving linear initial-boundary-value problemsElectron. J. Differ. Equ.2008200811123833921137.35328
HolsappleRWVenkataramanRDomanDNew, fast numerical method for solving two-point boundary-value problemsJ. Guid. Control Dyn.20042730130410.2514/1.1329
Abu ArqubOApproximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithmFundam. Inf.2016146231254358111910.3233/FI-2016-1384
DanielAReproducing Kernel Spaces and Applications2003BaselSpringer1021.00005
Abu ArqubOThe reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equationsMath. Methods Appl. Sci.20163945494562354941310.1002/mma.3884
AscherUMMattheijRMMRussellRDNumerical Solution of Boundary Value Problems for Ordinary Differential Equations (Classics in Applied Mathematics)1995PhiladelphiaSIAM10.1137/1.9781611971231
Abu ArqubOComputational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimatesJ. Appl. Math. Comput.201810.1007/s12190-018-1176-x
Abu ArqubOAl-SmadiMShawagfehNSolving Fredholm integro-differential equations using reproducing kernel Hilbert space methodAppl. Math. Comput.20132198938894830477901288.65181
ZhouaYCuiMLinYNumerical algorithm for parabolic problems with non-classical conditionsJ. Comput. Appl. Math.2009230770780253600610.1016/j.cam.2009.01.012
CashJRMooreGWrightRWAn automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problemsACM Trans. Math. Softw.20012724526610.1145/383738.383742
WeinertHLReproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing1982LondonHutchinson Ross
GengFZQianSPLiSA numerical method for singularly perturbed turning point problems with an interior layerJ. Comput. Appl. Math.201425597105309340710.1016/j.cam.2013.04.040
CashJRMooreDRSumartiNDaeleMVA highly stable deferred correction scheme with interpolant for systems of nonlinear two-point boundary value problemsJ. Comput. Appl. Math.2003155339358198429410.1016/S0377-0427(02)00873-7
Abu ArqubOAl-SmadiMMomaniSHayatTApplication of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problemsSoft. Comput.2017217191720610.1007/s00500-016-2262-3
GengFZQianSPReproducing kernel method for singularly perturbed turning point problems having twin boundary layersAppl. Math. Lett.2013269981004307898310.1016/j.aml.2013.05.006
BerlinetAAgnanCTReproducing Kernel Hilbert Space in Probability and Statistics2004BostonKluwer Academic Publishers10.1007/978-1-4419-9096-9
Abu ArqubOMaayahBSolutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithmNeural Comput. Appl.2018291465147910.1007/s00521-016-2484-4
Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Med. (2017). In Press
LinYCuiMYangLRepresentation of the exact solution for a kind of nonlinear partial differential equationsAppl. Math. Lett.200619808813223225910.1016/j.aml.2005.10.010
KubicekMHlavacekVNumerical Solution of Nonlinear Boundary Value Problems with Applications2008MineolaDover Publications1140.65056
Abu ArqubOAdaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equationsNeural Comput. Appl.2017281591161010.1007/s00521-015-2110-x
KellerHBNumerical Methods for Two-Point Boundary-Value Problems1993MineolaDover Publications
Abu ArqubOSolutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert spaceNumer. Methods Partial Differ. Equ.201710.1002/num.22236
MomaniSAbu ArqubOHayatTAl-SulamiHA computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera typeAppl. Math. Comput.201424022923932136871337.65091
BadakhshanKPKamyadAVNumerical solution of nonlinear optimal control problems using nonlinear programmingAppl. Math. Comput.20071871511151923213551118.65067
Abu ArqubORashaidehHThe RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPsNeural Comput. Appl.201710.1007/s00521-017-2845-7
CuiMLinYNonlinear Numerical Analysis in the Reproducing Kernel Space2009New YorkNova Science1165.65300
Abu ArqubOAl-SmadiMNumerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equationsAppl. Math. Comput.201424391192232445381337.65083
ZhaoJHighly accurate compact mixed methods for two point boundary value problemsAppl. Math. Comput.20071881402141823356381119.65074
Abu ArqubONumerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithmInt. J. Numer. Methods Heat Fluid Flow20182882885610.1108/HFF-07-2016-0278
PytlakRNumerical Methods for Optimal Control Problems with State Constraints1999BerlinSpringer10.1007/BFb0097244
Abu ArqubOAl-SmadiMMomaniSHayatTNumerical solutions of fuzzy differential equations using reproducing kernel Hilbert space methodSoft. Comput.2016203283330210.1007/s00500-015-1707-4
StrangGFixGAn Analysis of the Finite Element Method2008CambridgeWellesley-Cambridge1171.65081
LentiniMPereyraVAn adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layersSIAM J. Numer. Anal.1977149111110.1137/0714006
JiangWChenZSolving a system of linear Volterra integral equations using the new reproducing kernel methodAppl. Math. Comput.2013219102251023030567231293.65170
Abu ArqubOAl-SmadiMNumerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditionsNumer. Methods Partial Differ. Equ.201710.1002/num.22209
RW Holsapple (274_CR7) 2004; 27
FZ Geng (274_CR39) 2013; 26
O Abu Arqub (274_CR37) 2017
274_CR15
LH Yang (274_CR22) 2008; 2008
O Abu Arqub (274_CR23) 2018; 29
274_CR36
R Pytlak (274_CR2) 1999
W Jiang (274_CR40) 2014; 30
O Abu Arqub (274_CR31) 2016; 146
JR Cash (274_CR10) 2003; 155
A Berlinet (274_CR17) 2004
JR Cash (274_CR12) 2001; 27
O Abu Arqub (274_CR24) 2016; 39
FZ Geng (274_CR42) 2012; 25
G Strang (274_CR1) 2008
JR Cash (274_CR9) 1991; 12
M Cui (274_CR16) 2009
HL Weinert (274_CR19) 1982
W Jiang (274_CR43) 2013; 219
O Abu Arqub (274_CR25) 2013; 219
O Abu Arqub (274_CR28) 2016; 20
O Abu Arqub (274_CR26) 2014; 243
FZ Geng (274_CR41) 2014; 255
O Abu Arqub (274_CR35) 2018
KP Badakhshan (274_CR13) 2007; 187
O Abu Arqub (274_CR30) 2017; 28
M Kubicek (274_CR3) 2008
FZ Geng (274_CR44) 2015; 39
ZS Abo-Hammour (274_CR14) 2011; 32
O Abu Arqub (274_CR33) 2018; 28
274_CR6
O Abu Arqub (274_CR38) 2017
Y Lin (274_CR20) 2006; 19
O Abu Arqub (274_CR29) 2017; 21
M Lentini (274_CR11) 1977; 14
O Abu Arqub (274_CR34) 2017
HB Keller (274_CR4) 1993
Y Zhoua (274_CR21) 2009; 230
A Daniel (274_CR18) 2003
O Abu Arqub (274_CR32) 2017; 73
J Zhao (274_CR8) 2007; 188
UM Ascher (274_CR5) 1995
S Momani (274_CR27) 2014; 240
References_xml – reference: CashJRMooreGWrightRWAn automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problemsACM Trans. Math. Softw.20012724526610.1145/383738.383742
– reference: Abu ArqubOFitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditionsComput. Math Appl.20177312431261362311910.1016/j.camwa.2016.11.032
– reference: LinYCuiMYangLRepresentation of the exact solution for a kind of nonlinear partial differential equationsAppl. Math. Lett.200619808813223225910.1016/j.aml.2005.10.010
– reference: GengFZCuiMA reproducing kernel method for solving nonlocal fractional boundary value problemsAppl. Math. Lett.201225818823288807910.1016/j.aml.2011.10.025
– reference: ZhouaYCuiMLinYNumerical algorithm for parabolic problems with non-classical conditionsJ. Comput. Appl. Math.2009230770780253600610.1016/j.cam.2009.01.012
– reference: Abu ArqubONumerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithmInt. J. Numer. Methods Heat Fluid Flow20182882885610.1108/HFF-07-2016-0278
– reference: KellerHBNumerical Methods for Two-Point Boundary-Value Problems1993MineolaDover Publications
– reference: BerlinetAAgnanCTReproducing Kernel Hilbert Space in Probability and Statistics2004BostonKluwer Academic Publishers10.1007/978-1-4419-9096-9
– reference: Abu ArqubOAl-SmadiMNumerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equationsAppl. Math. Comput.201424391192232445381337.65083
– reference: CuiMLinYNonlinear Numerical Analysis in the Reproducing Kernel Space2009New YorkNova Science1165.65300
– reference: JiangWChenZA collocation method based on reproducing kernel for a modified anomalous subdiffusion equationNumer. Methods Partial Differ. Equ.201430289300314941210.1002/num.21809
– reference: MomaniSAbu ArqubOHayatTAl-SulamiHA computational method for solving periodic boundary value problems for integro-differential equations of Fredholm-Voltera typeAppl. Math. Comput.201424022923932136871337.65091
– reference: GengFZQianSPReproducing kernel method for singularly perturbed turning point problems having twin boundary layersAppl. Math. Lett.2013269981004307898310.1016/j.aml.2013.05.006
– reference: KubicekMHlavacekVNumerical Solution of Nonlinear Boundary Value Problems with Applications2008MineolaDover Publications1140.65056
– reference: HolsappleRWVenkataramanRDomanDNew, fast numerical method for solving two-point boundary-value problemsJ. Guid. Control Dyn.20042730130410.2514/1.1329
– reference: Abu ArqubOThe reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equationsMath. Methods Appl. Sci.20163945494562354941310.1002/mma.3884
– reference: LentiniMPereyraVAn adaptive finite difference solver for nonlinear two-point boundary value problems with mild boundary layersSIAM J. Numer. Anal.1977149111110.1137/0714006
– reference: Abu ArqubOMaayahBSolutions of Bagley–Torvik and Painlevé equations of fractional order using iterative reproducing kernel algorithmNeural Comput. Appl.2018291465147910.1007/s00521-016-2484-4
– reference: WeinertHLReproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing1982LondonHutchinson Ross
– reference: Trent, A., Venkataraman, R., Doman, D.: Trajectory generation using a modified simple shooting method. In: Aerospace Conference, Proceedings: 2004 IEEE, vol. 4, pp. 2723–2729 (2004)
– reference: BadakhshanKPKamyadAVNumerical solution of nonlinear optimal control problems using nonlinear programmingAppl. Math. Comput.20071871511151923213551118.65067
– reference: AscherUMMattheijRMMRussellRDNumerical Solution of Boundary Value Problems for Ordinary Differential Equations (Classics in Applied Mathematics)1995PhiladelphiaSIAM10.1137/1.9781611971231
– reference: Abu ArqubOAl-SmadiMShawagfehNSolving Fredholm integro-differential equations using reproducing kernel Hilbert space methodAppl. Math. Comput.20132198938894830477901288.65181
– reference: Abu ArqubOAl-SmadiMMomaniSHayatTNumerical solutions of fuzzy differential equations using reproducing kernel Hilbert space methodSoft. Comput.2016203283330210.1007/s00500-015-1707-4
– reference: Abu ArqubOComputational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimatesJ. Appl. Math. Comput.201810.1007/s12190-018-1176-x
– reference: CashJRWrightMHA deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluationSIAM J. Sci. Stat. Comput.199112971989110241810.1137/0912052
– reference: Abu ArqubOAl-SmadiMMomaniSHayatTApplication of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problemsSoft. Comput.2017217191720610.1007/s00500-016-2262-3
– reference: Abu ArqubOSolutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert spaceNumer. Methods Partial Differ. Equ.201710.1002/num.22236
– reference: StrangGFixGAn Analysis of the Finite Element Method2008CambridgeWellesley-Cambridge1171.65081
– reference: Alsayyed, O.: Numerical Solution of Temporal Two-Point Boundary Value Problems Using Continuous Genetic Algorithms, Ph.D. Thesis, University of Jordan, Jordan (2006)
– reference: ZhaoJHighly accurate compact mixed methods for two point boundary value problemsAppl. Math. Comput.20071881402141823356381119.65074
– reference: Abu Arqub, O., Shawagfeh, N.: Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Med. (2017). In Press
– reference: Abo-HammourZSAsasfehAGAl-SmadiAMAlsmadiOMKA novel continuous genetic algorithm for the solution of optimal control problemsOptim. Control Appl. Methods201132414432285073410.1002/oca.953
– reference: Abu ArqubOAdaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equationsNeural Comput. Appl.2017281591161010.1007/s00521-015-2110-x
– reference: DanielAReproducing Kernel Spaces and Applications2003BaselSpringer1021.00005
– reference: GengFZQianSPLiSA numerical method for singularly perturbed turning point problems with an interior layerJ. Comput. Appl. Math.201425597105309340710.1016/j.cam.2013.04.040
– reference: CashJRMooreDRSumartiNDaeleMVA highly stable deferred correction scheme with interpolant for systems of nonlinear two-point boundary value problemsJ. Comput. Appl. Math.2003155339358198429410.1016/S0377-0427(02)00873-7
– reference: JiangWChenZSolving a system of linear Volterra integral equations using the new reproducing kernel methodAppl. Math. Comput.2013219102251023030567231293.65170
– reference: PytlakRNumerical Methods for Optimal Control Problems with State Constraints1999BerlinSpringer10.1007/BFb0097244
– reference: GengFZQianSPModified reproducing kernel method for singularly perturbed boundary value problems with a delayAppl. Math. Model.20153955925597337609210.1016/j.apm.2015.01.021
– reference: YangLHLinYReproducing kernel methods for solving linear initial-boundary-value problemsElectron. J. Differ. Equ.2008200811123833921137.35328
– reference: Abu ArqubOApproximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithmFundam. Inf.2016146231254358111910.3233/FI-2016-1384
– reference: Abu ArqubORashaidehHThe RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPsNeural Comput. Appl.201710.1007/s00521-017-2845-7
– reference: Abu ArqubOAl-SmadiMNumerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditionsNumer. Methods Partial Differ. Equ.201710.1002/num.22209
– volume: 27
  start-page: 301
  year: 2004
  ident: 274_CR7
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.1329
– volume-title: Nonlinear Numerical Analysis in the Reproducing Kernel Space
  year: 2009
  ident: 274_CR16
– volume: 29
  start-page: 1465
  year: 2018
  ident: 274_CR23
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2484-4
– volume: 146
  start-page: 231
  year: 2016
  ident: 274_CR31
  publication-title: Fundam. Inf.
  doi: 10.3233/FI-2016-1384
– year: 2017
  ident: 274_CR34
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22209
– volume: 39
  start-page: 4549
  year: 2016
  ident: 274_CR24
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3884
– volume: 32
  start-page: 414
  year: 2011
  ident: 274_CR14
  publication-title: Optim. Control Appl. Methods
  doi: 10.1002/oca.953
– volume: 240
  start-page: 229
  year: 2014
  ident: 274_CR27
  publication-title: Appl. Math. Comput.
– volume-title: Numerical Methods for Two-Point Boundary-Value Problems
  year: 1993
  ident: 274_CR4
– volume: 73
  start-page: 1243
  year: 2017
  ident: 274_CR32
  publication-title: Comput. Math Appl.
  doi: 10.1016/j.camwa.2016.11.032
– volume: 39
  start-page: 5592
  year: 2015
  ident: 274_CR44
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2015.01.021
– volume: 188
  start-page: 1402
  year: 2007
  ident: 274_CR8
  publication-title: Appl. Math. Comput.
– volume: 27
  start-page: 245
  year: 2001
  ident: 274_CR12
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/383738.383742
– volume-title: Reproducing Kernel Spaces and Applications
  year: 2003
  ident: 274_CR18
– volume: 14
  start-page: 91
  year: 1977
  ident: 274_CR11
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0714006
– year: 2017
  ident: 274_CR37
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22236
– volume: 219
  start-page: 10225
  year: 2013
  ident: 274_CR43
  publication-title: Appl. Math. Comput.
– volume: 255
  start-page: 97
  year: 2014
  ident: 274_CR41
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2013.04.040
– volume: 26
  start-page: 998
  year: 2013
  ident: 274_CR39
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2013.05.006
– volume-title: Numerical Solution of Nonlinear Boundary Value Problems with Applications
  year: 2008
  ident: 274_CR3
– ident: 274_CR36
– volume: 28
  start-page: 1591
  year: 2017
  ident: 274_CR30
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2110-x
– volume: 155
  start-page: 339
  year: 2003
  ident: 274_CR10
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00873-7
– volume: 187
  start-page: 1511
  year: 2007
  ident: 274_CR13
  publication-title: Appl. Math. Comput.
– ident: 274_CR15
– volume-title: Reproducing Kernel Hilbert Space in Probability and Statistics
  year: 2004
  ident: 274_CR17
  doi: 10.1007/978-1-4419-9096-9
– volume: 243
  start-page: 911
  year: 2014
  ident: 274_CR26
  publication-title: Appl. Math. Comput.
– volume-title: An Analysis of the Finite Element Method
  year: 2008
  ident: 274_CR1
– volume: 219
  start-page: 8938
  year: 2013
  ident: 274_CR25
  publication-title: Appl. Math. Comput.
– volume-title: Reproducing Kernel Hilbert Spaces: Applications in Statistical Signal Processing
  year: 1982
  ident: 274_CR19
– year: 2017
  ident: 274_CR38
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2845-7
– volume: 19
  start-page: 808
  year: 2006
  ident: 274_CR20
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2005.10.010
– volume: 230
  start-page: 770
  year: 2009
  ident: 274_CR21
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.01.012
– volume: 20
  start-page: 3283
  year: 2016
  ident: 274_CR28
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-015-1707-4
– volume-title: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Classics in Applied Mathematics)
  year: 1995
  ident: 274_CR5
  doi: 10.1137/1.9781611971231
– ident: 274_CR6
  doi: 10.1109/AERO.2004.1368069
– volume: 12
  start-page: 971
  year: 1991
  ident: 274_CR9
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0912052
– year: 2018
  ident: 274_CR35
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-018-1176-x
– volume: 30
  start-page: 289
  year: 2014
  ident: 274_CR40
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21809
– volume: 21
  start-page: 7191
  year: 2017
  ident: 274_CR29
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-016-2262-3
– volume: 28
  start-page: 828
  year: 2018
  ident: 274_CR33
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-07-2016-0278
– volume: 25
  start-page: 818
  year: 2012
  ident: 274_CR42
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2011.10.025
– volume-title: Numerical Methods for Optimal Control Problems with State Constraints
  year: 1999
  ident: 274_CR2
  doi: 10.1007/BFb0097244
– volume: 2008
  start-page: 1
  year: 2008
  ident: 274_CR22
  publication-title: Electron. J. Differ. Equ.
SSID ssj0005484
Score 2.4789178
Snippet The aim of the present analysis is to implement a relatively recent computational algorithm, reproducing kernel Hilbert space, for obtaining the solutions of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Boundary value problems
Computation
Computer simulation
Differential equations
Evolutionary algorithms
Hilbert space
Kernel functions
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical methods
Ordinary differential equations
Simulated annealing
Theory of Computation
Viability
Title Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm
URI https://link.springer.com/article/10.1007/s10092-018-0274-3
https://www.proquest.com/docview/2076303348
Volume 55
WOSCitedRecordID wos000440088900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1126-5434
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005484
  issn: 0008-0624
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBQgFRKMgDExApTtzUHgFRsVBVPKpukRM7EBGSKknh72Pn0QACJJhiyY5l2ee7s-7u-wCOCQksIYVmL2O2obSfNLhu2cKzpPIfLCxpQTYxGI3odMrGVR13Vme71yHJQlN_KHYzdaYkpjruSAx7GVaUtaOar-H2btLkdRBaQi_ruL5jkTqU-d0Un41R42F-CYoWtmbY_tcqN2Gjci3ReSkLW7Ak4w60a9oGVN3iDqzfLKBas214HM3LoE2EFmKIkgCVEM9FMwiVi2gUIJ1nKH9LjFkSxjm6mIwzpK2gQEmM1JRII2RqAFm1YPQs01hGiEePSRrmTy878DC8ur-8Nir2BcO3sZMbos9Nh_tCuTwyYBKbQvgO8yknDhUMB-pDbR44gugO6jhSvbW4FLbsM8H6nr0LrTiJ5R4gQrmJPfWQxJgT4g8YZZj7RFBGPPV-Dbpg1sfg-hU0uWbIiNwGVFlvq6u21dXb6tpdOFn8MitxOX4b3KvP1q2uaOZaplKtpi5E7sJpfZZN94-T7f9p9AGsWYUw6Ky0HrTydC4PYdV_zcMsPSok9x0Caue0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4omqgPoqgRRe2DT-qSdSujfVQjwQiEKBLelrJ2SMSNsKH_vu1-gBo10ac1adc07fXumu_uO4BTQnxLSKGrlzHbUNpPGly3bDGwpPIfLCxpUmyi1m7Tfp91sjzuKI92zyHJRFN_SHYzdaQkphp3JIa9DCtEGSxNmH__0FvEdRCaUi9rXN-xSA5lfjfFZ2O08DC_gKKJrakX_7XKLdjMXEt0mcrCNizJoATFvGwDym5xCTZac6rWaAeG7VkK2ozRXAxR6KOU4jlp-iPlIhoJSecFit9CYxKOghhd9ToR0lZQoDBAakqkGTI1gaxaMHqW00COER8Pw-kofnrZhcf6Tfe6YWTVFwzPxk5siCo3He4J5fJIn0lsCuE5zKOcOFQw7KsPtbnvCKI7qONI9dbiUtiyygSrDuw9KARhIPcBEcpNPFAPSYw5IV6NUYa5RwRlZKDer34ZzPwYXC-jJtcVMsbuglRZb6urttXV2-raZTib_zJJeTl-G1zJz9bNrmjkWqZSraZORC7DeX6Wi-4fJzv40-gTWGt0W023edu-O4R1KxEMHaFWgUI8nckjWPVe41E0PU6k-B3mjeqY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZ4CcGBxwAxnjlwAqo1bVaSI68JBEyTgIlblTXpmBjttBb4-8R9bIAACXFqpKRWZDuJLdufAfYYCx2lFXYvE65lbj9tSRy5quNoYz84VPOs2cRRs8kfHkSr6HOalNnuZUgyr2lAlKYorQ1UWPtQ-GZj1iTlGINkljsJ0wzz6NFdv22PczwYz2GYMcbvOawMa35H4vPDNLY2vwRIs3ensfjvHS_BQmFykuNcR5ZhQkcVWCzbOZDidFdg_mYE4ZqsQLf5kgdz-mSkniQOSQ79nA3DnjEdrQy885Ckb7E1iHtRSk7arYTg66hIHBFDkiByJgLLms2TJz2MdJ_Ifjce9tLH51W4b5zfnV5YRVcGK3Cpl1qqLm1PBsqYQjoUmtpKBZ4IuGQeV4KG5sNdGXqK4QT3PG18MKmVq-tCiXrHXYOpKI70OhDGpU07xsGkVDIWHAkuqAyY4oJ1jF8bVsEuReIHBWQ5ds7o-2OwZWSrb9jqI1t9twr7o18GOV7Hb4u3Sjn7xdFNfMc2V66NBcpVOCjlOp7-kdjGn1bvwmzrrOFfXzavNmHOyfQCE9e2YCodvuhtmAle014y3MkU-h1YR_N8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solutions+of+systems+of+first-order%2C+two-point+BVPs+based+on+the+reproducing+kernel+algorithm&rft.jtitle=Calcolo&rft.au=Abu+Arqub%2C+Omar&rft.date=2018-09-01&rft.pub=Springer+International+Publishing&rft.issn=0008-0624&rft.eissn=1126-5434&rft.volume=55&rft.issue=3&rft_id=info:doi/10.1007%2Fs10092-018-0274-3&rft.externalDocID=10_1007_s10092_018_0274_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-0624&client=summon