From numerics to combinatorics: a survey of topological methods for vector field visualization

Topological methods are important tools for data analysis, and recently receiving more and more attention in vector field visualization. In this paper, we give an introductory description to some important topological methods in vector field visualization. Besides traditional methods of vector field...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of visualization Ročník 19; číslo 4; s. 727 - 752
Hlavní autoři: Wang, Wentao, Wang, Wenke, Li, Sikun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2016
Springer Nature B.V
Témata:
ISSN:1343-8875, 1875-8975
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Topological methods are important tools for data analysis, and recently receiving more and more attention in vector field visualization. In this paper, we give an introductory description to some important topological methods in vector field visualization. Besides traditional methods of vector field topology, space-time method and finite-time Lyapunov exponent, we also include in this survey Hodge decomposition, combinatorial vector field topology, Morse decomposition, and robustness, etc. In addition to familiar numerical techniques, more and more combinatorial tools emerge in vector field visualization. The numerical methods often rely on error-prone interpolations and interpolations, while combinatorial techniques produce robust but coarse features. In this survey, we clarify the relevant concepts and hope to guide future topological research in vector field visualization. Graphical abstract
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1343-8875
1875-8975
DOI:10.1007/s12650-016-0348-8