Combining Crown Structures for Vulnerability Measures

Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity (wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the number o...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 88; no. 1
Main Authors: Casel, Katrin, Friedrich, Tobias, Niklanovits, Aikaterini, Simonov, Kirill, Zeif, Ziena
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2026
Springer Nature B.V
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity (wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the number of vertices that need to be removed to decompose a graph into fragments, but also take into account the size of the largest remaining component. The main focus of our paper is on kernelization algorithms tailored to both measures. We capitalize on the structural attributes inherent in different crown decompositions, strategically combining them to introduce novel kernelization algorithms that advance the current state of the field. In particular, we extend the scope of the balanced crown decomposition provided by Casel et al. [ 1 ] and expand the applicability of crown decomposition techniques. In summary, we improve the vertex kernel of VI from to , and of wVI from to , where represents the weight of the heaviest component after removing a solution. For wCOC we improve the vertex kernel from to , where . We also give a combinatorial algorithm that provides a 2 kW vertex kernel in fixed-parameter tractable time when parameterized by r , where is the size of a maximum -packing. We further show that the algorithm computing the 2 kW vertex kernel for COC can be transformed into a polynomial algorithm for two special cases, namely when , which corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we show a new way to obtain a 2 k vertex kernel (or to obtain a 2-approximation) for the vertex cover problem by only using crown structures.
AbstractList Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity (wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the number of vertices that need to be removed to decompose a graph into fragments, but also take into account the size of the largest remaining component. The main focus of our paper is on kernelization algorithms tailored to both measures. We capitalize on the structural attributes inherent in different crown decompositions, strategically combining them to introduce novel kernelization algorithms that advance the current state of the field. In particular, we extend the scope of the balanced crown decomposition provided by Casel et al. [ 1 ] and expand the applicability of crown decomposition techniques. In summary, we improve the vertex kernel of VI from to , and of wVI from to , where represents the weight of the heaviest component after removing a solution. For wCOC we improve the vertex kernel from to , where . We also give a combinatorial algorithm that provides a 2 kW vertex kernel in fixed-parameter tractable time when parameterized by r , where is the size of a maximum -packing. We further show that the algorithm computing the 2 kW vertex kernel for COC can be transformed into a polynomial algorithm for two special cases, namely when , which corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we show a new way to obtain a 2 k vertex kernel (or to obtain a 2-approximation) for the vertex cover problem by only using crown structures.
Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity (wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the number of vertices that need to be removed to decompose a graph into fragments, but also take into account the size of the largest remaining component. The main focus of our paper is on kernelization algorithms tailored to both measures. We capitalize on the structural attributes inherent in different crown decompositions, strategically combining them to introduce novel kernelization algorithms that advance the current state of the field. In particular, we extend the scope of the balanced crown decomposition provided by Casel et al. [1] and expand the applicability of crown decomposition techniques. In summary, we improve the vertex kernel of VI from $$p^3$$ to $$3p^2$$ , and of wVI from $$p^3$$ to $$3(p^2 + p^{1.5} p_\ell )$$ , where $$p_\ell < p$$ represents the weight of the heaviest component after removing a solution. For wCOC we improve the vertex kernel from $$\mathcal {O}(k^2W + kW^2)$$ to $$3\mu (k + \sqrt{\mu }W)$$ , where $$\mu = \max (k,W)$$ . We also give a combinatorial algorithm that provides a 2 kW vertex kernel in fixed-parameter tractable time when parameterized by r , where $$r \le k$$ is the size of a maximum $$(W+1)$$ -packing. We further show that the algorithm computing the 2 kW vertex kernel for COC can be transformed into a polynomial algorithm for two special cases, namely when $$W=1$$ , which corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we show a new way to obtain a 2 k vertex kernel (or to obtain a 2-approximation) for the vertex cover problem by only using crown structures.
Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific measures: (weighted) vertex integrity (wVI) and (weighted) component order connectivity (wCOC). These measures not only evaluate the number of vertices that need to be removed to decompose a graph into fragments, but also take into account the size of the largest remaining component. The main focus of our paper is on kernelization algorithms tailored to both measures. We capitalize on the structural attributes inherent in different crown decompositions, strategically combining them to introduce novel kernelization algorithms that advance the current state of the field. In particular, we extend the scope of the balanced crown decomposition provided by Casel et al. [1] and expand the applicability of crown decomposition techniques. In summary, we improve the vertex kernel of VI from to , and of wVI from to , where represents the weight of the heaviest component after removing a solution. For wCOC we improve the vertex kernel from to , where . We also give a combinatorial algorithm that provides a 2kW vertex kernel in fixed-parameter tractable time when parameterized by r, where is the size of a maximum -packing. We further show that the algorithm computing the 2kW vertex kernel for COC can be transformed into a polynomial algorithm for two special cases, namely when , which corresponds to the well-known vertex cover problem, and for claw-free graphs. In particular, we show a new way to obtain a 2k vertex kernel (or to obtain a 2-approximation) for the vertex cover problem by only using crown structures.
ArticleNumber 9
Author Niklanovits, Aikaterini
Simonov, Kirill
Zeif, Ziena
Casel, Katrin
Friedrich, Tobias
Author_xml – sequence: 1
  givenname: Katrin
  surname: Casel
  fullname: Casel, Katrin
  organization: Humboldt-Universität zu Berlin
– sequence: 2
  givenname: Tobias
  surname: Friedrich
  fullname: Friedrich, Tobias
  organization: Hasso Plattner Institute, University of Potsdam
– sequence: 3
  givenname: Aikaterini
  surname: Niklanovits
  fullname: Niklanovits, Aikaterini
  organization: Hasso Plattner Institute, University of Potsdam
– sequence: 4
  givenname: Kirill
  surname: Simonov
  fullname: Simonov, Kirill
  organization: Hasso Plattner Institute, University of Potsdam
– sequence: 5
  givenname: Ziena
  surname: Zeif
  fullname: Zeif, Ziena
  email: Ziena.Zeif@hpi.de
  organization: Hasso Plattner Institute, University of Potsdam
BookMark eNp9kMtOwzAQRS1UJNrCD7CKxNowYzu2s0QRL6mIBY-tldhOlap1ip0I9e9pCBI7VrO499yRzoLMQhc8IZcI1wigbhKAyDkFllNALjRlJ2SOgjMKucAZmQMqTYVEdUYWKW0AkKlCzkledru6DW1YZ2XsvkL22sfB9kP0KWu6mH0M2-BjVbfbtj9kz75KY3ROTptqm_zF712S9_u7t_KRrl4ensrbFbUcZU-tQ2ed0Aq5tBqttOBkZWXDRSFrrT0XPleuqQXnTmADjhXSo9BQOK8E40tyNe3uY_c5-NSbTTfEcHxpOFMCpUYYW2xq2dilFH1j9rHdVfFgEMyox0x6zFGP-dFjRohPUDqWw9rHv-l_qG9VR2jy
Cites_doi 10.4230/LIPIcs.ESA.2021.26
10.4230/LIPIcs.IPEC.2016.20
10.1016/J.TCS.2019.04.018
10.3390/A16030144
10.1016/J.TCS.2024.114954
10.1016/J.JCSS.2017.04.004
10.46298/lmcs-20(4:18)2024
10.1007/978-1-4612-0515-9
10.1080/00207160701365721
10.1016/0166-218X(92)90122-Q
10.1016/J.TCS.2023.113872
10.1017/9781107415157
10.48550/arXiv.2011.04528
10.1007/s00453-016-0127-x
10.1016/J.TCS.2018.05.004
10.1016/S0166-218X(96)00133-3
10.1007/S00453-023-01161-9
10.1016/J.TCS.2022.03.021
10.1016/0095-8956(80)90074-X
10.4230/LIPICS.APPROX/RANDOM.2021.27
10.1007/S00453-020-00795-3
10.1007/s10107-018-1255-7
10.1007/S00453-024-01290-9
10.4230/LIPICS.ESA.2023.16
10.4230/LIPICS.MFCS.2024.58
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00453-025-01348-2
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
ExternalDocumentID 10_1007_s00453_025_01348_2
GrantInformation_xml – fundername: Hasso-Plattner-Institut für Digital Engineering gGmbH (4420)
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
1SB
28-
2P1
2VQ
5QI
AAAVM
AAOBN
AARHV
AAYTO
AAYXX
ABDPE
ABFSI
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFGCZ
AGGDS
AGQPQ
AI.
AJBLW
BBWZM
BDATZ
CAG
CITATION
COF
E.L
EJD
FINBP
FSGXE
H13
H~9
KOW
N2Q
NDZJH
O9-
R4E
RNI
RZK
S26
S28
SCJ
SCLPG
T16
UQL
VH1
ZY4
JQ2
ID FETCH-LOGICAL-c316t-cd1dcd487136c81c6c0d6ac6f3496b88e34e57dfb433d41f0d296e14809de7423
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001621069800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Sat Nov 22 20:41:15 EST 2025
Thu Nov 27 01:04:04 EST 2025
Sat Nov 22 01:13:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Crown decomposition
Component order connectivity
Kernelization
Vertex Integrity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-cd1dcd487136c81c6c0d6ac6f3496b88e34e57dfb433d41f0d296e14809de7423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00453-025-01348-2
PQID 3274168102
PQPubID 2043795
ParticipantIDs proquest_journals_3274168102
crossref_primary_10_1007_s00453_025_01348_2
springer_journals_10_1007_s00453_025_01348_2
PublicationCentury 2000
PublicationDate 2026-02-01
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: 2026-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2026
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References T Gima (1348_CR4) 2025; 1024
1348_CR21
1348_CR20
J Chen (1348_CR18) 2019; 790
1348_CR25
1348_CR28
1348_CR27
T Gima (1348_CR6) 2024; 86
T Gima (1348_CR3) 2022; 918
A Jacob (1348_CR9) 2023; 16
D Kratsch (1348_CR14) 1997; 77
CA Barefoot (1348_CR8) 1987; 1
KS Bagga (1348_CR11) 1992; 37
MR Fellows (1348_CR16) 1989; 6
E Lee (1348_CR17) 2019; 177
W Li (1348_CR23) 2018; 739
S Baguley (1348_CR26) 2025; 87
LH Clark (1348_CR12) 1987; 2
M Xiao (1348_CR22) 2023; 959
M Xiao (1348_CR19) 2017; 88
Y Li (1348_CR15) 2008; 85
1348_CR5
R Ganian (1348_CR10) 2021; 83
GJ Minty (1348_CR24) 1980; 28
1348_CR7
PG Drange (1348_CR13) 2016; 76
1348_CR1
1348_CR2
References_xml – ident: 1348_CR1
  doi: 10.4230/LIPIcs.ESA.2021.26
– ident: 1348_CR20
  doi: 10.4230/LIPIcs.IPEC.2016.20
– volume: 790
  start-page: 152
  year: 2019
  ident: 1348_CR18
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/J.TCS.2019.04.018
– volume: 16
  start-page: 144
  issue: 3
  year: 2023
  ident: 1348_CR9
  publication-title: Algorithms
  doi: 10.3390/A16030144
– volume: 1024
  year: 2025
  ident: 1348_CR4
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/J.TCS.2024.114954
– volume: 1
  start-page: 13
  issue: 38
  year: 1987
  ident: 1348_CR8
  publication-title: J. Combin. Math. Combin. Comput
– volume: 2
  start-page: 179
  year: 1987
  ident: 1348_CR12
  publication-title: J. Combin. Math. Combin. Comput
– volume: 88
  start-page: 260
  year: 2017
  ident: 1348_CR19
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/J.JCSS.2017.04.004
– ident: 1348_CR7
  doi: 10.46298/lmcs-20(4:18)2024
– ident: 1348_CR25
  doi: 10.1007/978-1-4612-0515-9
– volume: 85
  start-page: 19
  issue: 1
  year: 2008
  ident: 1348_CR15
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160701365721
– volume: 37
  start-page: 13
  issue: 38
  year: 1992
  ident: 1348_CR11
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(92)90122-Q
– volume: 959
  year: 2023
  ident: 1348_CR22
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/J.TCS.2023.113872
– ident: 1348_CR21
  doi: 10.1017/9781107415157
– ident: 1348_CR28
  doi: 10.48550/arXiv.2011.04528
– volume: 76
  start-page: 1181
  issue: 4
  year: 2016
  ident: 1348_CR13
  publication-title: Algorithmica
  doi: 10.1007/s00453-016-0127-x
– volume: 739
  start-page: 80
  year: 2018
  ident: 1348_CR23
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/J.TCS.2018.05.004
– volume: 77
  start-page: 259
  issue: 3
  year: 1997
  ident: 1348_CR14
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(96)00133-3
– volume: 6
  start-page: 23
  issue: 1
  year: 1989
  ident: 1348_CR16
  publication-title: J. Combin. Math. Combin. Comput
– volume: 86
  start-page: 147
  issue: 1
  year: 2024
  ident: 1348_CR6
  publication-title: Algorithmica
  doi: 10.1007/S00453-023-01161-9
– volume: 918
  start-page: 60
  year: 2022
  ident: 1348_CR3
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/J.TCS.2022.03.021
– volume: 28
  start-page: 284
  issue: 3
  year: 1980
  ident: 1348_CR24
  publication-title: J. Comb. Theory B
  doi: 10.1016/0095-8956(80)90074-X
– ident: 1348_CR27
  doi: 10.4230/LIPICS.APPROX/RANDOM.2021.27
– volume: 83
  start-page: 1605
  issue: 6
  year: 2021
  ident: 1348_CR10
  publication-title: Algorithmica
  doi: 10.1007/S00453-020-00795-3
– volume: 177
  start-page: 1
  issue: 1–2
  year: 2019
  ident: 1348_CR17
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1255-7
– volume: 87
  start-page: 537
  issue: 4
  year: 2025
  ident: 1348_CR26
  publication-title: Algorithmica
  doi: 10.1007/S00453-024-01290-9
– ident: 1348_CR2
  doi: 10.4230/LIPICS.ESA.2023.16
– ident: 1348_CR5
  doi: 10.4230/LIPICS.MFCS.2024.58
SSID ssj0012796
Score 2.4285665
Snippet Over the past decades, various metrics have emerged in graph theory to grasp the complex nature of network vulnerability. In this paper, we study two specific...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Combinatorial analysis
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Decomposition
Fields (mathematics)
Graph theory
Mathematics of Computing
Polynomials
Theory of Computation
Title Combining Crown Structures for Vulnerability Measures
URI https://link.springer.com/article/10.1007/s00453-025-01348-2
https://www.proquest.com/docview/3274168102
Volume 88
WOSCitedRecordID wos001621069800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH7I9ODF-ROnU3LwpoGmSZv2KMPhxSFOx26h-VEQZIrdBv73vqTthqIHvTYlhK9J3nt9730fwIXXbnDCcmqyvKBCCjxSRaKpiwx6E9Z3i5ZBbEKORtl0mt83TWFVW-3epiTDTb1qdvPeh885-mIzjnPixbuJ5i7zgg0P48kqdxDLoMrldeepQAPdtMr8PMdXc7T2Mb-lRYO1GXb_t85d2Gm8S3Jdb4c92HCzfei2yg2kOcgHkOAjHaQhyMDH4WQcaGQXGHsT9GLJZPHi2ahD4ewHuav_I1aH8DS8eRzc0kZAgRrO0jk1llljMSRhPDUZM6mJbFqYtPQs8TrLHH6nRNpSC86tYGVk4zx1GCBFuXU-hXsEndnrzB0DKfKCc2mliYpIlMxobRIXozPIrMidlj24bHFUbzVPhloxIgdEFCKiAiIq7kG_hVo1Z6ZS3DPpeHo0HL5qoV0P_z7byd9eP4XtGCPPuvS6Dx0E2J3BllnOn6v387CXPgHRMsIJ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6kCnqxPrFaNQdvurDZZF9HKZaKbRFbS29h81gQpIrbCv57J9ndFkUPet0sIXybZGZ2Zr4P4MJqNxiumaeSNPN4zPFIZaH0jK_Qm9C2WzR3YhPxcJhMp-l91RRW1NXudUrS3dTLZjfrfdicoy02YzgnXrzrHC2WZcx_GE2WuYMgdqpcVnfe42igq1aZn-f4ao5WPua3tKizNt3m_9a5A9uVd0muy-2wC2tmtgfNWrmBVAd5H0J8JJ00BOnYOJyMHI3sAmNvgl4smSyeLRu1K5z9IIPyP2JxAI_dm3Gn51UCCp5iNJp7SlOtNIYklEUqoSpSvo4yFeWWJV4micHvFMY6l5wxzWnu6yCNDAZIfqqNTeEeQmP2MjNHQLI0YyzWsfIzn-dUSalCE6AzSDVPjYxbcFnjKF5LngyxZER2iAhERDhERNCCdg21qM5MIZhl0rH0aDh8VUO7Gv59tuO_vX4Om73xoC_6t8O7E9gKMAoty7Db0ECwzSlsqPf5U_F25vbVJ_Q2xO0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1ERbxYP7FadQ_eNDTJbr6OUi2KWgrV0tuS7G5AkFhsK_jvndkkrYoexGs2DOFlJzuTmXkP4JS0G4zQ3FFxkjoiEuhSaZA5xlUYTWiaFs2t2ETU68WjUdL_NMVvu93rkmQ500AsTcW0PdZ5ez74RpEI1R-p8YyjffwIrwhqpKd8fTCc1xH8yCp0kQa9I_CwrsZmfrbx9WhaxJvfSqT25Ok2_v_Mm7BRRZ3sotwmW7Bkim1o1IoOrHLwHQjwUmYlI1iH8nM2sPSyM8zJGUa3bDh7JpZq21D7zu7L_4uTXXjsXj10rp1KWMFR3AunjtKeVhpTFY-HKvZUqFwdpirMiT0-i2OD7y-IdJ4JzrXwclf7SWgwcXITbai0uwfLxUth9oGlScp5pCPlpq7IPZVlKjA-BomeFonJoiac1ZjKccmfIedMyRYRiYhIi4j0m9CqYZeVL00kJ4Ydok3D5fMa5sXy79YO_nb7Caz1L7vy7qZ3ewjrPianZXd2C5YRa3MEq-pt-jR5PbZb7AOVr83R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combining+Crown+Structures+for+Vulnerability+Measures&rft.jtitle=Algorithmica&rft.au=Casel+Katrin&rft.au=Friedrich%2C+Tobias&rft.au=Niklanovits+Aikaterini&rft.au=Simonov+Kirill&rft.date=2026-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=88&rft.issue=1&rft_id=info:doi/10.1007%2Fs00453-025-01348-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon