Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network

With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats within IoT-based network has become a major issue. Traditional Intrusion Detection Systems (IDSs) cannot be used in typical IoT-based networ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatic control and computer sciences Ročník 55; číslo 2; s. 137 - 147
Hlavní autori: Prabhat Kumar, Gupta, Govind P., Tripathi, Rakesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.03.2021
Springer Nature B.V
Predmet:
ISSN:0146-4116, 1558-108X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats within IoT-based network has become a major issue. Traditional Intrusion Detection Systems (IDSs) cannot be used in typical IoT-based network due to various constraints in terms of battery life, memory capacity and computational capability. In order to address these issues, various IDSs have been proposed in literature. However, most of the IDSs face problem of high false alarm rate and low accuracy in anomaly detection process. In this paper, we have proposed a anomaly-based intrusion detection system by decentralizing the existing cloud based security architecture to local fog nodes. In order to evaluate the effectiveness of the proposed model various machine learning algorithms such as Random Forest, K-Nearest Neighbor and Decision Tree are used. Performance of our proposed model is tested using actual IoT-based dataset. The evaluation of the underlying approach outperforms in high detection accuracy and low false alarm rate using Random Forest algorithm.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0146-4116
1558-108X
DOI:10.3103/S0146411621020085