Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network
With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats within IoT-based network has become a major issue. Traditional Intrusion Detection Systems (IDSs) cannot be used in typical IoT-based networ...
Uloženo v:
| Vydáno v: | Automatic control and computer sciences Ročník 55; číslo 2; s. 137 - 147 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.03.2021
Springer Nature B.V |
| Témata: | |
| ISSN: | 0146-4116, 1558-108X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats within IoT-based network has become a major issue. Traditional Intrusion Detection Systems (IDSs) cannot be used in typical IoT-based network due to various constraints in terms of battery life, memory capacity and computational capability. In order to address these issues, various IDSs have been proposed in literature. However, most of the IDSs face problem of high false alarm rate and low accuracy in anomaly detection process. In this paper, we have proposed a anomaly-based intrusion detection system by decentralizing the existing cloud based security architecture to local fog nodes. In order to evaluate the effectiveness of the proposed model various machine learning algorithms such as Random Forest, K-Nearest Neighbor and Decision Tree are used. Performance of our proposed model is tested using actual IoT-based dataset. The evaluation of the underlying approach outperforms in high detection accuracy and low false alarm rate using Random Forest algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0146-4116 1558-108X |
| DOI: | 10.3103/S0146411621020085 |