Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network

With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats within IoT-based network has become a major issue. Traditional Intrusion Detection Systems (IDSs) cannot be used in typical IoT-based networ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Automatic control and computer sciences Ročník 55; číslo 2; s. 137 - 147
Hlavní autori: Prabhat Kumar, Gupta, Govind P., Tripathi, Rakesh
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.03.2021
Springer Nature B.V
Predmet:
ISSN:0146-4116, 1558-108X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats within IoT-based network has become a major issue. Traditional Intrusion Detection Systems (IDSs) cannot be used in typical IoT-based network due to various constraints in terms of battery life, memory capacity and computational capability. In order to address these issues, various IDSs have been proposed in literature. However, most of the IDSs face problem of high false alarm rate and low accuracy in anomaly detection process. In this paper, we have proposed a anomaly-based intrusion detection system by decentralizing the existing cloud based security architecture to local fog nodes. In order to evaluate the effectiveness of the proposed model various machine learning algorithms such as Random Forest, K-Nearest Neighbor and Decision Tree are used. Performance of our proposed model is tested using actual IoT-based dataset. The evaluation of the underlying approach outperforms in high detection accuracy and low false alarm rate using Random Forest algorithm.
AbstractList With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats within IoT-based network has become a major issue. Traditional Intrusion Detection Systems (IDSs) cannot be used in typical IoT-based network due to various constraints in terms of battery life, memory capacity and computational capability. In order to address these issues, various IDSs have been proposed in literature. However, most of the IDSs face problem of high false alarm rate and low accuracy in anomaly detection process. In this paper, we have proposed a anomaly-based intrusion detection system by decentralizing the existing cloud based security architecture to local fog nodes. In order to evaluate the effectiveness of the proposed model various machine learning algorithms such as Random Forest, K-Nearest Neighbor and Decision Tree are used. Performance of our proposed model is tested using actual IoT-based dataset. The evaluation of the underlying approach outperforms in high detection accuracy and low false alarm rate using Random Forest algorithm.
Author Tripathi, Rakesh
Prabhat Kumar
Gupta, Govind P.
Author_xml – sequence: 1
  surname: Prabhat Kumar
  fullname: Prabhat Kumar
  email: pkumar.phd2019.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology
– sequence: 2
  givenname: Govind P.
  surname: Gupta
  fullname: Gupta, Govind P.
  email: gpgupta.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology
– sequence: 3
  givenname: Rakesh
  surname: Tripathi
  fullname: Tripathi, Rakesh
  email: rtripathi.it@nitrr.ac.in
  organization: Department of Information Technology, National Institute of Technology
BookMark eNp9kF1LwzAUhoNMcE5_gHcBr6tJ2iTt5dycDoZebBPvStqelM4tmUmK7N_bMkFQ9Oqcw_s-5-scDYw1gNAVJTcxJfHtktBEJJQKRgkjJOUnaEg5TyNK0tcBGvZy1Otn6Nz7DSGdloohepmCb2qDrcZjY3dqe4julIcKz01wrW-swVMIUIY-Wx58gB1e-8bUeGZrPLG7fRv6SluH53aFnyB8WPd2gU612nq4_IojtJ7dryaP0eL5YT4ZL6IypiJEZZlWOosJEcClFlIJnVBBuCRKZgmjhSoygERlCRSCpUqWFedSVlwWPE6Zjkfo-th37-x7Cz7kG9s6043MGWeSy-7MpHPJo6t01nsHOi-boPqTglPNNqck75-Y_3piR9If5N41O-UO_zLsyPjOa2pw3zv9DX0CCbODLw
CitedBy_id crossref_primary_10_1109_TGCN_2022_3165692
crossref_primary_10_1007_s10115_025_02513_3
crossref_primary_10_1016_j_cose_2024_103781
crossref_primary_10_1007_s11277_024_11082_7
crossref_primary_10_3390_s22176436
crossref_primary_10_1016_j_csi_2023_103779
crossref_primary_10_1109_ACCESS_2024_3444046
crossref_primary_10_3390_sym14112304
crossref_primary_10_1007_s00354_023_00210_9
crossref_primary_10_1007_s10586_024_04270_4
crossref_primary_10_1007_s43926_025_00150_4
crossref_primary_10_3233_JIFS_230895
crossref_primary_10_32604_cmc_2023_042726
crossref_primary_10_3103_S0146411624700056
crossref_primary_10_32604_cmc_2024_055891
crossref_primary_10_3390_s23094467
crossref_primary_10_1016_j_jpdc_2022_12_009
crossref_primary_10_1002_ett_4594
crossref_primary_10_1155_2022_5321530
crossref_primary_10_3390_s22103744
crossref_primary_10_3390_s22208063
crossref_primary_10_1109_ACCESS_2023_3277545
crossref_primary_10_1080_01969722_2022_2157610
crossref_primary_10_1155_2022_8266347
crossref_primary_10_3390_fi15010009
crossref_primary_10_1038_s41598_022_16261_9
crossref_primary_10_1109_ACCESS_2021_3129336
crossref_primary_10_1016_j_asoc_2024_112603
crossref_primary_10_1109_ACCESS_2024_3463791
crossref_primary_10_1016_j_jpdc_2022_01_030
crossref_primary_10_1007_s10660_024_09932_4
crossref_primary_10_3103_S014641162306007X
crossref_primary_10_1016_j_cosrev_2021_100421
crossref_primary_10_1109_IOTM_002_2200195
crossref_primary_10_3390_app12041990
crossref_primary_10_1007_s10115_024_02162_y
crossref_primary_10_1007_s11042_024_20314_8
crossref_primary_10_1007_s12652_022_04449_w
crossref_primary_10_1155_2022_3850582
crossref_primary_10_1145_3603713
crossref_primary_10_3390_fi16060200
crossref_primary_10_1155_2022_2975033
crossref_primary_10_1007_s10115_024_02273_6
crossref_primary_10_1080_0952813X_2024_2342858
crossref_primary_10_1002_ett_70064
crossref_primary_10_1007_s42979_023_02105_4
crossref_primary_10_1080_09540091_2022_2149698
crossref_primary_10_1007_s40995_025_01851_9
crossref_primary_10_1007_s13369_024_08882_1
crossref_primary_10_3390_app122211650
crossref_primary_10_1155_2022_8303856
crossref_primary_10_3390_app13074625
crossref_primary_10_12720_jait_16_5_632_647
crossref_primary_10_3390_app12094664
crossref_primary_10_1016_j_comnet_2022_109154
crossref_primary_10_1109_TITS_2021_3102581
Cites_doi 10.1007/978-3-642-00296-0
10.1109/TETC.2016.2633228
10.1016/j.comnet.2019.05.014
10.2307/1167293
10.2139/ssrn.3356525
10.1007/s10586-018-1847-2
10.1016/j.comnet.2019.01.023
10.1109/JCN.2018.000041
10.1007/s12065-019-00199-5
10.1109/ATNAC.2014.7020884
10.1007/s11227-018-2413-7
10.1186/s13677-018-0123-6
10.1109/TII.2018.2836150
10.1016/j.iot.2019.100059
10.1016/j.future.2017.08.043
10.1007/s12065-019-00291-w
10.1016/j.comcom.2020.05.048
10.1049/cp.2018.0035
10.1109/COMST.2019.2896380
ContentType Journal Article
Copyright Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 2, pp. 137–147. © Allerton Press, Inc., 2021.
Copyright_xml – notice: Allerton Press, Inc. 2021. ISSN 0146-4116, Automatic Control and Computer Sciences, 2021, Vol. 55, No. 2, pp. 137–147. © Allerton Press, Inc., 2021.
DBID AAYXX
CITATION
JQ2
DOI 10.3103/S0146411621020085
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-108X
EndPage 147
ExternalDocumentID 10_3103_S0146411621020085
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
23N
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5GY
5VS
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9O
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
XU3
YLTOR
Z7R
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-cc8df93006e57f67a6f4160570a79421bab9ee4a94eb628a7cd5577d57b5382f3
IEDL.DBID RSV
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000650627700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0146-4116
IngestDate Wed Sep 17 23:57:16 EDT 2025
Sat Nov 29 05:52:10 EST 2025
Tue Nov 18 21:16:31 EST 2025
Fri Feb 21 02:48:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords fog computing
intrusion detection system
anomaly detection
Internet of Things
feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-cc8df93006e57f67a6f4160570a79421bab9ee4a94eb628a7cd5577d57b5382f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2527575584
PQPubID 2043879
PageCount 11
ParticipantIDs proquest_journals_2527575584
crossref_citationtrail_10_3103_S0146411621020085
crossref_primary_10_3103_S0146411621020085
springer_journals_10_3103_S0146411621020085
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Automatic control and computer sciences
PublicationTitleAbbrev Aut. Control Comp. Sci
PublicationYear 2021
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References MilosevicJ.RegazzoniF.MalekM.Malware threats and solutions for trustworthy mobile systems design, Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment2017
Benmessahel, I., Xie, K., Chellal, M., and Semong, T., A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization, Evol. Intell., 20190, vol. 12, no. 2, pp. 131–146. https://doi.org/10.1007/s12065-019-00199-5
Evans, D., The Internet of Things: How the Next Evolution of the Internet Is Changing Everything, Cisco White Paper, 2011.
DS2OS traffic traces, Kaggle. https://www.kaggle.com/francoisxa/ds2ostraffictraces. Accessed September 25, 2019.
PajouhH.H.JavidanR.KhayamiR.DehghantanhaA.ChooK.K.R.A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networksIEEE Trans. Emerg. Top. Comput.2019731432310.1109/TETC.2016.2633228
Hasan, M., Islam, M.M., Zarif, M.I.I., and Hashem, M.M.A., Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches, Internet Things, 2019, vol. 7, artic. no. 100059. https://doi.org/10.1016/j.iot.2019.100059
TaliaD.TrunfioP.MarozzoF.Data Analysis in the Cloud: Models, Techniques and Applications2015
TrentS.C.ArtilesA.J.EnglertC.S.From deficit thinking to social constructivism: A review of theory, research, and practice in special educationRev. Res. Educ.19982327730710.2307/1167293
EtheringtonD.CongerK.Large DDoS attacks cause outages at Twitter, Spotify, and other sites2016
BenestyJ.ChenJ.HuangY.CohenI.Noise Reduction in Speech Processing200910.1007/978-3-642-00296-0
Swarna PriyaR.M.An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architectureComput. Commun.202016013914910.1016/j.comcom.2020.05.048
LiuX.LiuY.LiuA.YangL.T.Defending ON-OFF attacks using light probing messages in smart sensors for industrial communication systemsIEEE Trans. Ind. Inf.2018143801381110.1109/TII.2018.2836150
Pahl, M.O. and Aubet, F.X., All eyes on you: Distributed multi-dimensional IoT microservice anomaly detection, 14th Int. Conf. Netw. Serv. Manag. CNSM 2018 Work. 1st Int. Work. High-Precision Networks Oper. Control. HiPNet 2018 1st Work. Segm. Routing Serv. Funct. Chain. SR+SFC 2, 2018, pp. 72–80.
DiroA.ChilamkurtiN.Distributed attack detection scheme using deep learning approach for Internet of ThingsFuture Gener. Comput. Syst.20188276176810.1016/j.future.2017.08.043
Reddy, G.T., Kaluri, R., Reddy, P.K., Lakshmanna, K., Koppu, S., and Rajput, D.S., A novel approach for home surveillance system using IoT adaptive security, Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur - India, February 26–28,2019, 2019, pp. 1616–1620. https://doi.org/10.2139/ssrn.3356525
ElrawyM.F.AwadA.I.HamedH.F.A.Intrusion detection systems for IoT-based smart environments: A surveyJ. Cloud Comput.2018712010.1186/s13677-018-0123-6
da CostaK.A.P.PapaJ.P.LisboaC.O.MunozR.de AlbuquerqueV.H.C.Internet of Things: A survey on machine learning-based intrusion detection approachesComput. Networks201915114715710.1016/j.comnet.2019.01.023
DengL.LiD.YaoX.CoxD.WangH.Mobile network intrusion detection for IoT system based on transfer learning algorithmCluster Comput.2019229889990410.1007/s10586-018-1847-2
MehmoodA.MukherjeeM.AhmedS.H.SongH.MalikK.M.NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacksJ. Supercomput.2018745156517010.1007/s11227-018-2413-7
HajiheidariS.WakilK.BadriM.NavimipourN.J.Intrusion detection systems in the Internet of things: A comprehensive investigationComput. Networks201916016519110.1016/j.comnet.2019.05.014
StojmenovicI.Fog computing: A cloud to the ground support for smart things and machine-to-machine networks, 2014 Australas.Telecommun. Networks Appl. Conf. ATNAC2014201511712210.1109/ATNAC.2014.7020884
ChaabouniN.MosbahM.ZemmariA.SauvignacC.FarukiP.Network intrusion detection for IoT security based on learning techniquesIEEE Commun. Surv. Tutorials2019212671270110.1109/COMST.2019.2896380
Kumar, V., Das, A.K., and Sinha, D., UIDS: A unified intrusion detection system for IoT environment, Evol. Intell., 2019, artic. no. 0123456789. https://doi.org/10.1007/s12065-019-00291-w
Anthi, E., Williams, L., and Burnap, P., Pulse: An adaptive intrusion detection for the internet of things, IET Conf. Publ., 2018, vol. 2018, no. CP740. https://doi.org/10.1049/cp.2018.0035
PrabavathyS.SundarakanthamK.ShalinieS.M.Design of cognitive fog computing for intrusion detection in Internet of ThingsJ. Commun. Networks20182029129810.1109/JCN.2018.000041
7339_CR23
L. Deng (7339_CR11) 2019; 22
7339_CR20
S. Hajiheidari (7339_CR4) 2019; 160
A. Diro (7339_CR14) 2018; 82
D. Talia (7339_CR21) 2015
H.H. Pajouh (7339_CR9) 2019; 7
S. Prabavathy (7339_CR12) 2018; 20
A. Mehmood (7339_CR17) 2018; 74
J. Benesty (7339_CR18) 2009
J. Milosevic (7339_CR25) 2017
X. Liu (7339_CR13) 2018; 14
7339_CR10
S.C. Trent (7339_CR19) 1998; 23
M.F. Elrawy (7339_CR2) 2018; 7
I. Stojmenovic (7339_CR5) 2014; 2015
7339_CR1
7339_CR8
D. Etherington (7339_CR3) 2016
N. Chaabouni (7339_CR6) 2019; 21
7339_CR15
7339_CR16
7339_CR7
K.A.P. da Costa (7339_CR22) 2019; 151
R.M. Swarna Priya (7339_CR24) 2020; 160
References_xml – reference: Hasan, M., Islam, M.M., Zarif, M.I.I., and Hashem, M.M.A., Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches, Internet Things, 2019, vol. 7, artic. no. 100059. https://doi.org/10.1016/j.iot.2019.100059
– reference: PrabavathyS.SundarakanthamK.ShalinieS.M.Design of cognitive fog computing for intrusion detection in Internet of ThingsJ. Commun. Networks20182029129810.1109/JCN.2018.000041
– reference: ChaabouniN.MosbahM.ZemmariA.SauvignacC.FarukiP.Network intrusion detection for IoT security based on learning techniquesIEEE Commun. Surv. Tutorials2019212671270110.1109/COMST.2019.2896380
– reference: DengL.LiD.YaoX.CoxD.WangH.Mobile network intrusion detection for IoT system based on transfer learning algorithmCluster Comput.2019229889990410.1007/s10586-018-1847-2
– reference: Pahl, M.O. and Aubet, F.X., All eyes on you: Distributed multi-dimensional IoT microservice anomaly detection, 14th Int. Conf. Netw. Serv. Manag. CNSM 2018 Work. 1st Int. Work. High-Precision Networks Oper. Control. HiPNet 2018 1st Work. Segm. Routing Serv. Funct. Chain. SR+SFC 2, 2018, pp. 72–80.
– reference: HajiheidariS.WakilK.BadriM.NavimipourN.J.Intrusion detection systems in the Internet of things: A comprehensive investigationComput. Networks201916016519110.1016/j.comnet.2019.05.014
– reference: Reddy, G.T., Kaluri, R., Reddy, P.K., Lakshmanna, K., Koppu, S., and Rajput, D.S., A novel approach for home surveillance system using IoT adaptive security, Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur - India, February 26–28,2019, 2019, pp. 1616–1620. https://doi.org/10.2139/ssrn.3356525
– reference: Kumar, V., Das, A.K., and Sinha, D., UIDS: A unified intrusion detection system for IoT environment, Evol. Intell., 2019, artic. no. 0123456789. https://doi.org/10.1007/s12065-019-00291-w
– reference: MehmoodA.MukherjeeM.AhmedS.H.SongH.MalikK.M.NBC-MAIDS: Naïve Bayesian classification technique in multi-agent system-enriched IDS for securing IoT against DDoS attacksJ. Supercomput.2018745156517010.1007/s11227-018-2413-7
– reference: Evans, D., The Internet of Things: How the Next Evolution of the Internet Is Changing Everything, Cisco White Paper, 2011.
– reference: BenestyJ.ChenJ.HuangY.CohenI.Noise Reduction in Speech Processing200910.1007/978-3-642-00296-0
– reference: PajouhH.H.JavidanR.KhayamiR.DehghantanhaA.ChooK.K.R.A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networksIEEE Trans. Emerg. Top. Comput.2019731432310.1109/TETC.2016.2633228
– reference: TrentS.C.ArtilesA.J.EnglertC.S.From deficit thinking to social constructivism: A review of theory, research, and practice in special educationRev. Res. Educ.19982327730710.2307/1167293
– reference: TaliaD.TrunfioP.MarozzoF.Data Analysis in the Cloud: Models, Techniques and Applications2015
– reference: Anthi, E., Williams, L., and Burnap, P., Pulse: An adaptive intrusion detection for the internet of things, IET Conf. Publ., 2018, vol. 2018, no. CP740. https://doi.org/10.1049/cp.2018.0035
– reference: da CostaK.A.P.PapaJ.P.LisboaC.O.MunozR.de AlbuquerqueV.H.C.Internet of Things: A survey on machine learning-based intrusion detection approachesComput. Networks201915114715710.1016/j.comnet.2019.01.023
– reference: DiroA.ChilamkurtiN.Distributed attack detection scheme using deep learning approach for Internet of ThingsFuture Gener. Comput. Syst.20188276176810.1016/j.future.2017.08.043
– reference: Swarna PriyaR.M.An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architectureComput. Commun.202016013914910.1016/j.comcom.2020.05.048
– reference: Benmessahel, I., Xie, K., Chellal, M., and Semong, T., A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization, Evol. Intell., 20190, vol. 12, no. 2, pp. 131–146. https://doi.org/10.1007/s12065-019-00199-5
– reference: EtheringtonD.CongerK.Large DDoS attacks cause outages at Twitter, Spotify, and other sites2016
– reference: MilosevicJ.RegazzoniF.MalekM.Malware threats and solutions for trustworthy mobile systems design, Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment2017
– reference: ElrawyM.F.AwadA.I.HamedH.F.A.Intrusion detection systems for IoT-based smart environments: A surveyJ. Cloud Comput.2018712010.1186/s13677-018-0123-6
– reference: DS2OS traffic traces, Kaggle. https://www.kaggle.com/francoisxa/ds2ostraffictraces. Accessed September 25, 2019.
– reference: StojmenovicI.Fog computing: A cloud to the ground support for smart things and machine-to-machine networks, 2014 Australas.Telecommun. Networks Appl. Conf. ATNAC2014201511712210.1109/ATNAC.2014.7020884
– reference: LiuX.LiuY.LiuA.YangL.T.Defending ON-OFF attacks using light probing messages in smart sensors for industrial communication systemsIEEE Trans. Ind. Inf.2018143801381110.1109/TII.2018.2836150
– volume-title: Noise Reduction in Speech Processing
  year: 2009
  ident: 7339_CR18
  doi: 10.1007/978-3-642-00296-0
– volume: 7
  start-page: 314
  year: 2019
  ident: 7339_CR9
  publication-title: IEEE Trans. Emerg. Top. Comput.
  doi: 10.1109/TETC.2016.2633228
– volume: 160
  start-page: 165
  year: 2019
  ident: 7339_CR4
  publication-title: Comput. Networks
  doi: 10.1016/j.comnet.2019.05.014
– volume: 23
  start-page: 277
  year: 1998
  ident: 7339_CR19
  publication-title: Rev. Res. Educ.
  doi: 10.2307/1167293
– ident: 7339_CR20
  doi: 10.2139/ssrn.3356525
– volume-title: Large DDoS attacks cause outages at Twitter, Spotify, and other sites
  year: 2016
  ident: 7339_CR3
– volume-title: Malware threats and solutions for trustworthy mobile systems design, Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment
  year: 2017
  ident: 7339_CR25
– volume: 22
  start-page: 9889
  year: 2019
  ident: 7339_CR11
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-018-1847-2
– volume: 151
  start-page: 147
  year: 2019
  ident: 7339_CR22
  publication-title: Comput. Networks
  doi: 10.1016/j.comnet.2019.01.023
– volume: 20
  start-page: 291
  year: 2018
  ident: 7339_CR12
  publication-title: J. Commun. Networks
  doi: 10.1109/JCN.2018.000041
– ident: 7339_CR7
– ident: 7339_CR16
  doi: 10.1007/s12065-019-00199-5
– ident: 7339_CR1
– volume: 2015
  start-page: 117
  year: 2014
  ident: 7339_CR5
  publication-title: Telecommun. Networks Appl. Conf. ATNAC
  doi: 10.1109/ATNAC.2014.7020884
– volume: 74
  start-page: 5156
  year: 2018
  ident: 7339_CR17
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-018-2413-7
– volume: 7
  start-page: 1
  year: 2018
  ident: 7339_CR2
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-018-0123-6
– volume: 14
  start-page: 3801
  year: 2018
  ident: 7339_CR13
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2836150
– ident: 7339_CR8
  doi: 10.1016/j.iot.2019.100059
– volume: 82
  start-page: 761
  year: 2018
  ident: 7339_CR14
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.08.043
– ident: 7339_CR10
  doi: 10.1007/s12065-019-00291-w
– volume: 160
  start-page: 139
  year: 2020
  ident: 7339_CR24
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.05.048
– ident: 7339_CR15
  doi: 10.1049/cp.2018.0035
– volume: 21
  start-page: 2671
  year: 2019
  ident: 7339_CR6
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2019.2896380
– volume-title: Data Analysis in the Cloud: Models, Techniques and Applications
  year: 2015
  ident: 7339_CR21
– ident: 7339_CR23
SSID ssj0055886
Score 2.439747
Snippet With increase in the demand for Internet of Things (IoT)-based services, the capability to detect anomalies such as malicious control, spying and other threats...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Accuracy
Algorithms
Anomalies
Cloud computing
Computer Science
Control Structures and Microprogramming
Decision trees
Espionage
False alarms
Internet of Things
Intrusion detection systems
Machine learning
Model testing
Title Design of Anomaly-Based Intrusion Detection System Using Fog Computing for IoT Network
URI https://link.springer.com/article/10.3103/S0146411621020085
https://www.proquest.com/docview/2527575584
Volume 55
WOSCitedRecordID wos000650627700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1558-108X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055886
  issn: 0146-4116
  databaseCode: RSV
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAPzk-cTsmDT0qwbZq0eZzO4UCG-DH2VpK0EWG24obgf2-Sts5v0MfSS2jvcrlfkl_uAA6YNKNWUY0JFQzbBF1YBDLGUnmpJiIW5Ybb8CIaDOLRiF9W97gnNdu9PpJ0M7VbV3rk2NKQWOj7zC5SLFKYhwUT7WLrjVfXw3r6pTR25R2tNLbi5VHm9118DEYzhPnpUNTFml7zX1-5CisVtESdciyswVyWr0OzLtuAKi9eh-V3OQg3YNh1HA5UaNTJiwcxfsEnJrKlqJ_b-xjGbKibTR1hK0dlfnPkeAaoV9yhsnf7ZMAv6hc3aFDyyjfhtnd2c3qOq2ILWBGfTbFScao5MU6Y0UizSDBtsJpBc54wLhv4UkieZaHgYSZZEItIpZRGUUojaebMQJMtaORFnm0Dsr-vuRIxISQ0rXmQahF6kgtBfKl4C7xa64mqMpHbghjjxKxIrBaTL1psweFbk8cyDcdvwu3alEnlkZMkoEFkoKnBWy04qk03e_1jZzt_kt6FpcCSXhxJrQ0NY6hsDxbV8_R-8rTvBuordIPdeg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD06k4nZoHn5Rg2zT9eJzOseEconPsrSRpI8JsxQ3B_94kbZ3foI-ll9De5XK_JL_cARx6XI1aQSUmlHlYJ-jCzOEB5sKKJWEByzfchj2_3w9Go_CquMc9Kdnu5ZGkmanNutIiJ5qG5Lm27elFikYK87DgqoCleXzXN8Ny-qU0MOUdtTTW4vlR5vddfAxGM4T56VDUxJp29V9fuQarBbREzXwsrMNcktagWpZtQIUX12DlXQ7CDRi2DIcDZRI10-yBjV_wqYpsMeqm-j6GMhtqJVND2EpRnt8cGZ4Bamd3KO9dPynwi7rZAPVzXvkm3LbPB2cdXBRbwILY3hQLEcQyJMoJE-pLz2eeVFhNoTmLKZd1bM54mCQuC92Ee07AfBFT6vsx9bmaMx1JtqCSZmmyDUj_vgwFCwghrmodOrFkrsVDxojNRVgHq9R6JIpM5LogxjhSKxKtxeiLFutw9NbkMU_D8ZtwozRlVHjkJHKo4ytoqvBWHY5L081e_9jZzp-kD2CpM7jsRb1u_2IXlh1NgDGEtQZUlNGSPVgUz9P7ydO-GbSv3uTgXg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4nZoHn5Swtmn68TidxeEoA-fYW0nSRoTZDjcE_3uTfji_QXwsvYQ2l0t-l_vlDuDU4WrWCioxoczBOkEXZhb3MBdGLAnzWHHgNuq7YeiNx_6grHM6q9juVUiyuNOgszSl8_Y0lu3cxzRIW1OSHNs0He2waNSwDCu2rhmk3fXbUbUUU-rlpR61NNbiRVjz-y4-bkwLtPkpQJrvO0H931-8BZsl5ESdYo5sw1KSNqBelXNApXU3YONdbsIdGHVzbgfKJOqk2SObvOALtePFqJfqexpKnaibzHMiV4qKvOco5x-gILtHRe_6SYFi1MuGKCz45rtwF1wNL69xWYQBC2I6cyyEF0ufKONMqCsdlzlSYTiF8gymTNkyOeN-ktjMtxPuWB5zRUyp68bU5WottSTZg1qapck-IP370hfMI4TYqrVvxZLZBvcZIyYXfhOMSgORKDOU60IZk0h5KnoUoy-j2ISztybTIj3Hb8KtSq1RaamzyKKWqyCrwmFNOK_UuHj9Y2cHf5I-gbVBN4j6vfDmENYtzYvJeWwtqCmdJUewKp7nD7On43z-vgLDuelC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Anomaly-Based+Intrusion+Detection+System+Using+Fog+Computing+for+IoT+Network&rft.jtitle=Automatic+control+and+computer+sciences&rft.au=Kumar%2C+Prabhat&rft.au=Gupta%2C+Govind+P&rft.au=Tripathi+Rakesh&rft.date=2021-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0146-4116&rft.eissn=1558-108X&rft.volume=55&rft.issue=2&rft.spage=137&rft.epage=147&rft_id=info:doi/10.3103%2FS0146411621020085&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-4116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-4116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-4116&client=summon