Optimal multi-dimensional vector bin packing using simulated evolution
The use of the evolutionary heuristic simulated evolution for the optimization of the multi-dimensional vector bin packing problem, which is encountered in several industrial applications, is described. These applications range from production planning and steel fabrication to assignment of virtual...
Uloženo v:
| Vydáno v: | The Journal of supercomputing Ročník 73; číslo 12; s. 5516 - 5538 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.12.2017
Springer Nature B.V |
| Témata: | |
| ISSN: | 0920-8542, 1573-0484 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The use of the evolutionary heuristic simulated evolution for the optimization of the multi-dimensional vector bin packing problem, which is encountered in several industrial applications, is described. These applications range from production planning and steel fabrication to assignment of virtual machines (VMs) onto physical hosts at cloud-based data centers. The dimensions of VMs can include demands of CPU, memory, bandwidth, disk space etc. The generalized
goodness
functions that aid traversing the search space in an intelligent manner are designed to cater to the multidimensional nature of items (VMs). The efficiency of heuristics is tested by considering phase transition in the generation of difficult test cases. The quality of the heuristics is judged by determining how close the solution is to the estimated lower bound. A new implementation of a tighter lower bound is proposed. Experiments show that superior quality results are obtained by employing the proposed strategy. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0920-8542 1573-0484 |
| DOI: | 10.1007/s11227-017-2100-0 |