Deep Gaussian mixture models

Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, deep Gaussian mixture models (DGMM) are introduced and discussed. A DGMM is a network of multiple layers of latent variables, where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing Jg. 29; H. 1; S. 43 - 51
Hauptverfasser: Viroli, Cinzia, McLachlan, Geoffrey J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.01.2019
Springer Nature B.V
Schlagworte:
ISSN:0960-3174, 1573-1375
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, deep Gaussian mixture models (DGMM) are introduced and discussed. A DGMM is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture, thus resulting in deep mixtures of factor analyzers.
AbstractList Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In this work, deep Gaussian mixture models (DGMM) are introduced and discussed. A DGMM is a network of multiple layers of latent variables, where, at each layer, the variables follow a mixture of Gaussian distributions. Thus, the deep mixture model consists of a set of nested mixtures of linear models, which globally provide a nonlinear model able to describe the data in a very flexible way. In order to avoid overparameterized solutions, dimension reduction by factor models can be applied at each layer of the architecture, thus resulting in deep mixtures of factor analyzers.
Author McLachlan, Geoffrey J.
Viroli, Cinzia
Author_xml – sequence: 1
  givenname: Cinzia
  orcidid: 0000-0002-3278-5266
  surname: Viroli
  fullname: Viroli, Cinzia
  email: cinzia.viroli@unibo.it
  organization: Department of Statistical Sciences, University of Bologna
– sequence: 2
  givenname: Geoffrey J.
  surname: McLachlan
  fullname: McLachlan, Geoffrey J.
  organization: Department of Mathematics, University of Queensland
BookMark eNp9kMFKxDAQhoOs4O7qAwgeCp6jmaRpzFFWXYUFL3oO03QqXbptTVrQfXq7VBAEvcxc_u-f4VuwWdM2xNg5iCsQwlxHACklF2C4NVbx_RGbgzaKgzJ6xubCZoIrMOkJW8S4FQIgU-mcXdwRdckahxgrbJJd9dEPgZJdW1AdT9lxiXWks--9ZK8P9y-rR755Xj-tbjfcK8h67q3wBtELQkPZOFRRokq1kb4ArX2ZW0TAtLA6z1UqdS7xxpuCRJ5nlkgt2eXU24X2faDYu207hGY86SQYLXSmpB1TZkr50MYYqHS-6rGv2qYPWNUOhDuocJMKN6pwBxVuP5Lwi-xCtcPw-S8jJyaO2eaNws9Pf0NfrFtzBA
CitedBy_id crossref_primary_10_1002_ctpp_202200051
crossref_primary_10_1145_3744339
crossref_primary_10_1093_bib_bbae325
crossref_primary_10_1093_iob_obae036
crossref_primary_10_1111_exsy_12688
crossref_primary_10_3390_math10040589
crossref_primary_10_3233_JIFS_231747
crossref_primary_10_1007_s00521_022_08017_3
crossref_primary_10_1111_tpj_15905
crossref_primary_10_1016_j_tifs_2024_104574
crossref_primary_10_3390_math7090771
crossref_primary_10_1016_j_heliyon_2024_e37635
crossref_primary_10_1146_annurev_statistics_033121_115326
crossref_primary_10_3390_ai5040097
crossref_primary_10_1080_13467581_2025_2498116
crossref_primary_10_1016_j_jss_2025_112528
crossref_primary_10_1007_s11222_020_09989_9
crossref_primary_10_1016_j_knosys_2023_111033
crossref_primary_10_1016_j_procs_2020_09_138
crossref_primary_10_1016_j_ecoinf_2025_103051
crossref_primary_10_1080_01621459_2024_2308314
crossref_primary_10_1016_j_rpor_2020_03_015
crossref_primary_10_1051_0004_6361_202452361
crossref_primary_10_1007_s10182_023_00486_8
crossref_primary_10_1177_01423312241284660
crossref_primary_10_1111_anzs_12372
crossref_primary_10_1007_s10586_025_05580_x
crossref_primary_10_1016_j_est_2024_115036
crossref_primary_10_1016_j_patcog_2020_107575
crossref_primary_10_1016_j_inffus_2020_07_008
crossref_primary_10_1016_j_comnet_2024_110433
crossref_primary_10_1088_1757_899X_1107_1_012031
crossref_primary_10_3390_jmse13010092
crossref_primary_10_1134_S1054661825700014
crossref_primary_10_1038_s41598_022_21390_2
crossref_primary_10_1016_j_ress_2024_110386
crossref_primary_10_1109_ACCESS_2020_2985318
crossref_primary_10_1016_j_geoen_2025_214170
crossref_primary_10_1109_ACCESS_2025_3539022
crossref_primary_10_1007_s11634_020_00423_6
crossref_primary_10_1109_LRA_2025_3551536
crossref_primary_10_1109_TGRS_2025_3553751
crossref_primary_10_1371_journal_pone_0284114
crossref_primary_10_1016_j_asoc_2023_110812
crossref_primary_10_1088_1361_6471_adeda7
crossref_primary_10_1016_j_jocm_2021_100320
crossref_primary_10_1126_sciadv_adx0952
crossref_primary_10_1007_s00371_023_03237_7
crossref_primary_10_1049_itr2_70010
crossref_primary_10_3390_fractalfract9090586
crossref_primary_10_1109_ACCESS_2021_3111112
crossref_primary_10_1109_ACCESS_2024_3442776
crossref_primary_10_1051_itmconf_20193004001
crossref_primary_10_1016_j_aei_2025_103404
crossref_primary_10_3390_app14093675
crossref_primary_10_1016_j_foodres_2024_113933
crossref_primary_10_1016_j_jcbs_2024_100728
crossref_primary_10_3847_1538_4357_ace693
crossref_primary_10_1109_TIP_2023_3263099
crossref_primary_10_1007_s11135_023_01681_0
crossref_primary_10_1007_s11222_022_10132_z
crossref_primary_10_1007_s00521_025_10997_x
Cites_doi 10.1177/1471082X0901000405
10.1038/nature14539
10.1080/01621459.1990.10474930
10.1109/TPAMI.2009.149
10.1016/S0167-9473(02)00183-4
10.1198/jcgs.2010.08111
10.1007/s11634-010-0058-3
10.1002/0471721182
10.1198/106186005X59586
10.1198/016214502760047131
10.1016/j.neunet.2014.09.003
10.1007/s00357-010-9063-7
10.1080/10618600.2014.978007
10.1109/DICTA.2009.88
10.32614/RJ-2016-021
10.1109/CVPR.2014.220
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2017
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11222-017-9793-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 51
ExternalDocumentID 10_1007_s11222_017_9793_z
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
ZWQNP
JQ2
ID FETCH-LOGICAL-c316t-c90c7aac0ea7e6ea73dfa34572cd155cfb9aa1a4d95bb3425b2a8c7de0bb69ee3
IEDL.DBID RSV
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000457464800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-3174
IngestDate Sun Nov 09 08:52:07 EST 2025
Tue Nov 18 21:51:54 EST 2025
Sat Nov 29 03:32:42 EST 2025
Fri Feb 21 02:34:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Mixtures of factor analyzers
Stochastic EM algorithm
Unsupervised classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-c90c7aac0ea7e6ea73dfa34572cd155cfb9aa1a4d95bb3425b2a8c7de0bb69ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3278-5266
PQID 2175056329
PQPubID 2043829
PageCount 9
ParticipantIDs proquest_journals_2175056329
crossref_citationtrail_10_1007_s11222_017_9793_z
crossref_primary_10_1007_s11222_017_9793_z
springer_journals_10_1007_s11222_017_9793_z
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Viroli (CR20) 2010; 27
Scrucca, Fop, Murphy, Raftery (CR16) 2016; 8
Montanari, Viroli (CR14) 2010; 10
LeCun, Bengio, Hinton (CR8) 2015; 521
McLachlan, Peel (CR12) 2000
CR19
McLachlan, Peel, Bean (CR11) 2003; 41
CR18
CR17
Wei, Tanner (CR22) 1990; 85
Forina, Tiscornia (CR5) 1982; 72
Baudry, Raftery, Celeux, Lo, Gottardo (CR2) 2010; 19
CR21
Fraley, Raftery (CR6) 2002; 97
Schmidhuber (CR15) 2015; 61
Hennig (CR7) 2010; 4
Celeux, Diebolt (CR3) 1985; 2
Forina, Armanino, Castino, Ubigli (CR4) 1986; 25
Baek, McLachlan, Flack (CR1) 2010; 32
Li (CR9) 2005; 14
Mardia, Kent, Bibby (CR10) 1976
Melnykov (CR13) 2016; 25
A Montanari (9793_CR14) 2010; 10
KV Mardia (9793_CR10) 1976
G McLachlan (9793_CR11) 2003; 41
J Schmidhuber (9793_CR15) 2015; 61
GJ McLachlan (9793_CR12) 2000
C Viroli (9793_CR20) 2010; 27
GC Wei (9793_CR22) 1990; 85
J Baek (9793_CR1) 2010; 32
M Forina (9793_CR5) 1982; 72
J Li (9793_CR9) 2005; 14
Y LeCun (9793_CR8) 2015; 521
V Melnykov (9793_CR13) 2016; 25
M Forina (9793_CR4) 1986; 25
L Scrucca (9793_CR16) 2016; 8
G Celeux (9793_CR3) 1985; 2
C Hennig (9793_CR7) 2010; 4
9793_CR21
9793_CR19
J-P Baudry (9793_CR2) 2010; 19
9793_CR17
C Fraley (9793_CR6) 2002; 97
9793_CR18
References_xml – volume: 10
  start-page: 441
  issue: 4
  year: 2010
  end-page: 460
  ident: CR14
  article-title: Heteroscedastic factor mixture analysis
  publication-title: Stat. Model.
  doi: 10.1177/1471082X0901000405
– ident: CR21
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR8
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 85
  start-page: 699
  issue: 411
  year: 1990
  end-page: 704
  ident: CR22
  article-title: A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10474930
– volume: 32
  start-page: 1298
  issue: 7
  year: 2010
  end-page: 1309
  ident: CR1
  article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.149
– ident: CR19
– ident: CR18
– ident: CR17
– volume: 41
  start-page: 379
  issue: 3
  year: 2003
  end-page: 388
  ident: CR11
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00183-4
– volume: 19
  start-page: 332
  issue: 2
  year: 2010
  end-page: 353
  ident: CR2
  article-title: Combining mixture components for clustering
  publication-title: J. Comput. Gr. Stat.
  doi: 10.1198/jcgs.2010.08111
– volume: 4
  start-page: 3
  issue: 1
  year: 2010
  end-page: 34
  ident: CR7
  article-title: Methods for merging gaussian mixture components
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-010-0058-3
– year: 2000
  ident: CR12
  publication-title: Finite Mixture Models
  doi: 10.1002/0471721182
– volume: 14
  start-page: 547
  issue: 3
  year: 2005
  end-page: 568
  ident: CR9
  article-title: Clustering based on a multilayer mixture model
  publication-title: J. Comput. Gr. Stat.
  doi: 10.1198/106186005X59586
– volume: 97
  start-page: 611
  year: 2002
  end-page: 631
  ident: CR6
  article-title: Model-based clustering, discriminant analysis and density estimation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214502760047131
– volume: 25
  start-page: 189
  issue: 3
  year: 1986
  end-page: 201
  ident: CR4
  article-title: Multivariate data analysis as a discriminating method of the origin of wines
  publication-title: Vitis
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR15
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 2
  start-page: 73
  issue: 1
  year: 1985
  end-page: 82
  ident: CR3
  article-title: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
  publication-title: Comput. Stat. Q.
– volume: 27
  start-page: 363
  issue: 3
  year: 2010
  end-page: 388
  ident: CR20
  article-title: Dimensionally reduced model-based clustering through mixtures of factor mixture analyzers
  publication-title: J. Classif.
  doi: 10.1007/s00357-010-9063-7
– volume: 72
  start-page: 143
  issue: 3–4
  year: 1982
  end-page: 155
  ident: CR5
  article-title: Pattern-recognition methods in the prediction of Italian olive oil origin by their fatty-acid content
  publication-title: Anal. Chim.
– volume: 25
  start-page: 66
  issue: 1
  year: 2016
  end-page: 90
  ident: CR13
  article-title: Merging mixture components for clustering through pairwise overlap
  publication-title: J. Comput. Gr. Stat.
  doi: 10.1080/10618600.2014.978007
– volume: 8
  start-page: 289
  year: 2016
  end-page: 317
  ident: CR16
  article-title: mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models
  publication-title: R Journal
– year: 1976
  ident: CR10
  publication-title: Multivariate Analysis
– volume-title: Multivariate Analysis
  year: 1976
  ident: 9793_CR10
– volume: 10
  start-page: 441
  issue: 4
  year: 2010
  ident: 9793_CR14
  publication-title: Stat. Model.
  doi: 10.1177/1471082X0901000405
– volume: 27
  start-page: 363
  issue: 3
  year: 2010
  ident: 9793_CR20
  publication-title: J. Classif.
  doi: 10.1007/s00357-010-9063-7
– volume: 25
  start-page: 66
  issue: 1
  year: 2016
  ident: 9793_CR13
  publication-title: J. Comput. Gr. Stat.
  doi: 10.1080/10618600.2014.978007
– ident: 9793_CR17
– volume: 61
  start-page: 85
  year: 2015
  ident: 9793_CR15
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 19
  start-page: 332
  issue: 2
  year: 2010
  ident: 9793_CR2
  publication-title: J. Comput. Gr. Stat.
  doi: 10.1198/jcgs.2010.08111
– ident: 9793_CR19
– volume: 2
  start-page: 73
  issue: 1
  year: 1985
  ident: 9793_CR3
  publication-title: Comput. Stat. Q.
– volume-title: Finite Mixture Models
  year: 2000
  ident: 9793_CR12
  doi: 10.1002/0471721182
– volume: 14
  start-page: 547
  issue: 3
  year: 2005
  ident: 9793_CR9
  publication-title: J. Comput. Gr. Stat.
  doi: 10.1198/106186005X59586
– volume: 97
  start-page: 611
  year: 2002
  ident: 9793_CR6
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214502760047131
– ident: 9793_CR21
  doi: 10.1109/DICTA.2009.88
– volume: 8
  start-page: 289
  year: 2016
  ident: 9793_CR16
  publication-title: R Journal
  doi: 10.32614/RJ-2016-021
– volume: 72
  start-page: 143
  issue: 3–4
  year: 1982
  ident: 9793_CR5
  publication-title: Anal. Chim.
– volume: 25
  start-page: 189
  issue: 3
  year: 1986
  ident: 9793_CR4
  publication-title: Vitis
– volume: 32
  start-page: 1298
  issue: 7
  year: 2010
  ident: 9793_CR1
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.149
– volume: 4
  start-page: 3
  issue: 1
  year: 2010
  ident: 9793_CR7
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-010-0058-3
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 9793_CR8
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 85
  start-page: 699
  issue: 411
  year: 1990
  ident: 9793_CR22
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10474930
– volume: 41
  start-page: 379
  issue: 3
  year: 2003
  ident: 9793_CR11
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(02)00183-4
– ident: 9793_CR18
  doi: 10.1109/CVPR.2014.220
SSID ssj0011634
Score 2.53108
Snippet Deep learning is a hierarchical inference method formed by subsequent multiple layers of learning able to more efficiently describe complex relationships. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Analyzers
Artificial Intelligence
Machine learning
Mathematics and Statistics
Probabilistic models
Probability and Statistics in Computer Science
Regression analysis
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title Deep Gaussian mixture models
URI https://link.springer.com/article/10.1007/s11222-017-9793-z
https://www.proquest.com/docview/2175056329
Volume 29
WOSCitedRecordID wos000457464800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9DAPTqfidEoPnpRAm7RNcxR1enGIX-xWkjQFQetYN5H99b70Y0VRQS-9JA3lff7a1_d7AEfcBKlM_IjwwITEZyknSoSKeNRYYtyUKVoOm-DDYTQaiZuqjzuv_3avS5JFpG6a3TzMZcRGVYFGRebLsILZLrLeeHv3uCgdIMAoOKMQmmOA4X5dyvzuiM_JqEGYX4qiRa4ZdP71lBuwXkFL57S0hU1YMlkXOvXYBqfy4i6sXS-oWvMutC3cLNmat6B_bszYuZSz3PZWOi9P77bA4BTjcvJteBhc3J9dkWp-AtHMC6dEC1dzKbVrJDchXliSSuYHnOoEYYROlZDSk34iAqUYOq-iMtI8Ma5SoTCG7UAre83MLjgsVRGuaeHR1O6XHjNUBIFKghDxedIDtxZkrCtycTvj4jluaJGtYGIUTGwFE897cLy4ZVwya_y2uV9rJ66cLI_xbcriN0ZFD05qbTTLPx6296fd-9BGkCTKzy59aE0nM3MAq_oNdTM5LGzvA97x028
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oFJwHp1NxOrUHT0qgbdqmOYo6J25DdMpuIUlTGOgc6yayv96kHyuKCnrpJR-Ul_fxa1_e7wGcEOXHPPJCRHwVIA_HBAkaCOS4yhDjxli4WbMJ0uuFgwG9y-u4k-K2e5GSTD11Wezm6FiGjFelWqnQfBlWPB2wzD2--4enRepAA4yUM0pDc-1giFekMr_b4nMwKhHml6RoGmtatX-95SZs5NDSOs90YQuW1KgOtaJtg5VbcR3Wuwuq1qQOVQM3M7bmbWheKjW2rvksMbWV1svw3SQYrLRdTrIDj62r_kUb5f0TkMROMEWS2pJwLm3FiQr0A0cxx55PXBlpuclYUM4d7kXUFwJr4xUuDyWJlC1EQJXCu1AZvY7UHlg4FqEek9RxYzOfO1i51PdF5Acan0cNsAtBMpmTi5seF8-spEU2gmFaMMwIhs0bcLpYMs6YNX6b3CxOh-VGljD9NWXwG3ZpA86K0yiHf9xs_0-zj2Gt3e92WOemd3sAVQ2YaPYLpgmV6WSmDmFVvulzmhylevgB0aDWUw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oFJkHp1NxOrUHT0pY27RNcxTnVNQx8Ae7lSRNQNA61k1kf71Jf6woKoiXXvIayntJ3pe-5PsAjoj0FYu9EBFfBsjDiiBOA44cVxpiXIW5m4tNkH4_HA7poNA5TcvT7mVJMr_TYFiakklnFKtOdfHN0XkNmRWW6gGGZouw5BnNILNdv3uclxE02Mj4ozRM14sN8cqy5nddfE5MFdr8UiDN8k6v8e8vXoe1AnJap_kY2YAFmTShUco5WMXsbsLq7ZzCNW1C3cDQnMV5E9pdKUfWBZum5s6l9fL0bgoPViajk27BQ-_8_uwSFboKSGAnmCBBbUEYE7ZkRAb6gWPFsOcTV8QaXgjFKWMO82Lqc471pOYuCwWJpc15QKXE21BLXhO5AxZWPNRtgjquMvbMwdKlvs9jP9C4PW6BXTo1EgXpuNG-eI4qumTjmEg7JjKOiWYtOJ6_MsoZN34zbpeRiorJl0Z6l2VwHXZpC07KyFTNP3a2-yfrQ1gZdHvRzVX_eg_qGkfR_M9MG2qT8VTuw7J402EaH2RD8gMlLt83
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Gaussian+mixture+models&rft.jtitle=Statistics+and+computing&rft.au=Viroli%2C+Cinzia&rft.au=McLachlan%2C+Geoffrey+J.&rft.date=2019-01-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=29&rft.issue=1&rft.spage=43&rft.epage=51&rft_id=info:doi/10.1007%2Fs11222-017-9793-z&rft.externalDocID=10_1007_s11222_017_9793_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon