Parameter estimation of nonlinear chaotic system by improved TLBO strategy

Estimation of parameters of chaotic systems is a subject of substantial and well-developed research issue in nonlinear science. From the viewpoint of optimization, parameter estimation can be formulated as a multi-modal constrained optimization problem with multiple decision variables. This investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Jg. 20; H. 12; S. 4965 - 4980
Hauptverfasser: Zhang, Hongjun, Li, Baozhu, Zhang, Jun, Qin, Yuanhui, Feng, Xiaoyi, Liu, Bo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2016
Springer Nature B.V
Schlagworte:
ISSN:1432-7643, 1433-7479
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Estimation of parameters of chaotic systems is a subject of substantial and well-developed research issue in nonlinear science. From the viewpoint of optimization, parameter estimation can be formulated as a multi-modal constrained optimization problem with multiple decision variables. This investigation makes a systematic examination of the feasibility of applying a newly proposed population-based optimization method labeled here as teaching–learning-based optimization (TLBO) to identify the unknown parameters for a class of chaotic system. The preliminary test demonstrates that despite its global fast coarse search capability, teaching–learning-based optimization often risks getting prematurely stuck in local optima. To enhance its fine (local) searching performance of TLBO, Nelder–Mead simplex algorithm-based local improvement is incorporated into TLBO so as to continually search for the global optima through the reflection, expansion, contraction, and shrink operators. Working with the well-established Lorenz system, we assess the effectiveness and efficiency of the proposed improved TLBO strategy. The empirical results indicate the success of the proposed hybrid approach in which the global exploration and the local exploitation are well balanced, providing the best solutions for all instances used over other state-of-the-art metaheuristics for chaotic identification in literature, including particle swarm optimization, genetic algorithm, and quantum-inspired evolutionary algorithm.
AbstractList Estimation of parameters of chaotic systems is a subject of substantial and well-developed research issue in nonlinear science. From the viewpoint of optimization, parameter estimation can be formulated as a multi-modal constrained optimization problem with multiple decision variables. This investigation makes a systematic examination of the feasibility of applying a newly proposed population-based optimization method labeled here as teaching–learning-based optimization (TLBO) to identify the unknown parameters for a class of chaotic system. The preliminary test demonstrates that despite its global fast coarse search capability, teaching–learning-based optimization often risks getting prematurely stuck in local optima. To enhance its fine (local) searching performance of TLBO, Nelder–Mead simplex algorithm-based local improvement is incorporated into TLBO so as to continually search for the global optima through the reflection, expansion, contraction, and shrink operators. Working with the well-established Lorenz system, we assess the effectiveness and efficiency of the proposed improved TLBO strategy. The empirical results indicate the success of the proposed hybrid approach in which the global exploration and the local exploitation are well balanced, providing the best solutions for all instances used over other state-of-the-art metaheuristics for chaotic identification in literature, including particle swarm optimization, genetic algorithm, and quantum-inspired evolutionary algorithm.
Author Liu, Bo
Feng, Xiaoyi
Zhang, Hongjun
Li, Baozhu
Zhang, Jun
Qin, Yuanhui
Author_xml – sequence: 1
  givenname: Hongjun
  surname: Zhang
  fullname: Zhang, Hongjun
  organization: Systems Engineering Research Institute
– sequence: 2
  givenname: Baozhu
  surname: Li
  fullname: Li, Baozhu
  organization: Systems Engineering Research Institute
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  organization: Systems Engineering Research Institute
– sequence: 4
  givenname: Yuanhui
  surname: Qin
  fullname: Qin, Yuanhui
  organization: Systems Engineering Research Institute
– sequence: 5
  givenname: Xiaoyi
  surname: Feng
  fullname: Feng, Xiaoyi
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 6
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  email: liub01@mails.tsinghua.edu.cn
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences
BookMark eNp9kE1PwzAMhiM0JLbBD-AWiXPAbtolPcLEpyaNwzhHaZqOTms7kgyp_55sRUJCgpN98GO_fiZk1HatJeQS4RoBxI0HyAAYYMZQyBlLTsgYU86ZSEU-OvYJE7OUn5GJ9xuABEXGx-TlVTvd2GAdtT7UjQ5119KuonH_tm6tdtS86y7UhvreB9vQoqd1s3Pdpy3panG3pD44Hey6Pyenld56e_Fdp-Tt4X41f2KL5ePz_HbBDMdZYEbqSsocoUSDUEkBpeVFmkPFM5tlIDSvMCmhNJzLTBaiKNCYopS5BmEt8Cm5GvbGEB_7mFptur1r40mV5CgBcpnKOIXDlHGd985Waufie65XCOqgTA3KVFSmDspUEhnxizF1OBqJL9bbf8lkIH280q6t-8n0N_QFlr-CAg
CitedBy_id crossref_primary_10_1016_j_ijleo_2021_166307
crossref_primary_10_1016_j_asoc_2025_113870
crossref_primary_10_1080_0952813X_2022_2135613
crossref_primary_10_1007_s11424_018_7250_5
crossref_primary_10_1088_1402_4896_acc905
crossref_primary_10_1140_epjp_i2018_12091_1
crossref_primary_10_1007_s11071_019_05052_z
crossref_primary_10_1007_s00034_018_0967_5
crossref_primary_10_1007_s40435_020_00609_y
crossref_primary_10_1016_j_eswa_2023_120426
crossref_primary_10_3390_math9111194
crossref_primary_10_1016_j_knosys_2022_108271
crossref_primary_10_1080_09540091_2020_1742660
crossref_primary_10_14529_mmp240308
crossref_primary_10_3390_fractalfract6080448
crossref_primary_10_1007_s40305_017_0165_3
crossref_primary_10_1109_ACCESS_2025_3554308
crossref_primary_10_1007_s11071_019_05430_7
crossref_primary_10_1109_ACCESS_2020_2968106
crossref_primary_10_1016_j_neucom_2018_06_076
crossref_primary_10_1007_s00521_017_2890_2
crossref_primary_10_1007_s00521_019_04149_1
crossref_primary_10_1007_s00500_018_3129_6
crossref_primary_10_1177_09721509231204137
crossref_primary_10_3390_math10214147
Cites_doi 10.1016/S0375-9601(02)00522-4
10.1016/j.chaos.2003.12.028
10.1103/PhysRevE.59.284
10.1016/j.eswa.2007.09.021
10.1016/j.chaos.2004.09.101
10.1016/j.chaos.2004.11.095
10.1016/j.engappai.2012.02.016
10.1016/j.cad.2010.12.015
10.1016/j.swevo.2011.02.002
10.1142/3033
10.1103/PhysRevLett.76.1232
10.1109/TSMCB.2005.856143
10.1016/j.ins.2014.05.049
10.1016/j.chaos.2005.08.121
10.1016/j.cherd.2014.02.005
10.7498/aps.51.2459
10.1093/comjnl/7.4.308
10.1016/S0960-0779(00)00089-8
10.1016/j.chaos.2006.03.079
10.1016/j.compchemeng.2009.12.010
10.1016/j.physleta.2006.02.035
10.1016/j.arcontrol.2005.01.001
10.1109/TEVC.2012.2189404
10.1103/PhysRevLett.64.821
10.1007/s00158-013-0936-3
10.1016/0960-0779(95)80030-K
10.1109/TEVC.2011.2132725
10.1007/s10845-014-0918-3
10.1016/j.chaos.2008.09.028
10.1109/TEVC.2003.819944
10.1007/s10479-011-0894-3
10.1016/S0960-0779(04)00414-X
10.1109/TEVC.2003.810752
10.1016/j.chaos.2004.12.007
10.1109/MCI.2011.2176995
10.1016/j.chaos.2005.08.034
10.1109/31.52759
10.1016/j.eswa.2010.08.110
10.1109/TEVC.2002.804320
10.1109/MCI.2010.936309
10.1109/TSMCB.2006.883267
10.1016/j.apm.2012.03.043
10.1016/j.ins.2012.05.009
10.1109/MCI.2014.2326099
10.1016/j.camwa.2012.03.029
10.1109/TCYB.2014.2307319
10.1016/j.chaos.2006.03.033
10.1007/s00500-014-1378-6
10.1137/S1052623496303470
10.1109/TSMCB.2006.883274
10.1016/j.ins.2012.11.009
10.1023/A:1008202821328
10.1016/S0167-6911(97)00046-7
10.1016/j.physleta.2004.04.025
10.1016/j.eswa.2009.06.013
10.1016/S0960-0779(97)00161-6
10.1016/j.chieco.2011.07.010
10.1063/1.166278
10.1016/j.chaos.2006.05.070
10.1016/j.chaos.2005.04.056
10.1103/PhysRevE.54.6253
10.1016/j.engappai.2011.11.005
10.1016/j.eswa.2011.05.011
10.1007/s11071-009-9629-2
10.1080/0305215X.2011.652103
10.1109/JSYST.2012.2183276
10.1093/oso/9780195099713.001.0001
10.1109/TSMCC.2012.2188832
10.2514/2.1999
10.1109/TEVC.2005.850260
10.1103/PhysRevLett.64.1196
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Springer-Verlag Berlin Heidelberg 2015.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Springer-Verlag Berlin Heidelberg 2015.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-015-1786-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 4980
ExternalDocumentID 10_1007_s00500_015_1786_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71101139
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 71103013
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 71390330
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-c8af88910d1c10f870de3b490f35e5507a3f12d0dc33858b7bb1ccbd89a07ee03
IEDL.DBID RSV
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386611200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1432-7643
IngestDate Wed Nov 05 03:15:49 EST 2025
Tue Nov 18 21:32:19 EST 2025
Sat Nov 29 03:19:52 EST 2025
Fri Feb 21 02:40:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Memetic algorithm
Parameter estimation
System identification
Chaotic system
Nelder–Mead simplex algorithm
Teaching–learning-based optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-c8af88910d1c10f870de3b490f35e5507a3f12d0dc33858b7bb1ccbd89a07ee03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918009848
PQPubID 2043697
PageCount 16
ParticipantIDs proquest_journals_2918009848
crossref_primary_10_1007_s00500_015_1786_2
crossref_citationtrail_10_1007_s00500_015_1786_2
springer_journals_10_1007_s00500_015_1786_2
PublicationCentury 2000
PublicationDate 20161200
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 20161200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SahaPBanerjeeSChowdhuryARChaos, signal communication and parameter estimationPhys Lett A20043261–21331391161.94357206589310.1016/j.physleta.2004.04.025
WangCGeSSAdaptive synchronization of uncertain chaotic systems via backstepping designChaos Solitons Fractals2001127119912061015.3705210.1016/S0960-0779(00)00089-8
KennedyJEberhartRCShiYSwarm intelligence2001San FranciscoMorgan Kaufmann Publishers
GinsburghVKeyzerMThe structure of applied general equilibrium models2002CambridgeThe MIT Press
HollandJHAdaptation in natural and artificial systems1975Ann ArborUniversity of Michigan Press
SornetteDCritical phenomena in natural sciences: chaos, fractals, selforganization, and disorder : concepts and tools2006Berlin, New YorkSpringer1094.82001
LagariasJCReedsJAWrightMHWrightPEConvergence properties of the Nelder–Mead simplex method in low dimensionsSIAM J Optim1998911121471005.90056166256310.1137/S1052623496303470
PecoraLMCarrollTLSynchronization in chaotic systemsPhys Rev Lett19906488218240938.37019103826310.1103/PhysRevLett.64.821
DaiDMaX-KLiF-CYouYAn approach of parameter estimation for a chaotic system based on genetic algorithmActa Phys Sin2002511124592462
Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms. Tech Rep Caltech Concurr Comput Prog Rep 826, Pasadena, CA, California Inst Technol
OngYSLimMHZhuNWongKWClassification of adaptive memetic algorithms: a comparative studyIEEE Trans Syst Man Cybern Part B Cybern200636114115210.1109/TSMCB.2005.856143
BoccalettiSKurthsJOsipovGValladaresDLZhouCSThe synchronization of chaotic systemsPhys Rep Rev Sect Phys Lett20023661–211010995.370221913567
FotsinHBWoafoPAdaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identificationChaos Solitons Fractals2005245136313711091.70010212408210.1016/j.chaos.2004.09.101
HyunCHKimJHKimEParkMAdaptive fuzzy observer based synchronization design and secure communications of chaotic systemsChaos Solitons Fractals20062749309401091.93018216667810.1016/j.chaos.2005.04.056
RaoRVPatelVAn improved teaching–learning-based optimization algorithm for solving unconstrained optimization problemsSci Iran20132037107203002213
BäckTEvolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms1996New YorkOxford University Press0877.68060
ChangWDParameter identification of Rossler’s chaotic system by an evolutionary algorithmChaos Solitons Fractals20062951047105310.1016/j.chaos.2005.08.121
Jiang S, Ong YS, Zhang J, Feng L (2014) Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybern 44(12):2391–2404
Lou Z, Liu B, Xie H, Wang Y (2015) Adjustment of basal insulin infusion rate in T1DM by hybrid PSO. Soft Comput 19(7):1921–1937
ZhuZXOngYSDashMWrapper–filter feature selection algorithm using a memetic frameworkIEEE Trans Syst Man Cybern Part B Cybern2007371707610.1109/TSMCB.2006.883267
HüblerAAdaptive control of chaotic systemsHelv Phys Acta198962343346
OngYSLimMHNeriFIshibuchiHSpecial issue on emerging trends in soft computing: memetic algorithmsSoft Comput A Fusion Found Methodol Appl2009138–912
ElabbasyEMAgizaHNEl-DessokyMMAdaptive synchronization of Lu system with uncertain parametersChaos Solitons Fractals20042136576671062.3403910.1016/j.chaos.2003.12.028
ParlitzUEstimating model parameters from time series by autosynchronizationPhys Rev Lett19967681232123510.1103/PhysRevLett.76.1232
HartWEKrasnogorNSmithJERecent advances in memetic algorithms2004HeidelbergSpringer1060.68101
HoWHChouJHGuoCYParameter identification of chaotic systems using improved differential evolution algorithmNonlinear Dyn2010611–229411204.93034266178210.1007/s11071-009-9629-2
HelwigSBrankeJMostaghimSExperimental analysis of bound handling techniques in particle swarm optimizationIEEE Trans Evol Comput201317225927110.1109/TEVC.2012.2189404
MaybhateAAmritkarREUse of synchronization and adaptive control in parameter estimation from a time seriesPhys Rev E199959128429310.1103/PhysRevE.59.284
RaoRVPatelVComparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problemsInt J Ind Eng Comput2013412950
WangLLiLPAn effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systemsExpert Syst Appl20103721279128510.1016/j.eswa.2009.06.013
LeMNOngYSJinYCSendhoffBA unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model designIEEE Comput Intell Mag201271203510.1109/MCI.2011.2176995
RaoRVSavsaniVJVakhariaDPTeaching–learning-based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015
IshibuchiHYoshidaTMurataTBalance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop schedulingIEEE Trans Evolut Comput20037220422310.1109/TEVC.2003.810752
ParlitzUJungeLKocarevLSynchronization-based parameter estimation from time seriesPhys Rev E19965466253625910.1103/PhysRevE.54.6253
GrebogiCLaiYCControlling chaotic dynamical systemsSyst Control Lett19973153073120901.93030148233210.1016/S0167-6911(97)00046-7
DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evolut Comput20111131810.1016/j.swevo.2011.02.002
Patel VK, Savsani VJ (2014b) A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO). Inf Sci. doi:10.1016/j.ins.2014.05.049
PanHWangLLiuBChaotic annealing with hypothesis test for function optimization in noisy environmentsChaos Solitons Fractals200835588889410.1016/j.chaos.2006.05.070
CrepinsekMLiuSHMernikLA note on teaching–learning-based optimization algorithmInf Sci2012212799310.1016/j.ins.2012.05.009
ParkJHAdaptive synchronization of Rossler system with uncertain parametersChaos Solitons Fractals20052523333381125.9347010.1016/j.chaos.2004.12.007
StornRPriceKDifferential evolution: a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim19971143413590888.90135147955310.1023/A:1008202821328
FogelLJOwensAJWalshMJArtificial intelligence through simulated evolution1966ChichesterWiley0148.40701
PatelVSavsaniVOptimization of a plate-fin heat exchanger design through an improved multi-objective teaching–learning based optimization (MO-ITLBO) algorithmChem Eng Res Des201492112371238210.1016/j.cherd.2014.02.005
WangLLiuBParticle swarm optimization and scheduling algorithms2008BeijingTsinghua University Press
YassenMTAdaptive synchronization of Rossler and Lu systems with fully uncertain parametersChaos Solitons Fractals2005235152715361061.93513210157010.1016/S0960-0779(04)00414-X
ChenSHLuJHParameters identification and synchronization of chaotic systems based upon adaptive controlPhys Lett A200229943533580996.93016191647510.1016/S0375-9601(02)00522-4
TienJPLiTHSHybrid Taguchi–Chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systemsComput Math Appl20126451108111910.1016/j.camwa.2012.03.029
WaghmareGComments on “A note on teaching–learning-based optimization algorithm”Inf Sci201322915916910.1016/j.ins.2012.11.009
ChangJFYangYSLiaoTLYanJJParameter identification of chaotic systems using evolutionary programming approachExp Syst Appl20083542074207910.1016/j.eswa.2007.09.021
LiuBKeyzerMVan den BoomBZikhaliPHow connected are Chinese farmers to retail markets? New evidence of price transmissionChin Econ Rev2012231344610.1016/j.chieco.2011.07.010
HanKHKimJHQuantum-inspired evolutionary algorithm for a class of combinatorial optimizationIEEE Trans Evol Comput20026658059310.1109/TEVC.2002.804320
NiknamTGolestanehFSadeghiMSTheta-multiobjective teaching–learning-based optimization for dynamic economic emission dispatchIEEE Syst J20126234135210.1109/JSYST.2012.2183276
LiuBWangLJinYHTangFHuangDXImproved particle swarm optimization combined with chaosChaos Solitons Fractals2005255126112711074.9056410.1016/j.chaos.2004.11.095
LiaoTLAdaptive synchronization of two Lorenz systemsChaos Solitons Fractals199899155515611047.3750210.1016/S0960-0779(97)00161-6
LiuBWangLTangFHuangDDirecting orbits of chaotic systems by particle swarm optimizationChaos Solitons Fractals20062924544611147.93314221148010.1016/j.chaos.2005.08.034
PecoraLMCarrollTLJohnsonGAMarDJHeagyJFFundamentals of synchronization in chaotic systems, concepts, and applicationsChaos1997745205430933.37030160466610.1063/1.166278
ChenGDongXFrom chaos to order: methodologies, perspectives, and applications1998Singapore, River Edge, NJWorld Scientific0908.9300510.1142/3033
ChenXSOngYSA conceptual modeling of meme complexes in stochastic searchIEEE Trans Syst Man Cybern Part C Appl Rev201242561262510.1109/TSMCC.2012.2188832
GoldbergDEGenetic algorithms in search, optimization, and machine learning1989New YorkAddison-Wesley0721.68056
WangLXuYAn effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systemsExpert Syst Appl20113812151031510910.1016/j.eswa.2011.05.011
OngYSLimMHChenXSMemetic computation-past, present and futureIEEE Comput Intell Mag201052243110.1109/MCI.2010.936309
FradkovALEvansRJControl of chaos: methods and applications in engineeringAnn Rev Control2005291335610.1016/j.arcontrol.2005.01.001
ChenXSOngYSLimMHTanKCA multi-facet survey on memetic computationIEEE Trans Evol Comput201115559160710.1109/TEVC.2011.2132725
AvrielMNonlinear programming: analysis and methods2003New YorkDover Publications1140.90002
RaoRPatelVAn elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problemsInt J Ind Eng Comput201234535560
LiuBWangLLiuYWangSYA unified framework for population-based metaheuristicsAnn Oper Res201118612312621225.9016310.1007/s10479-011-0894-3
OttEGrebogiCYorkeJAControlling ChaosPhys Rev Lett1990641111
B Liu (1786_CR41) 2012; 23
JP Tien (1786_CR77) 2012; 64
Y Zhai (1786_CR87) 2014; 9
LD Coelho (1786_CR11) 2009; 41
JH Holland (1786_CR30) 1975
L Wang (1786_CR83) 2011; 38
B Liu (1786_CR45) 2011; 186
R Rao (1786_CR67) 2012; 3
M Crepinsek (1786_CR12) 2012; 212
JH Park (1786_CR60) 2005; 25
D Sornette (1786_CR75) 2006
DE Goldberg (1786_CR22) 1989
YS Ong (1786_CR53) 2007; 37
Q He (1786_CR27) 2007; 34
1786_CR34
RV Rao (1786_CR69) 2013; 20
RV Rao (1786_CR72) 2012; 44
U Parlitz (1786_CR61) 1996; 76
S Boccaletti (1786_CR3) 2002; 366
A Maybhate (1786_CR48) 1999; 59
H Pan (1786_CR59) 2008; 35
L Wang (1786_CR82) 2008
V Ginsburgh (1786_CR21) 2002
MT Yassen (1786_CR85) 2005; 23
R Venkata Rao (1786_CR78) 2013; 26
WD Chang (1786_CR6) 2006; 29
N Krasnogor (1786_CR37) 2005; 9
YS Ong (1786_CR52) 2004; 8
RV Rao (1786_CR71) 2013; 26
B Liu (1786_CR43) 2005; 25
HB Fotsin (1786_CR18) 2005; 24
T Bäck (1786_CR2) 1996
B Liu (1786_CR42) 2007; 34
RV Rao (1786_CR73) 2011; 43
D Dai (1786_CR13) 2002; 51
SH Chen (1786_CR8) 2002; 299
T Niknam (1786_CR51) 2012; 6
LJ Fogel (1786_CR17) 1966
WH Ho (1786_CR29) 2010; 61
1786_CR49
RV Rao (1786_CR70) 2013; 37
YS Ong (1786_CR55) 2009; 13
1786_CR47
PG Ansola (1786_CR20) 2012; 25
CH Hyun (1786_CR32) 2006; 27
A Hübler (1786_CR24) 1989; 62
1786_CR86
JC Lagarias (1786_CR38) 1998; 9
V Patel (1786_CR63) 2014; 92
G Chen (1786_CR7) 1998
J Kennedy (1786_CR36) 2001
YS Ong (1786_CR54) 2010; 5
RV Rao (1786_CR68) 2013; 4
LM Pecora (1786_CR66) 1997; 7
E Ott (1786_CR58) 1990; 64
B Liu (1786_CR46) 2006; 29
KH Han (1786_CR25) 2002; 6
C Wang (1786_CR80) 2001; 12
C Grebogi (1786_CR23) 1997; 31
T Dede (1786_CR14) 2013; 48
XS Chen (1786_CR10) 2011; 15
T Kapitaniak (1786_CR35) 1995; 6
R Storn (1786_CR76) 1997; 11
JF Chang (1786_CR5) 2008; 35
TL Liao (1786_CR40) 1998; 9
G Waghmare (1786_CR79) 2013; 229
L Wang (1786_CR84) 2011; 38
EM Elabbasy (1786_CR16) 2004; 21
AL Fradkov (1786_CR19) 2005; 29
YS Ong (1786_CR57) 2003; 41
WE Hart (1786_CR26) 2004
MN Le (1786_CR39) 2012; 7
S Bowong (1786_CR4) 2006; 355
L Wang (1786_CR81) 2010; 37
J Derrac (1786_CR15) 2011; 1
BA Huberman (1786_CR31) 1990; 37
ZX Zhu (1786_CR88) 2007; 37
JA Nelder (1786_CR50) 1965; 7
LM Pecora (1786_CR65) 1990; 64
S Helwig (1786_CR28) 2013; 17
P Saha (1786_CR74) 2004; 326
B Liu (1786_CR44) 2010; 34
H Ishibuchi (1786_CR33) 2003; 7
XS Chen (1786_CR9) 2012; 42
U Parlitz (1786_CR62) 1996; 54
M Avriel (1786_CR1) 2003
YS Ong (1786_CR56) 2006; 36
1786_CR64
References_xml – reference: YassenMTAdaptive synchronization of Rossler and Lu systems with fully uncertain parametersChaos Solitons Fractals2005235152715361061.93513210157010.1016/S0960-0779(04)00414-X
– reference: DedeTOptimum design of grillage structures to LRFD-AISC with teaching–learning based optimizationStruct Multidiscip Optim201348595596410.1007/s00158-013-0936-3
– reference: HollandJHAdaptation in natural and artificial systems1975Ann ArborUniversity of Michigan Press
– reference: Yu K, Wang X, Wang Z (2014) An improved teaching–learning-based optimization algorithm for numerical and engineering optimization problems. J Intell Manuf. doi:10.1007/s10845-014-0918-3
– reference: KrasnogorNSmithJA tutorial for competent memetic algorithms: model, taxonomy, and design issuesIEEE Trans Evol Comput20059547448810.1109/TEVC.2005.850260
– reference: LiuBWangLJinYHTangFHuangDXImproved particle swarm optimization combined with chaosChaos Solitons Fractals2005255126112711074.9056410.1016/j.chaos.2004.11.095
– reference: BäckTEvolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms1996New YorkOxford University Press0877.68060
– reference: LiuBWangLJinYHHuangDXTangFControl and synchronization of chaotic systems by differential evolution algorithmChaos Solitons Fractals20073424124191134.93331221148010.1016/j.chaos.2006.03.033
– reference: WaghmareGComments on “A note on teaching–learning-based optimization algorithm”Inf Sci201322915916910.1016/j.ins.2012.11.009
– reference: HartWEKrasnogorNSmithJERecent advances in memetic algorithms2004HeidelbergSpringer1060.68101
– reference: MaybhateAAmritkarREUse of synchronization and adaptive control in parameter estimation from a time seriesPhys Rev E199959128429310.1103/PhysRevE.59.284
– reference: OngYSLimMHChenXSMemetic computation-past, present and futureIEEE Comput Intell Mag201052243110.1109/MCI.2010.936309
– reference: LeMNOngYSJinYCSendhoffBA unified framework for symbiosis of evolutionary mechanisms with application to water clusters potential model designIEEE Comput Intell Mag201271203510.1109/MCI.2011.2176995
– reference: WangLLiLPAn effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systemsExpert Syst Appl20103721279128510.1016/j.eswa.2009.06.013
– reference: LiuBKeyzerMVan den BoomBZikhaliPHow connected are Chinese farmers to retail markets? New evidence of price transmissionChin Econ Rev2012231344610.1016/j.chieco.2011.07.010
– reference: ChangJFYangYSLiaoTLYanJJParameter identification of chaotic systems using evolutionary programming approachExp Syst Appl20083542074207910.1016/j.eswa.2007.09.021
– reference: LagariasJCReedsJAWrightMHWrightPEConvergence properties of the Nelder–Mead simplex method in low dimensionsSIAM J Optim1998911121471005.90056166256310.1137/S1052623496303470
– reference: PanHWangLLiuBChaotic annealing with hypothesis test for function optimization in noisy environmentsChaos Solitons Fractals200835588889410.1016/j.chaos.2006.05.070
– reference: ElabbasyEMAgizaHNEl-DessokyMMAdaptive synchronization of Lu system with uncertain parametersChaos Solitons Fractals20042136576671062.3403910.1016/j.chaos.2003.12.028
– reference: DerracJGarcíaSMolinaDHerreraFA practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithmsSwarm Evolut Comput20111131810.1016/j.swevo.2011.02.002
– reference: ParkJHAdaptive synchronization of Rossler system with uncertain parametersChaos Solitons Fractals20052523333381125.9347010.1016/j.chaos.2004.12.007
– reference: WangLXuYAn effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systemsExpert Syst Appl20113812151031510910.1016/j.eswa.2011.05.011
– reference: AvrielMNonlinear programming: analysis and methods2003New YorkDover Publications1140.90002
– reference: OttEGrebogiCYorkeJAControlling ChaosPhys Rev Lett19906411119611990964.37501104152310.1103/PhysRevLett.64.1196
– reference: GrebogiCLaiYCControlling chaotic dynamical systemsSyst Control Lett19973153073120901.93030148233210.1016/S0167-6911(97)00046-7
– reference: RaoRVPatelVMulti-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithmEng Appl Artif Intell201326143044510.1016/j.engappai.2012.02.016
– reference: SornetteDCritical phenomena in natural sciences: chaos, fractals, selforganization, and disorder : concepts and tools2006Berlin, New YorkSpringer1094.82001
– reference: KapitaniakTContinuous control and synchronization in chaotic systemsChaos Solitons Fractals199562372440976.93504139425510.1016/0960-0779(95)80030-K
– reference: PatelVSavsaniVOptimization of a plate-fin heat exchanger design through an improved multi-objective teaching–learning based optimization (MO-ITLBO) algorithmChem Eng Res Des201492112371238210.1016/j.cherd.2014.02.005
– reference: Patel VK, Savsani VJ (2014b) A multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO). Inf Sci. doi:10.1016/j.ins.2014.05.049
– reference: RaoRVSavsaniVJBalicJTeaching–learning-based optimization algorithm for unconstrained and constrained real-parameter optimization problemsEng Opt201244121447146210.1080/0305215X.2011.652103
– reference: PecoraLMCarrollTLJohnsonGAMarDJHeagyJFFundamentals of synchronization in chaotic systems, concepts, and applicationsChaos1997745205430933.37030160466610.1063/1.166278
– reference: RaoRVPatelVAn improved teaching–learning-based optimization algorithm for solving unconstrained optimization problemsSci Iran20132037107203002213
– reference: ParlitzUEstimating model parameters from time series by autosynchronizationPhys Rev Lett19967681232123510.1103/PhysRevLett.76.1232
– reference: ZhaiYOngYTsangIThe emerging “Big Dimensionality”IEEE Comput Intell Mag201493142610.1109/MCI.2014.2326099
– reference: RaoRPatelVAn elitist teaching–learning-based optimization algorithm for solving complex constrained optimization problemsInt J Ind Eng Comput201234535560
– reference: LiuBWangLTangFHuangDDirecting orbits of chaotic systems by particle swarm optimizationChaos Solitons Fractals20062924544611147.93314221148010.1016/j.chaos.2005.08.034
– reference: CoelhoLDBernertDLDAn improved harmony search algorithm for synchronization of discrete-time chaotic systemsChaos Solitons Fractals2009415252625321198.9041710.1016/j.chaos.2008.09.028
– reference: GinsburghVKeyzerMThe structure of applied general equilibrium models2002CambridgeThe MIT Press
– reference: ZhuZXOngYSDashMWrapper–filter feature selection algorithm using a memetic frameworkIEEE Trans Syst Man Cybern Part B Cybern2007371707610.1109/TSMCB.2006.883267
– reference: FradkovALEvansRJControl of chaos: methods and applications in engineeringAnn Rev Control2005291335610.1016/j.arcontrol.2005.01.001
– reference: WangLLiuBParticle swarm optimization and scheduling algorithms2008BeijingTsinghua University Press
– reference: ChenXSOngYSA conceptual modeling of meme complexes in stochastic searchIEEE Trans Syst Man Cybern Part C Appl Rev201242561262510.1109/TSMCC.2012.2188832
– reference: OngYSKrasnogorNIshibuchiHSpecial issue on memetic algorithmsIEEE Trans Syst Man Cybern Part B Cybern20073712510.1109/TSMCB.2006.883274
– reference: HoWHChouJHGuoCYParameter identification of chaotic systems using improved differential evolution algorithmNonlinear Dyn2010611–229411204.93034266178210.1007/s11071-009-9629-2
– reference: LiuBWangLLiuYWangSYA unified framework for population-based metaheuristicsAnn Oper Res201118612312621225.9016310.1007/s10479-011-0894-3
– reference: WangCGeSSAdaptive synchronization of uncertain chaotic systems via backstepping designChaos Solitons Fractals2001127119912061015.3705210.1016/S0960-0779(00)00089-8
– reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning1989New YorkAddison-Wesley0721.68056
– reference: IshibuchiHYoshidaTMurataTBalance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop schedulingIEEE Trans Evolut Comput20037220422310.1109/TEVC.2003.810752
– reference: HanKHKimJHQuantum-inspired evolutionary algorithm for a class of combinatorial optimizationIEEE Trans Evol Comput20026658059310.1109/TEVC.2002.804320
– reference: PecoraLMCarrollTLSynchronization in chaotic systemsPhys Rev Lett19906488218240938.37019103826310.1103/PhysRevLett.64.821
– reference: HelwigSBrankeJMostaghimSExperimental analysis of bound handling techniques in particle swarm optimizationIEEE Trans Evol Comput201317225927110.1109/TEVC.2012.2189404
– reference: Lou Z, Liu B, Xie H, Wang Y (2015) Adjustment of basal insulin infusion rate in T1DM by hybrid PSO. Soft Comput 19(7):1921–1937
– reference: ChangWDParameter identification of Rossler’s chaotic system by an evolutionary algorithmChaos Solitons Fractals20062951047105310.1016/j.chaos.2005.08.121
– reference: ChenSHLuJHParameters identification and synchronization of chaotic systems based upon adaptive controlPhys Lett A200229943533580996.93016191647510.1016/S0375-9601(02)00522-4
– reference: CrepinsekMLiuSHMernikLA note on teaching–learning-based optimization algorithmInf Sci2012212799310.1016/j.ins.2012.05.009
– reference: KennedyJEberhartRCShiYSwarm intelligence2001San FranciscoMorgan Kaufmann Publishers
– reference: Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms. Tech Rep Caltech Concurr Comput Prog Rep 826, Pasadena, CA, California Inst Technol
– reference: OngYSNairPBKeaneAJEvolutionary optimization of computationally expensive problems via surrogate modelingAIAA J200341468769610.2514/2.1999
– reference: WangLXuYLiLPParameter identification of chaotic systems by hybrid Nelder–Mead simplex search and differential evolution algorithmExpert Syst Appl20113843238324510.1016/j.eswa.2010.08.110
– reference: LiuBWangLLiuYQianBJinYHAn effective hybrid particle swarm optimization for batch scheduling of polypropylene processesComput Chem Eng201034451852810.1016/j.compchemeng.2009.12.010
– reference: HüblerAAdaptive control of chaotic systemsHelv Phys Acta198962343346
– reference: StornRPriceKDifferential evolution: a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim19971143413590888.90135147955310.1023/A:1008202821328
– reference: BowongSKakmeniFMMFotsinHA new adaptive observer-based synchronization scheme for private communicationPhys Lett A200635531932011139.9301710.1016/j.physleta.2006.02.035
– reference: FogelLJOwensAJWalshMJArtificial intelligence through simulated evolution1966ChichesterWiley0148.40701
– reference: OngYSLimMHNeriFIshibuchiHSpecial issue on emerging trends in soft computing: memetic algorithmsSoft Comput A Fusion Found Methodol Appl2009138–912
– reference: DaiDMaX-KLiF-CYouYAn approach of parameter estimation for a chaotic system based on genetic algorithmActa Phys Sin2002511124592462
– reference: AnsolaPGde las MorenasJGarcíaAOtamendiJDistributed decision support system for airport ground handling management using WSN and MASEng Appl Artific Intell201225354455310.1016/j.engappai.2011.11.005
– reference: HeQWangLLiuBParameter estimation for chaotic systems by particle swarm optimizationChaos Solitons Fractals20073426546611152.9350410.1016/j.chaos.2006.03.079
– reference: Jiang S, Ong YS, Zhang J, Feng L (2014) Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans Cybern 44(12):2391–2404
– reference: NelderJAMeadRA simplex method for function minimizationComput J1965743083130229.65053336340910.1093/comjnl/7.4.308
– reference: ChenXSOngYSLimMHTanKCA multi-facet survey on memetic computationIEEE Trans Evol Comput201115559160710.1109/TEVC.2011.2132725
– reference: OngYSLimMHZhuNWongKWClassification of adaptive memetic algorithms: a comparative studyIEEE Trans Syst Man Cybern Part B Cybern200636114115210.1109/TSMCB.2005.856143
– reference: RaoRVPatelVComparative performance of an elitist teaching–learning-based optimization algorithm for solving unconstrained optimization problemsInt J Ind Eng Comput2013412950
– reference: RaoRVPatelVMulti-objective optimization of heat exchangers using a modified teaching–learning-based optimization algorithmAppl Math Model201337311471162300221310.1016/j.apm.2012.03.043
– reference: Venkata RaoRPatelVMulti-objective optimization of two stage thermoelectric cooler using a modified teaching–learning-based optimization algorithmEng Appl Artif Intell201326143044510.1016/j.engappai.2012.02.016
– reference: TienJPLiTHSHybrid Taguchi–Chaos of multilevel immune and the artificial bee colony algorithm for parameter identification of chaotic systemsComput Math Appl20126451108111910.1016/j.camwa.2012.03.029
– reference: NiknamTGolestanehFSadeghiMSTheta-multiobjective teaching–learning-based optimization for dynamic economic emission dispatchIEEE Syst J20126234135210.1109/JSYST.2012.2183276
– reference: SahaPBanerjeeSChowdhuryARChaos, signal communication and parameter estimationPhys Lett A20043261–21331391161.94357206589310.1016/j.physleta.2004.04.025
– reference: FotsinHBWoafoPAdaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identificationChaos Solitons Fractals2005245136313711091.70010212408210.1016/j.chaos.2004.09.101
– reference: BoccalettiSKurthsJOsipovGValladaresDLZhouCSThe synchronization of chaotic systemsPhys Rep Rev Sect Phys Lett20023661–211010995.370221913567
– reference: ChenGDongXFrom chaos to order: methodologies, perspectives, and applications1998Singapore, River Edge, NJWorld Scientific0908.9300510.1142/3033
– reference: ParlitzUJungeLKocarevLSynchronization-based parameter estimation from time seriesPhys Rev E19965466253625910.1103/PhysRevE.54.6253
– reference: HyunCHKimJHKimEParkMAdaptive fuzzy observer based synchronization design and secure communications of chaotic systemsChaos Solitons Fractals20062749309401091.93018216667810.1016/j.chaos.2005.04.056
– reference: OngYSKeaneAJMeta-Lamarckian learning in memetic algorithmsIEEE Trans Evol Comput2004829911010.1109/TEVC.2003.819944
– reference: HubermanBALumerEDynamics of adaptive systemsIEEE Trans Circuit Syst199037454755010.1109/31.52759
– reference: LiaoTLAdaptive synchronization of two Lorenz systemsChaos Solitons Fractals199899155515611047.3750210.1016/S0960-0779(97)00161-6
– reference: RaoRVSavsaniVJVakhariaDPTeaching–learning-based optimization: a novel method for constrained mechanical design optimization problemsComput Aided Des201143330331510.1016/j.cad.2010.12.015
– volume-title: Adaptation in natural and artificial systems
  year: 1975
  ident: 1786_CR30
– volume: 299
  start-page: 353
  issue: 4
  year: 2002
  ident: 1786_CR8
  publication-title: Phys Lett A
  doi: 10.1016/S0375-9601(02)00522-4
– volume: 21
  start-page: 657
  issue: 3
  year: 2004
  ident: 1786_CR16
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2003.12.028
– volume: 3
  start-page: 535
  issue: 4
  year: 2012
  ident: 1786_CR67
  publication-title: Int J Ind Eng Comput
– volume: 59
  start-page: 284
  issue: 1
  year: 1999
  ident: 1786_CR48
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.59.284
– volume-title: Nonlinear programming: analysis and methods
  year: 2003
  ident: 1786_CR1
– volume: 35
  start-page: 2074
  issue: 4
  year: 2008
  ident: 1786_CR5
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2007.09.021
– volume: 24
  start-page: 1363
  issue: 5
  year: 2005
  ident: 1786_CR18
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.09.101
– volume: 25
  start-page: 1261
  issue: 5
  year: 2005
  ident: 1786_CR43
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.11.095
– volume: 26
  start-page: 430
  issue: 1
  year: 2013
  ident: 1786_CR78
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.02.016
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 1786_CR73
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 1786_CR15
  publication-title: Swarm Evolut Comput
  doi: 10.1016/j.swevo.2011.02.002
– volume-title: From chaos to order: methodologies, perspectives, and applications
  year: 1998
  ident: 1786_CR7
  doi: 10.1142/3033
– volume: 76
  start-page: 1232
  issue: 8
  year: 1996
  ident: 1786_CR61
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.76.1232
– volume: 36
  start-page: 141
  issue: 1
  year: 2006
  ident: 1786_CR56
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2005.856143
– ident: 1786_CR64
  doi: 10.1016/j.ins.2014.05.049
– volume: 29
  start-page: 1047
  issue: 5
  year: 2006
  ident: 1786_CR6
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.121
– volume: 92
  start-page: 2371
  issue: 11
  year: 2014
  ident: 1786_CR63
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2014.02.005
– volume: 51
  start-page: 2459
  issue: 11
  year: 2002
  ident: 1786_CR13
  publication-title: Acta Phys Sin
  doi: 10.7498/aps.51.2459
– volume-title: Recent advances in memetic algorithms
  year: 2004
  ident: 1786_CR26
– volume: 366
  start-page: 1
  issue: 1–2
  year: 2002
  ident: 1786_CR3
  publication-title: Phys Rep Rev Sect Phys Lett
– volume: 7
  start-page: 308
  issue: 4
  year: 1965
  ident: 1786_CR50
  publication-title: Comput J
  doi: 10.1093/comjnl/7.4.308
– volume: 12
  start-page: 1199
  issue: 7
  year: 2001
  ident: 1786_CR80
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(00)00089-8
– volume: 34
  start-page: 654
  issue: 2
  year: 2007
  ident: 1786_CR27
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.079
– volume: 34
  start-page: 518
  issue: 4
  year: 2010
  ident: 1786_CR44
  publication-title: Comput Chem Eng
  doi: 10.1016/j.compchemeng.2009.12.010
– volume: 355
  start-page: 193
  issue: 3
  year: 2006
  ident: 1786_CR4
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2006.02.035
– volume: 29
  start-page: 33
  issue: 1
  year: 2005
  ident: 1786_CR19
  publication-title: Ann Rev Control
  doi: 10.1016/j.arcontrol.2005.01.001
– volume: 17
  start-page: 259
  issue: 2
  year: 2013
  ident: 1786_CR28
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2012.2189404
– volume: 64
  start-page: 821
  issue: 8
  year: 1990
  ident: 1786_CR65
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.64.821
– volume: 48
  start-page: 955
  issue: 5
  year: 2013
  ident: 1786_CR14
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-013-0936-3
– volume: 6
  start-page: 237
  year: 1995
  ident: 1786_CR35
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/0960-0779(95)80030-K
– volume: 15
  start-page: 591
  issue: 5
  year: 2011
  ident: 1786_CR10
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2011.2132725
– ident: 1786_CR86
  doi: 10.1007/s10845-014-0918-3
– volume: 41
  start-page: 2526
  issue: 5
  year: 2009
  ident: 1786_CR11
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2008.09.028
– volume: 8
  start-page: 99
  issue: 2
  year: 2004
  ident: 1786_CR52
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.819944
– volume: 186
  start-page: 231
  issue: 1
  year: 2011
  ident: 1786_CR45
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-011-0894-3
– volume: 23
  start-page: 1527
  issue: 5
  year: 2005
  ident: 1786_CR85
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(04)00414-X
– volume: 7
  start-page: 204
  issue: 2
  year: 2003
  ident: 1786_CR33
  publication-title: IEEE Trans Evolut Comput
  doi: 10.1109/TEVC.2003.810752
– volume: 25
  start-page: 333
  issue: 2
  year: 2005
  ident: 1786_CR60
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2004.12.007
– volume: 7
  start-page: 20
  issue: 1
  year: 2012
  ident: 1786_CR39
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2011.2176995
– volume: 29
  start-page: 454
  issue: 2
  year: 2006
  ident: 1786_CR46
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.08.034
– volume: 13
  start-page: 1
  issue: 8–9
  year: 2009
  ident: 1786_CR55
  publication-title: Soft Comput A Fusion Found Methodol Appl
– volume: 37
  start-page: 547
  issue: 4
  year: 1990
  ident: 1786_CR31
  publication-title: IEEE Trans Circuit Syst
  doi: 10.1109/31.52759
– volume: 38
  start-page: 3238
  issue: 4
  year: 2011
  ident: 1786_CR84
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.08.110
– volume: 6
  start-page: 580
  issue: 6
  year: 2002
  ident: 1786_CR25
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.804320
– volume: 5
  start-page: 24
  issue: 2
  year: 2010
  ident: 1786_CR54
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2010.936309
– volume: 37
  start-page: 70
  issue: 1
  year: 2007
  ident: 1786_CR88
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2006.883267
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 1786_CR22
– volume-title: Particle swarm optimization and scheduling algorithms
  year: 2008
  ident: 1786_CR82
– volume-title: Critical phenomena in natural sciences: chaos, fractals, selforganization, and disorder : concepts and tools
  year: 2006
  ident: 1786_CR75
– volume: 37
  start-page: 1147
  issue: 3
  year: 2013
  ident: 1786_CR70
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2012.03.043
– volume: 212
  start-page: 79
  year: 2012
  ident: 1786_CR12
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.05.009
– volume-title: Artificial intelligence through simulated evolution
  year: 1966
  ident: 1786_CR17
– volume: 26
  start-page: 430
  issue: 1
  year: 2013
  ident: 1786_CR71
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2012.02.016
– volume: 9
  start-page: 14
  issue: 3
  year: 2014
  ident: 1786_CR87
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2014.2326099
– volume: 64
  start-page: 1108
  issue: 5
  year: 2012
  ident: 1786_CR77
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2012.03.029
– ident: 1786_CR34
  doi: 10.1109/TCYB.2014.2307319
– volume: 34
  start-page: 412
  issue: 2
  year: 2007
  ident: 1786_CR42
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.03.033
– volume-title: The structure of applied general equilibrium models
  year: 2002
  ident: 1786_CR21
– ident: 1786_CR47
  doi: 10.1007/s00500-014-1378-6
– volume: 62
  start-page: 343
  year: 1989
  ident: 1786_CR24
  publication-title: Helv Phys Acta
– volume: 9
  start-page: 112
  issue: 1
  year: 1998
  ident: 1786_CR38
  publication-title: SIAM J Optim
  doi: 10.1137/S1052623496303470
– volume: 37
  start-page: 2
  issue: 1
  year: 2007
  ident: 1786_CR53
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2006.883274
– volume: 229
  start-page: 159
  year: 2013
  ident: 1786_CR79
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.11.009
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 1786_CR76
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 31
  start-page: 307
  issue: 5
  year: 1997
  ident: 1786_CR23
  publication-title: Syst Control Lett
  doi: 10.1016/S0167-6911(97)00046-7
– volume: 326
  start-page: 133
  issue: 1–2
  year: 2004
  ident: 1786_CR74
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2004.04.025
– volume: 37
  start-page: 1279
  issue: 2
  year: 2010
  ident: 1786_CR81
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.06.013
– volume-title: Swarm intelligence
  year: 2001
  ident: 1786_CR36
– volume: 9
  start-page: 1555
  issue: 9
  year: 1998
  ident: 1786_CR40
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(97)00161-6
– volume: 23
  start-page: 34
  issue: 1
  year: 2012
  ident: 1786_CR41
  publication-title: Chin Econ Rev
  doi: 10.1016/j.chieco.2011.07.010
– volume: 7
  start-page: 520
  issue: 4
  year: 1997
  ident: 1786_CR66
  publication-title: Chaos
  doi: 10.1063/1.166278
– volume: 35
  start-page: 888
  issue: 5
  year: 2008
  ident: 1786_CR59
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.05.070
– volume: 27
  start-page: 930
  issue: 4
  year: 2006
  ident: 1786_CR32
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2005.04.056
– volume: 54
  start-page: 6253
  issue: 6
  year: 1996
  ident: 1786_CR62
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.54.6253
– volume: 25
  start-page: 544
  issue: 3
  year: 2012
  ident: 1786_CR20
  publication-title: Eng Appl Artific Intell
  doi: 10.1016/j.engappai.2011.11.005
– volume: 38
  start-page: 15103
  issue: 12
  year: 2011
  ident: 1786_CR83
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.05.011
– volume: 61
  start-page: 29
  issue: 1–2
  year: 2010
  ident: 1786_CR29
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-009-9629-2
– volume: 44
  start-page: 1447
  issue: 12
  year: 2012
  ident: 1786_CR72
  publication-title: Eng Opt
  doi: 10.1080/0305215X.2011.652103
– volume: 4
  start-page: 29
  issue: 1
  year: 2013
  ident: 1786_CR68
  publication-title: Int J Ind Eng Comput
– volume: 6
  start-page: 341
  issue: 2
  year: 2012
  ident: 1786_CR51
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2012.2183276
– volume: 20
  start-page: 710
  issue: 3
  year: 2013
  ident: 1786_CR69
  publication-title: Sci Iran
– volume-title: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms
  year: 1996
  ident: 1786_CR2
  doi: 10.1093/oso/9780195099713.001.0001
– ident: 1786_CR49
– volume: 42
  start-page: 612
  issue: 5
  year: 2012
  ident: 1786_CR9
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
  doi: 10.1109/TSMCC.2012.2188832
– volume: 41
  start-page: 687
  issue: 4
  year: 2003
  ident: 1786_CR57
  publication-title: AIAA J
  doi: 10.2514/2.1999
– volume: 9
  start-page: 474
  issue: 5
  year: 2005
  ident: 1786_CR37
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2005.850260
– volume: 64
  start-page: 1196
  issue: 11
  year: 1990
  ident: 1786_CR58
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.64.1196
SSID ssj0021753
Score 2.2760613
Snippet Estimation of parameters of chaotic systems is a subject of substantial and well-developed research issue in nonlinear science. From the viewpoint of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4965
SubjectTerms Artificial Intelligence
Biogeography
Chaos theory
Computational Intelligence
Control
Engineering
Evolutionary algorithms
Genetic algorithms
Heuristic methods
Learning
Lorenz system
Mathematical Logic and Foundations
Mechatronics
Methodologies and Application
Methods
Optimization
Parameter estimation
Parameter identification
Particle swarm optimization
Robotics
Students
Teaching
Time series
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LSwMxEMeDVg9erE-sVsnBkxJMNtvd5CQqFpFSe6hSvCx5YkHa2q1Cv73JbrZFwV687iOEnTz-OzP5DQDniSRWRsQgbG2CYoYV4kpahDWPndogNC1c2S-dtNtlgwHvBYdbHtIqqzWxWKj1WHkf-VXECfPwy5hdTz6Qrxrlo6uhhMY62PCUBF-6odd6XfxwBQqlkwRORbqtt4pq4gIi2vJnqkkLkZQlKPq5Ly3F5q_4aLHttOv_7fAO2A6CE96UI2QXrJnRHqhXxRxgmNv74LEnfJ6Wv-bBG-WJRji2cFTCNMQUqjcxdq3Akv4M5RwOC5eE0bDfuX2CeUm6nR-A5_Z9_-4BhUILSFGSzJBiwjLmhIMmimDrprA2VMYcW9oyHngmqCWRxlpRH0eUqZREKakZFzg1BtNDUHOdMUcARkpZrSX1TJk4FYYz4_FATLiVxKY8aQBcfeZMBQq5L4bxni34yYVlMmeZzFsmixrgYvHKpERwrHq4WVkjC7Mxz5amaIDLyp7L2382dry6sROw5eRTUia3NEFtNv00p2BTfc2G-fSsGIrfxZ_jQg
  priority: 102
  providerName: ProQuest
Title Parameter estimation of nonlinear chaotic system by improved TLBO strategy
URI https://link.springer.com/article/10.1007/s00500-015-1786-2
https://www.proquest.com/docview/2918009848
Volume 20
WOSCitedRecordID wos000386611200025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1433-7479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021753
  issn: 1432-7643
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS8MwFMAfOj3owelUnM6RgyclkLRdmx6dbIiOOeYcw0tpvnAgm2xT2H9v0q-pqKCXXpqG8JKX95r38nsAZz6nmjtUYaK1jz1GBA4F15jI0DPeBnWD5Ch72Am6XTYahb3sHvc8z3bPQ5LJTl1cdrOoEptE1cA0YD42--6GsXbM1mvo3w-Lv6wMPWn8AOM6GnubhzK_6-KzMVp5mF-CoomtaZf_Ncpd2MlcS3SZroU9WFOTCpTzsg0o0-IKbH9gEO7DTS-2-Vm2hQVupDcZ0VSjSQrRiGdIPMVT0ydKqc-IL9E4OYpQEg06zTs0Twm3ywN4aLcGV9c4K7CAhUv9BRYs1owZh0FSQYk2qiuVy72QaLehLOgsdjV1JJHCtfFDHnBOheCShTEJlCLuIZTMYNQRIEcILSV3LUvGC2IVMmWxQCw2O4gOQr8KJJd0JDL6uC2C8RwV3OREcpGRXGQlFzlVOC8-eUnRG781ruXTF2VaOI-ckDILTPVYFS7y6Vq9_rGz4z-1PoEt40X5aY5LDUqL2as6hU3xthjPZ3XYaLa6vX4d1m8DbJ69xmM9WbDvFcTgWQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXBhR5TVB7iALOw4jZ0DQqwCWgqHgriFeBNIiEJbQP0pvhE7SyuQ4MaBa5ZR4nmeGc_YbwA2IkmtDKjBxNoIh4IoHCtpMdFx6KINyniWyr6p80ZD3N7GV0PwUZ6F8dsqS5uYGWrdUj5HvhPEVHjyy1DsPb9g3zXKV1fLFho5LGqm9-6WbJ3dsyOn380gODluHp7ioqsAVoxGXaxEaoVwXlJTRYl1eNWGyTAmllWNZ_dKmaWBJloxXzSTXEqqlNQiTgk3hjAndxhGQya4n1c1jvsLvIL10oUgLmp1rr6sopKMtLTqz3DTKqZcRDj46gcHwe23emzm5k6m_tsATcNkEVCj_XwGzMCQeZqFqbJZBSps1xycX6V-H5q_5olF8hObqGXRU04WkraRuk9bTgrK2a2R7KGHLOViNGrWDy5RJ2fy7c3D9Z_80QKMuI8xi4ACpazWknnOnJCnJhbG0x-J1FlKy-OoAqRUa6IKlnXf7OMx6fNDZ0hIHBISj4QkqMBW_5XnnGLkt4dXSu0nhbXpJAPVV2C7xM_g9o_Cln4Xtg7jp82LelI_a9SWYcKFilG-kWcFRrrtV7MKY-qt-9Bpr2XTAMHdX8PqExFwQJA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPMkX0welUnE7Ng09KWNJ2bfrobXgZc-AceyvNDQeyja0K-_YmvWwqKojPTUM4uf2Tc_I7ACc-p5o7VGGitY89RgQOBdeYyNAzaoO6QXqV3WsF7Tbr98NOnud0WkS7Fy7J7E2DpTQNk_pY6vr84ZvFltiAqgamAfOxWYOXPRtHb4_rj735iSvHUBpNYGSk2XsLt-Z3VXzemBZq84uDNN13muV_t3gTNnLJic6zMbIFS2pYgXKRzgHls7sC6x_YhNtw14lt3JYtYUEc2QtHNNJomME14gkSz_HI1IkyGjTiMzRIryiURN3WxQOaZuTb2Q48Na-7lzc4T7yAhUv9BAsWa8aMkJBUUKLNlJbK5V5ItNtQFoAWu5o6kkjhWr8iDzinQnDJwpgEShF3F0qmMWoPkCOElpK7ljHjBbEKmbK4IBablUUHoV8FUlg9EjmV3CbHeInmPOXUcpGxXGQtFzlVOJ3_Ms6QHL8VrhVdGeWzcxo5IWUWpOqxKpwVXbf4_GNl-38qfQyrnatm1Lpt3x_AmhFafhYGU4NSMnlVh7Ai3pLBdHKUjtl3h-fotw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter+estimation+of+nonlinear+chaotic+system+by+improved+TLBO+strategy&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Zhang%2C+Hongjun&rft.au=Li%2C+Baozhu&rft.au=Zhang%2C+Jun&rft.au=Qin%2C+Yuanhui&rft.date=2016-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=20&rft.issue=12&rft.spage=4965&rft.epage=4980&rft_id=info:doi/10.1007%2Fs00500-015-1786-2&rft.externalDocID=10_1007_s00500_015_1786_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon