Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms

The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR) algorithm with forward additive mapping strategy and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm. Although the equiv...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mechanics Vol. 56; no. 8; pp. 1395 - 1409
Main Authors: Pan, B., Wang, B.
Format: Journal Article
Language:English
Published: New York Springer US 01.10.2016
Springer Nature B.V
Subjects:
ISSN:0014-4851, 1741-2765
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR) algorithm with forward additive mapping strategy and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm. Although the equivalence of these two algorithms has been proved in existing studies, practical implementations of the two subpixel registration algorithms do involve differences, and therefore lead to different performance. In the present work, detailed theoretical error analyses of the two algorithms are performed. Based on the simple sum of squared difference criterion and the practical first-order shape function, analytic formulae that can quantify both the bias error (systematic error) and the variability (random error) in the displacements measured by IC-GN and FA-NR algorithms with various interpolation methods (i.e., cubic convolution interpolation, cubic polynomial interpolation, cubic B-spline interpolation and quintic B-spline interpolation) are derived. It is shown that, compared with FA-NR algorithm, IC-GN algorithm leads to reduced bias error in displacement estimation by eliminating noise-induced bias error, and gives rise on the average to smaller random errors in displacement estimation in the cases of high noise levels or using small subsets. Numerical tests with precisely controlled subpixel displacements confirm the correctness of the theoretical derivations. The results reveal that IC-GN algorithm outperforms the classic FA-NR algorithm not only in terms of computational efficiency, but also in respect of subpixel registration accuracy and noise-proof performance, and is strongly recommended as a standard subpixel registration algorithm for practical DIC applications instead of FA-NR algorithm.
AbstractList The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR) algorithm with forward additive mapping strategy and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm. Although the equivalence of these two algorithms has been proved in existing studies, practical implementations of the two subpixel registration algorithms do involve differences, and therefore lead to different performance. In the present work, detailed theoretical error analyses of the two algorithms are performed. Based on the simple sum of squared difference criterion and the practical first-order shape function, analytic formulae that can quantify both the bias error (systematic error) and the variability (random error) in the displacements measured by IC-GN and FA-NR algorithms with various interpolation methods (i.e., cubic convolution interpolation, cubic polynomial interpolation, cubic B-spline interpolation and quintic B-spline interpolation) are derived. It is shown that, compared with FA-NR algorithm, IC-GN algorithm leads to reduced bias error in displacement estimation by eliminating noise-induced bias error, and gives rise on the average to smaller random errors in displacement estimation in the cases of high noise levels or using small subsets. Numerical tests with precisely controlled subpixel displacements confirm the correctness of the theoretical derivations. The results reveal that IC-GN algorithm outperforms the classic FA-NR algorithm not only in terms of computational efficiency, but also in respect of subpixel registration accuracy and noise-proof performance, and is strongly recommended as a standard subpixel registration algorithm for practical DIC applications instead of FA-NR algorithm.
Author Wang, B.
Pan, B.
Author_xml – sequence: 1
  givenname: B.
  surname: Pan
  fullname: Pan, B.
  email: panb@buaa.edu.cn
  organization: Institute of Solid Mechanics, Beihang University
– sequence: 2
  givenname: B.
  surname: Wang
  fullname: Wang, B.
  organization: Institute of Solid Mechanics, Beihang University
BookMark eNp9kEtLAzEUhYMoWKs_wF3A9ejNvJJxV2p9gCD4WIdMmkxTZpKazKDtrzdlXIigi3A35zs5fCfo0DqrEDoncEkA6FUgJMshAVLGxyDZHaAJoTlJUloWh2gCQPIkZwU5RichrCEyGU0naLgxjelFix860Sg8d96rVvTGWfxh-hVe2JWwUi3xTMrBC7nFwi7xQmsjjbJye41nEeo2wpsQGafx64fDL0O9MZ-qxc-qMaH3Y-GsbZyPpV04RUdatEGdfd8pertdvM7vk8enu4f57DGRGSn7RDJGIJe00lm6LIusrKnIgS1VxlRBFMgig7ogItVSlkxAqSloWkElKa0lrbMpuhh7N969Dyr0fO0Gb-OXnDAGjEIJVUzRMSW9C8ErzWVUsp8cl5uWE-B7x3x0zKNjvnfMd5Ekv8iNN53w23-ZdGRCzNpG-R-b_oS-AP1okbE
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3398786
crossref_primary_10_1016_j_engfracmech_2024_109930
crossref_primary_10_1364_AO_58_004781
crossref_primary_10_1007_s11340_024_01078_6
crossref_primary_10_1007_s11340_017_0328_5
crossref_primary_10_1088_1361_6501_ab65d9
crossref_primary_10_3390_s24092810
crossref_primary_10_1007_s11340_017_0283_1
crossref_primary_10_1016_j_ijimpeng_2024_105095
crossref_primary_10_3390_photonics9030167
crossref_primary_10_3390_rs12182906
crossref_primary_10_1016_j_optlaseng_2023_107954
crossref_primary_10_1155_2020_9343461
crossref_primary_10_1007_s11340_017_0294_y
crossref_primary_10_1007_s10409_023_22430_x
crossref_primary_10_1007_s11340_024_01070_0
crossref_primary_10_1007_s10035_022_01292_w
crossref_primary_10_1016_j_optlaseng_2020_106189
crossref_primary_10_1016_j_advengsoft_2017_12_004
crossref_primary_10_1016_j_mtcomm_2020_101875
crossref_primary_10_1007_s11340_023_00958_7
crossref_primary_10_1016_j_istruc_2025_109277
crossref_primary_10_1007_s12046_022_02065_0
crossref_primary_10_1016_j_optlastec_2024_111129
crossref_primary_10_1016_j_optlaseng_2019_04_016
crossref_primary_10_2478_msr_2020_0025
crossref_primary_10_1016_j_measurement_2020_108860
crossref_primary_10_3390_app11114904
crossref_primary_10_1088_1361_6501_aa7e8a
crossref_primary_10_1007_s00226_018_1045_7
crossref_primary_10_3390_s22197359
crossref_primary_10_1007_s11340_021_00814_6
crossref_primary_10_3390_infrastructures6010004
crossref_primary_10_1016_j_ultramic_2024_113924
crossref_primary_10_1049_iet_ipr_2019_1384
crossref_primary_10_1088_1361_6501_aac55b
crossref_primary_10_3390_rs12040696
crossref_primary_10_1111_str_12342
crossref_primary_10_1016_j_jsv_2021_116142
crossref_primary_10_1111_ffe_12825
crossref_primary_10_1002_jbio_201800422
crossref_primary_10_1111_str_12469
crossref_primary_10_1016_j_engfracmech_2019_02_026
crossref_primary_10_1007_s40799_025_00813_5
crossref_primary_10_1186_s44147_024_00372_3
crossref_primary_10_1016_j_optlaseng_2017_09_015
crossref_primary_10_1007_s11340_018_00455_2
crossref_primary_10_1016_j_optlaseng_2017_09_013
crossref_primary_10_1007_s11340_023_00941_2
crossref_primary_10_1007_s11340_019_00566_4
crossref_primary_10_1016_j_optlaseng_2018_05_016
Cites_doi 10.1007/s11340-010-9418-3
10.1111/j.1475-1305.2008.00592.x
10.1007/BF02321405
10.1007/BF02410987
10.1016/j.optlaseng.2009.08.010
10.1364/OL.36.000763
10.1117/1.1314593
10.1007/s11340-008-9204-7
10.1364/OE.23.019242
10.1016/j.optlaseng.2014.02.003
10.1088/0957-0233/17/6/045
10.1016/j.ndteint.2015.12.006
10.1007/s11340-006-9005-9
10.1364/AO.49.005501
10.1023/B:VISI.0000011205.11775.fd
10.1117/1.OE.54.3.034106
10.1016/j.optlaseng.2011.02.023
10.1111/str.12039
10.1016/j.optlaseng.2015.03.005
10.1007/s11340-006-9824-8
10.1007/s11340-015-9996-1
10.1016/j.optlaseng.2013.04.009
10.1007/s11340-015-0009-1
10.1088/0957-0233/20/6/062001
10.1016/j.optlaseng.2014.05.013
10.1016/j.optlaseng.2014.06.011
10.1111/str.12137
10.1007/s11340-015-0080-7
10.1007/s11340-013-9717-6
10.1111/str.12066
10.1364/OE.16.007037
10.1088/0957-0233/26/4/045202
10.1111/str.12173
10.1007/s11340-016-0130-9
10.1111/str.12174
10.1002/nme.5212
ContentType Journal Article
Copyright Society for Experimental Mechanics 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Society for Experimental Mechanics 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s11340-016-0180-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1741-2765
EndPage 1409
ExternalDocumentID 10_1007_s11340_016_0180_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant nos. 11272032, 11322220 and 11427802
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-XX
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDEX
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBEA
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEGXH
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAGR
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
E.L
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IAO
IEA
IGS
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LAS
LLZTM
M4V
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9P
PF0
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UCJ
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XSW
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
_50
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
KB.
M2P
M7S
PCBAR
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c316t-c88104c79f32d6536b7a408de38e51e0c530b51a2fcc68a06f70f7909c77bc7b3
IEDL.DBID RSV
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383599900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0014-4851
IngestDate Wed Sep 17 13:51:21 EDT 2025
Tue Nov 18 21:07:23 EST 2025
Sat Nov 29 06:29:42 EST 2025
Fri Feb 21 02:36:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Error analysis
Digital image correlation
Inverse compositional Gauss-Newton algorithm
Subpixel registration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-c88104c79f32d6536b7a408de38e51e0c530b51a2fcc68a06f70f7909c77bc7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880870609
PQPubID 2044465
PageCount 15
ParticipantIDs proquest_journals_1880870609
crossref_citationtrail_10_1007_s11340_016_0180_z
crossref_primary_10_1007_s11340_016_0180_z
springer_journals_10_1007_s11340_016_0180_z
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Experimental mechanics
PublicationTitleAbbrev Exp Mech
PublicationYear 2016
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Pan, Tian (CR12) 2015; 54
Schreier, Sutton (CR27) 2002; 42
Pan, Tian, Song (CR15) 2016; 79
Baker, Mattews (CR7) 2001; 56
Shao, Dai, He (CR13) 2015; 71
Wang, Pan (CR29) 2015; 55
Gao, Cheng, Su, Xu, Zhang, Zhang (CR10) 2015; 65
Pan (CR21) 2013; 51
Schreier, Braasch, Sutton (CR23) 2000; 9
Pan (CR3) 2011; 51
Yu, Pan (CR28) 2015; 26
Besnard, Hild, Roux (CR36) 2006; 46
Tong (CR34) 2011; 36
Baker, Mattews (CR8) 2004; 56
Wang, Lava, Reu, Debruyne (CR33) 2016
Wang, Li, Tong, Ruan (CR18) 2007; 47
Bornert, Brémand, Doumalin (CR31) 2009; 49
Blaber, Adair, Antoniou (CR16) 2015; 55
Jiang, Qian, Miao, Yang, Tang (CR14) 2015; 65
Pan, Wang, Wu, Lubineau (CR17) 2014; 58
Xu, Moussawi, Gras, Lubineau (CR11) 2014; 55
Blaysat, Grédiac, Sur (CR24) 2016
CR2
Pan, Lu, Xie (CR30) 2010; 48
Su, Zhang, Gao, Xu, Wu (CR25) 2015; 23
Pan, Xie, Xu, Dai (CR4) 2006; 17
BruckH, McNeil, Sutton, Peters (CR5) 1989; 29
Pan, Li (CR6) 2011; 49
Pan, Xie, Wang (CR35) 2010; 49
Pan, Li, Tong (CR9) 2013; 53
CR22
Wang, Sutton, Bruck (CR20) 2009; 45
Pan (CR38) 2014; 50
Wang, Lava, Reu, Debruyne (CR32) 2015
Pan, Qian, Xie, Asundi (CR1) 2009; 20
Pan, Xie, Wang, Qian, Wang (CR19) 2008; 16
Baldi, Bertolino (CR26) 2015; 51
Tong (CR37) 2013; 49
B Pan (180_CR17) 2014; 58
Y Wang (180_CR33) 2016
HW Schreier (180_CR27) 2002; 42
B Pan (180_CR1) 2009; 20
W Tong (180_CR37) 2013; 49
A Baldi (180_CR26) 2015; 51
S Baker (180_CR7) 2001; 56
ZY Wang (180_CR18) 2007; 47
B Pan (180_CR38) 2014; 50
B Pan (180_CR9) 2013; 53
W Tong (180_CR34) 2011; 36
Y Su (180_CR25) 2015; 23
B Pan (180_CR35) 2010; 49
B Pan (180_CR30) 2010; 48
B Pan (180_CR3) 2011; 51
B Pan (180_CR6) 2011; 49
B Pan (180_CR12) 2015; 54
YQ Wang (180_CR20) 2009; 45
ZY Jiang (180_CR14) 2015; 65
B Pan (180_CR19) 2008; 16
J Blaber (180_CR16) 2015; 55
B Wang (180_CR29) 2015; 55
Y Wang (180_CR32) 2015
Y Gao (180_CR10) 2015; 65
HW Schreier (180_CR23) 2000; 9
A BruckH (180_CR5) 1989; 29
J Xu (180_CR11) 2014; 55
B Pan (180_CR15) 2016; 79
X Shao (180_CR13) 2015; 71
B Blaysat (180_CR24) 2016
S Baker (180_CR8) 2004; 56
M Bornert (180_CR31) 2009; 49
B Pan (180_CR21) 2013; 51
L Yu (180_CR28) 2015; 26
180_CR2
B Pan (180_CR4) 2006; 17
180_CR22
G Besnard (180_CR36) 2006; 46
References_xml – ident: CR22
– year: 2016
  ident: CR33
  article-title: Theoretical analysis on the measurement errors of local 2D DIC: part II assessment of strain errors of the local smoothing method–approaching an answer to the overlap question
  publication-title: Strain
– volume: 51
  start-page: 1223
  year: 2011
  end-page: 1235
  ident: CR3
  article-title: Recent progress in digital image correlation
  publication-title: Exp Mech
  doi: 10.1007/s11340-010-9418-3
– volume: 56
  start-page: 1090
  year: 2001
  end-page: 1097
  ident: CR7
  article-title: Equivalence and efficiency of image alignment algorithms
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– volume: 45
  start-page: 160
  issue: 2
  year: 2009
  end-page: 178
  ident: CR20
  article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2008.00592.x
– volume: 29
  start-page: 261
  year: 1989
  end-page: 267
  ident: CR5
  article-title: Digital image correlation using Newton-Raphson method of partial differential correction
  publication-title: Exp Mech
  doi: 10.1007/BF02321405
– volume: 42
  start-page: 303
  issue: 3
  year: 2002
  end-page: 310
  ident: CR27
  article-title: Systematic errors in digital image correlation due to undermatched subset shape functions
  publication-title: Exp Mech
  doi: 10.1007/BF02410987
– volume: 48
  start-page: 469
  issue: 4
  year: 2010
  end-page: 477
  ident: CR30
  article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.08.010
– volume: 36
  start-page: 763
  issue: 5
  year: 2011
  end-page: 765
  ident: CR34
  article-title: Subpixel image registration with reduced bias
  publication-title: Opt Lett
  doi: 10.1364/OL.36.000763
– ident: CR2
– volume: 9
  start-page: 2915
  issue: 11
  year: 2000
  end-page: 2921
  ident: CR23
  article-title: Systematic errors in digital image correlation caused by intensity interpolation
  publication-title: Opt Eng
  doi: 10.1117/1.1314593
– volume: 49
  start-page: 353
  issue: 3
  year: 2009
  end-page: 370
  ident: CR31
  article-title: Assessment of digital image correlation measurement errors: methodology and results
  publication-title: Exp Mech
  doi: 10.1007/s11340-008-9204-7
– volume: 23
  start-page: 19242
  issue: 15
  year: 2015
  end-page: 19260
  ident: CR25
  article-title: Fourier-based interpolation bias prediction in digital image correlation
  publication-title: Opt Express
  doi: 10.1364/OE.23.019242
– volume: 58
  start-page: 126
  year: 2014
  end-page: 135
  ident: CR17
  article-title: An efficient and accurate 3D displacement tracking algorithm for digital volume correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.02.003
– volume: 17
  start-page: 1615
  year: 2006
  end-page: 1621
  ident: CR4
  article-title: Performance of sub-pixel registration algorithms in digital image correlation
  publication-title: Meas Sci Tech
  doi: 10.1088/0957-0233/17/6/045
– volume: 79
  start-page: 73
  year: 2016
  end-page: 80
  ident: CR15
  article-title: Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation
  publication-title: NDT E Int
  doi: 10.1016/j.ndteint.2015.12.006
– volume: 47
  start-page: 701
  issue: 5
  year: 2007
  end-page: 707
  ident: CR18
  article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images
  publication-title: Exp Mech
  doi: 10.1007/s11340-006-9005-9
– volume: 49
  start-page: 5501
  year: 2010
  end-page: 5509
  ident: CR35
  article-title: Equivalence of digital image correlation criteria for pattern matching
  publication-title: Appl Opt
  doi: 10.1364/AO.49.005501
– volume: 56
  start-page: 221
  year: 2004
  end-page: 255
  ident: CR8
  article-title: Lucas-Kanade 20 years on: a unifying framework
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 54
  start-page: 034106
  issue: 3
  year: 2015
  ident: CR12
  article-title: Superfast robust digital image correlation analysis using parallel computing
  publication-title: Opt Eng
  doi: 10.1117/1.OE.54.3.034106
– volume: 49
  start-page: 841
  issue: 7
  year: 2011
  end-page: 847
  ident: CR6
  article-title: A fast digital image correlation method for deformation measurement
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2011.02.023
– volume: 49
  start-page: 313
  issue: 4
  year: 2013
  end-page: 334
  ident: CR37
  article-title: Formulation of Lucas-Kanade digital image correlation algorithms for non-contact deformation measurements: a review
  publication-title: Strain
  doi: 10.1111/str.12039
– volume: 71
  start-page: 9
  year: 2015
  end-page: 19
  ident: CR13
  article-title: Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2015.03.005
– volume: 46
  start-page: 789
  issue: 6
  year: 2006
  end-page: 803
  ident: CR36
  article-title: “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands
  publication-title: Exp Mech
  doi: 10.1007/s11340-006-9824-8
– volume: 55
  start-page: 963
  issue: 5
  year: 2014
  end-page: 979
  ident: CR11
  article-title: Using image gradients to improve robustness of digital image correlation to non-uniform illumination: effects of weighting and normalization choices
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-9996-1
– volume: 51
  start-page: 1161
  issue: 10
  year: 2013
  end-page: 1167
  ident: CR21
  article-title: Bias error reduction of digital image correlation using Gaussian pre-filtering
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2013.04.009
– volume: 55
  start-page: 1105
  issue: 6
  year: 2015
  end-page: 1122
  ident: CR16
  article-title: Ncorr: open-source 2D digital image correlation Matlab software
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0009-1
– volume: 20
  start-page: 062001
  issue: 6
  year: 2009
  ident: CR1
  article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review
  publication-title: Meas Sci Tech
  doi: 10.1088/0957-0233/20/6/062001
– volume: 65
  start-page: 73
  year: 2015
  end-page: 80
  ident: CR10
  article-title: High-efficiency and high-accuracy digital image correlation for three-dimensional measurement
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.05.013
– volume: 65
  start-page: 93
  year: 2015
  end-page: 102
  ident: CR14
  article-title: Path-independent digital image correlation with high accuracy, speed and robustness
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.06.011
– volume: 51
  start-page: 248
  issue: 3
  year: 2015
  end-page: 263
  ident: CR26
  article-title: Experimental analysis of the errors due to polynomial interpolation in digital image correlation
  publication-title: Strain
  doi: 10.1111/str.12137
– year: 2015
  ident: CR32
  article-title: Theoretical analysis on the measurement errors of local 2D DIC: part I temporal and spatial uncertainty quantification of displacement measurements
  publication-title: Strain
– volume: 55
  start-page: 1717
  issue: 9
  year: 2015
  end-page: 1727
  ident: CR29
  article-title: Random errors in digital image correlation due to matched or overmatched shape functions
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0080-7
– volume: 53
  start-page: 1277
  year: 2013
  end-page: 1289
  ident: CR9
  article-title: Fast, robust and accurate digital image correlation calculation without redundant computations
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
– year: 2016
  ident: CR24
  article-title: Effect of interpolation in noise propagation from images to DIC displacement maps
  publication-title: Int J Numer Methods Eng
– volume: 50
  start-page: 48
  issue: 1
  year: 2014
  end-page: 56
  ident: CR38
  article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss–Newton algorithm
  publication-title: Strain
  doi: 10.1111/str.12066
– volume: 16
  start-page: 7037
  issue: 10
  year: 2008
  end-page: 7048
  ident: CR19
  article-title: Study of subset size selection in digital image correlation for speckle patterns
  publication-title: Opt Express
  doi: 10.1364/OE.16.007037
– volume: 26
  start-page: 045202
  issue: 4
  year: 2015
  ident: CR28
  article-title: The errors in digital image correlation due to overmatched shape functions
  publication-title: Meas Sci Tech
  doi: 10.1088/0957-0233/26/4/045202
– volume: 17
  start-page: 1615
  year: 2006
  ident: 180_CR4
  publication-title: Meas Sci Tech
  doi: 10.1088/0957-0233/17/6/045
– volume: 55
  start-page: 1105
  issue: 6
  year: 2015
  ident: 180_CR16
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0009-1
– volume: 9
  start-page: 2915
  issue: 11
  year: 2000
  ident: 180_CR23
  publication-title: Opt Eng
  doi: 10.1117/1.1314593
– volume: 55
  start-page: 963
  issue: 5
  year: 2014
  ident: 180_CR11
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-9996-1
– volume: 51
  start-page: 248
  issue: 3
  year: 2015
  ident: 180_CR26
  publication-title: Strain
  doi: 10.1111/str.12137
– volume: 42
  start-page: 303
  issue: 3
  year: 2002
  ident: 180_CR27
  publication-title: Exp Mech
  doi: 10.1007/BF02410987
– year: 2015
  ident: 180_CR32
  publication-title: Strain
  doi: 10.1111/str.12173
– ident: 180_CR2
– volume: 71
  start-page: 9
  year: 2015
  ident: 180_CR13
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2015.03.005
– volume: 56
  start-page: 1090
  year: 2001
  ident: 180_CR7
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: 180_CR22
  doi: 10.1007/s11340-016-0130-9
– volume: 45
  start-page: 160
  issue: 2
  year: 2009
  ident: 180_CR20
  publication-title: Strain
  doi: 10.1111/j.1475-1305.2008.00592.x
– volume: 55
  start-page: 1717
  issue: 9
  year: 2015
  ident: 180_CR29
  publication-title: Exp Mech
  doi: 10.1007/s11340-015-0080-7
– volume: 65
  start-page: 93
  year: 2015
  ident: 180_CR14
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.06.011
– volume: 26
  start-page: 045202
  issue: 4
  year: 2015
  ident: 180_CR28
  publication-title: Meas Sci Tech
  doi: 10.1088/0957-0233/26/4/045202
– volume: 49
  start-page: 5501
  year: 2010
  ident: 180_CR35
  publication-title: Appl Opt
  doi: 10.1364/AO.49.005501
– volume: 49
  start-page: 313
  issue: 4
  year: 2013
  ident: 180_CR37
  publication-title: Strain
  doi: 10.1111/str.12039
– volume: 20
  start-page: 062001
  issue: 6
  year: 2009
  ident: 180_CR1
  publication-title: Meas Sci Tech
  doi: 10.1088/0957-0233/20/6/062001
– volume: 50
  start-page: 48
  issue: 1
  year: 2014
  ident: 180_CR38
  publication-title: Strain
  doi: 10.1111/str.12066
– year: 2016
  ident: 180_CR33
  publication-title: Strain
  doi: 10.1111/str.12174
– volume: 29
  start-page: 261
  year: 1989
  ident: 180_CR5
  publication-title: Exp Mech
  doi: 10.1007/BF02321405
– volume: 79
  start-page: 73
  year: 2016
  ident: 180_CR15
  publication-title: NDT E Int
  doi: 10.1016/j.ndteint.2015.12.006
– volume: 53
  start-page: 1277
  year: 2013
  ident: 180_CR9
  publication-title: Exp Mech
  doi: 10.1007/s11340-013-9717-6
– volume: 36
  start-page: 763
  issue: 5
  year: 2011
  ident: 180_CR34
  publication-title: Opt Lett
  doi: 10.1364/OL.36.000763
– volume: 51
  start-page: 1161
  issue: 10
  year: 2013
  ident: 180_CR21
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2013.04.009
– volume: 54
  start-page: 034106
  issue: 3
  year: 2015
  ident: 180_CR12
  publication-title: Opt Eng
  doi: 10.1117/1.OE.54.3.034106
– volume: 58
  start-page: 126
  year: 2014
  ident: 180_CR17
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.02.003
– volume: 16
  start-page: 7037
  issue: 10
  year: 2008
  ident: 180_CR19
  publication-title: Opt Express
  doi: 10.1364/OE.16.007037
– year: 2016
  ident: 180_CR24
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5212
– volume: 46
  start-page: 789
  issue: 6
  year: 2006
  ident: 180_CR36
  publication-title: Exp Mech
  doi: 10.1007/s11340-006-9824-8
– volume: 56
  start-page: 221
  year: 2004
  ident: 180_CR8
  publication-title: Int J Comput Vision
  doi: 10.1023/B:VISI.0000011205.11775.fd
– volume: 23
  start-page: 19242
  issue: 15
  year: 2015
  ident: 180_CR25
  publication-title: Opt Express
  doi: 10.1364/OE.23.019242
– volume: 51
  start-page: 1223
  year: 2011
  ident: 180_CR3
  publication-title: Exp Mech
  doi: 10.1007/s11340-010-9418-3
– volume: 65
  start-page: 73
  year: 2015
  ident: 180_CR10
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2014.05.013
– volume: 49
  start-page: 353
  issue: 3
  year: 2009
  ident: 180_CR31
  publication-title: Exp Mech
  doi: 10.1007/s11340-008-9204-7
– volume: 48
  start-page: 469
  issue: 4
  year: 2010
  ident: 180_CR30
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2009.08.010
– volume: 47
  start-page: 701
  issue: 5
  year: 2007
  ident: 180_CR18
  publication-title: Exp Mech
  doi: 10.1007/s11340-006-9005-9
– volume: 49
  start-page: 841
  issue: 7
  year: 2011
  ident: 180_CR6
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2011.02.023
SSID ssj0007372
Score 2.3899248
Snippet The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR)...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1395
SubjectTerms Algorithms
Bias
Biomedical Engineering and Bioengineering
Characterization and Evaluation of Materials
Computing time
Control
Convolution
Digital imaging
Displacement
Dynamical Systems
Engineering
Error analysis
Image enhancement
Interpolation
Lasers
Newton-Raphson method
Noise
Noise levels
Optical Devices
Optics
Photonics
Pixels
Proving
Random errors
Registration
Set theory
Shape functions
Solid Mechanics
Vibration
Title Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms
URI https://link.springer.com/article/10.1007/s11340-016-0180-z
https://www.proquest.com/docview/1880870609
Volume 56
WOSCitedRecordID wos000383599900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1741-2765
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007372
  issn: 0014-4851
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UPejBbyOKpgdPmiUd3dbOG0GIXoxBNNyW7tEiCWxkgB_89bb7ADRqoud1L037-utr3-vvh9C5Icp2OVcWU_q46ugtyeKeIywpKHg6oJDgQyo2we7ueKfj3-fvuMdFtXuRkkyRevHYzaamFNE2J2BOrNkqWtOmuVmNrYenOfwa3ZUMfh1L98MuUpnfmfi8GS0izC9J0XSvaW7_q5c7aCsPLXEt84VdtCKjPbS5RDi4j6bX_Z5RCcG3Q40juG6kObJiOGwuZHEjek4rAnANYJoIeMci6uJGSjNh3mhe4Rquz5ULcaxw-zXGGnxG_Tc5wC3Zm_Pw4tqgFyfa6HB8gB6bjXb9xsqFFyygtjexgHN9SgPmK1rtei71QiYcwruScunakoBLSejaoqoAPC6IpxhRzCc-MBYCC-khKkVxJI8QBuKBCqnQUYRwfAqh4kqjDPg27xINrWVEihkIIGclN-IYg2DBp2xGNDCVaGZEg1kZXcx_GWWUHL81rhTTGuSrcxwYDjqT3yV-GV0W07j0-Sdjx39qfYI2qsYP0sq_CipNkqk8RevwMumPk7PUaT8AeUvnzQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54A_XBuzivefBJKaRL26S-jTlR1CE6xbeSniVzsHWyi7dfb9K1m4oK-tw0hCT9zknPl-8D2LdC2b4Q2uHaHFc9E5IcEXjSUZJhYBIKhSGmZhO8WhX39-FVdo-7l7Pd85JkitTjy24us1RE156ABXXeJmHaMwHL8viub-5G8Gt9V4bw6zlmHG5eyvyui8_BaJxhfimKprHmZPFfo1yChSy1JKXhXliGCZWswPwHwcFVGBw3G9YlhJy1DY6QsrXmGJLhiP0hSyrJQ8oIICXEQVfiK5FJnVRSmQl7R_OIlEh55FxIOprUnjvEgM9j80W1yLVqjHR4SanV6HRNp-3eGtyeVGrlUyczXnCQuUHfQSHMKQ15qFmxHvgsiLn0qKgrJpTvKoo-o7HvyqJGDISkgeZU85CGyHmMPGbrMJV0ErUBBGmAOmbSZBHSCxnGWmiDMhi6ok4NtBaA5isQYaZKbs0xWtFYT9nOaGSZaHZGo7cCHIxeeRxKcvzWeDtf1ij7OnuR1aCz9V0aFuAwX8YPj3_qbPNPrfdg9rR2eRFdnFXPt2CuaPdEygLchql-d6B2YAaf-s1edzfdwO9fP-qx
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VqCo4lD6oSEvpHnoqslhnbe-aWxQSFYEiBBRxs9bj3TRScKI8aMuvZ8ePhFZQCXH2erTaHc_DM_N9AF8JKDtUynrSunQ1cC7JU1GgPaMFRi6gMBhjQTYhez11dRWfVjyn07rbvS5JljMNhNKUz_bHmd1fDr75gtoSfcqGFfduV2AtIM4gStfPLxemmDhYSlMceG5Pfl3WfEjE345pGW3-UyAt_E5389k7fgOvq5CTtUodeQsvTP4ONu4BEb6H-eGgT-wh7Oja2RfWJsqOskmO0Y9a1sl_Fp0CrIU4n2j8w3SesU4BP0GzmwesxdoLRkM2suzi14g5ozQe_DZDdmb6C3xe1hr2RxMn9Hq6BT-6nYv2d68iZPBQ-NHMQ6Vc9oYytqKZRaGIUqkDrjIjlAl9wzEUPA193bSIkdI8spJbGfMYpUxRpuIDrOaj3GwDQx6hTYV20YUOYoGpVdZZH4x9lXFnchvA69tIsEIrJ9KMYbLEWaYTTahDjU40uW3At8Ur4xKq43-Ld-orTqqvdpoQNh3VfXncgL36Su89fkzYxyet_gKvTg-7yclR7_gTrDdJJYrmwB1YnU3m5jO8xJvZYDrZLXT5Dqzv85U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Image+Correlation+with+Enhanced+Accuracy+and+Efficiency%3A+A+Comparison+of+Two+Subpixel+Registration+Algorithms&rft.jtitle=Experimental+mechanics&rft.au=Pan%2C+B&rft.au=Wang%2C+B&rft.date=2016-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=56&rft.issue=8&rft.spage=1395&rft.epage=1409&rft_id=info:doi/10.1007%2Fs11340-016-0180-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon