Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms
The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR) algorithm with forward additive mapping strategy and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm. Although the equiv...
Saved in:
| Published in: | Experimental mechanics Vol. 56; no. 8; pp. 1395 - 1409 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.10.2016
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0014-4851, 1741-2765 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR) algorithm with forward additive mapping strategy and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm. Although the equivalence of these two algorithms has been proved in existing studies, practical implementations of the two subpixel registration algorithms do involve differences, and therefore lead to different performance. In the present work, detailed theoretical error analyses of the two algorithms are performed. Based on the simple sum of squared difference criterion and the practical first-order shape function, analytic formulae that can quantify both the bias error (systematic error) and the variability (random error) in the displacements measured by IC-GN and FA-NR algorithms with various interpolation methods (i.e., cubic convolution interpolation, cubic polynomial interpolation, cubic B-spline interpolation and quintic B-spline interpolation) are derived. It is shown that, compared with FA-NR algorithm, IC-GN algorithm leads to reduced bias error in displacement estimation by eliminating noise-induced bias error, and gives rise on the average to smaller random errors in displacement estimation in the cases of high noise levels or using small subsets. Numerical tests with precisely controlled subpixel displacements confirm the correctness of the theoretical derivations. The results reveal that IC-GN algorithm outperforms the classic FA-NR algorithm not only in terms of computational efficiency, but also in respect of subpixel registration accuracy and noise-proof performance, and is strongly recommended as a standard subpixel registration algorithm for practical DIC applications instead of FA-NR algorithm. |
|---|---|
| AbstractList | The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR) algorithm with forward additive mapping strategy and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm. Although the equivalence of these two algorithms has been proved in existing studies, practical implementations of the two subpixel registration algorithms do involve differences, and therefore lead to different performance. In the present work, detailed theoretical error analyses of the two algorithms are performed. Based on the simple sum of squared difference criterion and the practical first-order shape function, analytic formulae that can quantify both the bias error (systematic error) and the variability (random error) in the displacements measured by IC-GN and FA-NR algorithms with various interpolation methods (i.e., cubic convolution interpolation, cubic polynomial interpolation, cubic B-spline interpolation and quintic B-spline interpolation) are derived. It is shown that, compared with FA-NR algorithm, IC-GN algorithm leads to reduced bias error in displacement estimation by eliminating noise-induced bias error, and gives rise on the average to smaller random errors in displacement estimation in the cases of high noise levels or using small subsets. Numerical tests with precisely controlled subpixel displacements confirm the correctness of the theoretical derivations. The results reveal that IC-GN algorithm outperforms the classic FA-NR algorithm not only in terms of computational efficiency, but also in respect of subpixel registration accuracy and noise-proof performance, and is strongly recommended as a standard subpixel registration algorithm for practical DIC applications instead of FA-NR algorithm. |
| Author | Wang, B. Pan, B. |
| Author_xml | – sequence: 1 givenname: B. surname: Pan fullname: Pan, B. email: panb@buaa.edu.cn organization: Institute of Solid Mechanics, Beihang University – sequence: 2 givenname: B. surname: Wang fullname: Wang, B. organization: Institute of Solid Mechanics, Beihang University |
| BookMark | eNp9kEtLAzEUhYMoWKs_wF3A9ejNvJJxV2p9gCD4WIdMmkxTZpKazKDtrzdlXIigi3A35zs5fCfo0DqrEDoncEkA6FUgJMshAVLGxyDZHaAJoTlJUloWh2gCQPIkZwU5RichrCEyGU0naLgxjelFix860Sg8d96rVvTGWfxh-hVe2JWwUi3xTMrBC7nFwi7xQmsjjbJye41nEeo2wpsQGafx64fDL0O9MZ-qxc-qMaH3Y-GsbZyPpV04RUdatEGdfd8pertdvM7vk8enu4f57DGRGSn7RDJGIJe00lm6LIusrKnIgS1VxlRBFMgig7ogItVSlkxAqSloWkElKa0lrbMpuhh7N969Dyr0fO0Gb-OXnDAGjEIJVUzRMSW9C8ErzWVUsp8cl5uWE-B7x3x0zKNjvnfMd5Ekv8iNN53w23-ZdGRCzNpG-R-b_oS-AP1okbE |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3398786 crossref_primary_10_1016_j_engfracmech_2024_109930 crossref_primary_10_1364_AO_58_004781 crossref_primary_10_1007_s11340_024_01078_6 crossref_primary_10_1007_s11340_017_0328_5 crossref_primary_10_1088_1361_6501_ab65d9 crossref_primary_10_3390_s24092810 crossref_primary_10_1007_s11340_017_0283_1 crossref_primary_10_1016_j_ijimpeng_2024_105095 crossref_primary_10_3390_photonics9030167 crossref_primary_10_3390_rs12182906 crossref_primary_10_1016_j_optlaseng_2023_107954 crossref_primary_10_1155_2020_9343461 crossref_primary_10_1007_s11340_017_0294_y crossref_primary_10_1007_s10409_023_22430_x crossref_primary_10_1007_s11340_024_01070_0 crossref_primary_10_1007_s10035_022_01292_w crossref_primary_10_1016_j_optlaseng_2020_106189 crossref_primary_10_1016_j_advengsoft_2017_12_004 crossref_primary_10_1016_j_mtcomm_2020_101875 crossref_primary_10_1007_s11340_023_00958_7 crossref_primary_10_1016_j_istruc_2025_109277 crossref_primary_10_1007_s12046_022_02065_0 crossref_primary_10_1016_j_optlastec_2024_111129 crossref_primary_10_1016_j_optlaseng_2019_04_016 crossref_primary_10_2478_msr_2020_0025 crossref_primary_10_1016_j_measurement_2020_108860 crossref_primary_10_3390_app11114904 crossref_primary_10_1088_1361_6501_aa7e8a crossref_primary_10_1007_s00226_018_1045_7 crossref_primary_10_3390_s22197359 crossref_primary_10_1007_s11340_021_00814_6 crossref_primary_10_3390_infrastructures6010004 crossref_primary_10_1016_j_ultramic_2024_113924 crossref_primary_10_1049_iet_ipr_2019_1384 crossref_primary_10_1088_1361_6501_aac55b crossref_primary_10_3390_rs12040696 crossref_primary_10_1111_str_12342 crossref_primary_10_1016_j_jsv_2021_116142 crossref_primary_10_1111_ffe_12825 crossref_primary_10_1002_jbio_201800422 crossref_primary_10_1111_str_12469 crossref_primary_10_1016_j_engfracmech_2019_02_026 crossref_primary_10_1007_s40799_025_00813_5 crossref_primary_10_1186_s44147_024_00372_3 crossref_primary_10_1016_j_optlaseng_2017_09_015 crossref_primary_10_1007_s11340_018_00455_2 crossref_primary_10_1016_j_optlaseng_2017_09_013 crossref_primary_10_1007_s11340_023_00941_2 crossref_primary_10_1007_s11340_019_00566_4 crossref_primary_10_1016_j_optlaseng_2018_05_016 |
| Cites_doi | 10.1007/s11340-010-9418-3 10.1111/j.1475-1305.2008.00592.x 10.1007/BF02321405 10.1007/BF02410987 10.1016/j.optlaseng.2009.08.010 10.1364/OL.36.000763 10.1117/1.1314593 10.1007/s11340-008-9204-7 10.1364/OE.23.019242 10.1016/j.optlaseng.2014.02.003 10.1088/0957-0233/17/6/045 10.1016/j.ndteint.2015.12.006 10.1007/s11340-006-9005-9 10.1364/AO.49.005501 10.1023/B:VISI.0000011205.11775.fd 10.1117/1.OE.54.3.034106 10.1016/j.optlaseng.2011.02.023 10.1111/str.12039 10.1016/j.optlaseng.2015.03.005 10.1007/s11340-006-9824-8 10.1007/s11340-015-9996-1 10.1016/j.optlaseng.2013.04.009 10.1007/s11340-015-0009-1 10.1088/0957-0233/20/6/062001 10.1016/j.optlaseng.2014.05.013 10.1016/j.optlaseng.2014.06.011 10.1111/str.12137 10.1007/s11340-015-0080-7 10.1007/s11340-013-9717-6 10.1111/str.12066 10.1364/OE.16.007037 10.1088/0957-0233/26/4/045202 10.1111/str.12173 10.1007/s11340-016-0130-9 10.1111/str.12174 10.1002/nme.5212 |
| ContentType | Journal Article |
| Copyright | Society for Experimental Mechanics 2016 Copyright Springer Science & Business Media 2016 |
| Copyright_xml | – notice: Society for Experimental Mechanics 2016 – notice: Copyright Springer Science & Business Media 2016 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11340-016-0180-z |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1741-2765 |
| EndPage | 1409 |
| ExternalDocumentID | 10_1007_s11340_016_0180_z |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant nos. 11272032, 11322220 and 11427802 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5B -5G -BR -EM -XX -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDEX ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARCEE ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 E.L EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IAO IEA IGS IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X J-C J0Z JBSCW JZLTJ KDC KOV LAS LLZTM M4V M4Y MA- N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P P9P PF0 PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TN5 TSG TSK TSV TUC TUS U2A UCJ UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XSW YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR _50 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU CITATION DWQXO GNUQQ HCIFZ KB. M2P M7S PCBAR PDBOC PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c316t-c88104c79f32d6536b7a408de38e51e0c530b51a2fcc68a06f70f7909c77bc7b3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000383599900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0014-4851 |
| IngestDate | Wed Sep 17 13:51:21 EDT 2025 Tue Nov 18 21:07:23 EST 2025 Sat Nov 29 06:29:42 EST 2025 Fri Feb 21 02:36:49 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Error analysis Digital image correlation Inverse compositional Gauss-Newton algorithm Subpixel registration |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-c88104c79f32d6536b7a408de38e51e0c530b51a2fcc68a06f70f7909c77bc7b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1880870609 |
| PQPubID | 2044465 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_1880870609 crossref_citationtrail_10_1007_s11340_016_0180_z crossref_primary_10_1007_s11340_016_0180_z springer_journals_10_1007_s11340_016_0180_z |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Experimental mechanics |
| PublicationTitleAbbrev | Exp Mech |
| PublicationYear | 2016 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Pan, Tian (CR12) 2015; 54 Schreier, Sutton (CR27) 2002; 42 Pan, Tian, Song (CR15) 2016; 79 Baker, Mattews (CR7) 2001; 56 Shao, Dai, He (CR13) 2015; 71 Wang, Pan (CR29) 2015; 55 Gao, Cheng, Su, Xu, Zhang, Zhang (CR10) 2015; 65 Pan (CR21) 2013; 51 Schreier, Braasch, Sutton (CR23) 2000; 9 Pan (CR3) 2011; 51 Yu, Pan (CR28) 2015; 26 Besnard, Hild, Roux (CR36) 2006; 46 Tong (CR34) 2011; 36 Baker, Mattews (CR8) 2004; 56 Wang, Lava, Reu, Debruyne (CR33) 2016 Wang, Li, Tong, Ruan (CR18) 2007; 47 Bornert, Brémand, Doumalin (CR31) 2009; 49 Blaber, Adair, Antoniou (CR16) 2015; 55 Jiang, Qian, Miao, Yang, Tang (CR14) 2015; 65 Pan, Wang, Wu, Lubineau (CR17) 2014; 58 Xu, Moussawi, Gras, Lubineau (CR11) 2014; 55 Blaysat, Grédiac, Sur (CR24) 2016 CR2 Pan, Lu, Xie (CR30) 2010; 48 Su, Zhang, Gao, Xu, Wu (CR25) 2015; 23 Pan, Xie, Xu, Dai (CR4) 2006; 17 BruckH, McNeil, Sutton, Peters (CR5) 1989; 29 Pan, Li (CR6) 2011; 49 Pan, Xie, Wang (CR35) 2010; 49 Pan, Li, Tong (CR9) 2013; 53 CR22 Wang, Sutton, Bruck (CR20) 2009; 45 Pan (CR38) 2014; 50 Wang, Lava, Reu, Debruyne (CR32) 2015 Pan, Qian, Xie, Asundi (CR1) 2009; 20 Pan, Xie, Wang, Qian, Wang (CR19) 2008; 16 Baldi, Bertolino (CR26) 2015; 51 Tong (CR37) 2013; 49 B Pan (180_CR17) 2014; 58 Y Wang (180_CR33) 2016 HW Schreier (180_CR27) 2002; 42 B Pan (180_CR1) 2009; 20 W Tong (180_CR37) 2013; 49 A Baldi (180_CR26) 2015; 51 S Baker (180_CR7) 2001; 56 ZY Wang (180_CR18) 2007; 47 B Pan (180_CR38) 2014; 50 B Pan (180_CR9) 2013; 53 W Tong (180_CR34) 2011; 36 Y Su (180_CR25) 2015; 23 B Pan (180_CR35) 2010; 49 B Pan (180_CR30) 2010; 48 B Pan (180_CR3) 2011; 51 B Pan (180_CR6) 2011; 49 B Pan (180_CR12) 2015; 54 YQ Wang (180_CR20) 2009; 45 ZY Jiang (180_CR14) 2015; 65 B Pan (180_CR19) 2008; 16 J Blaber (180_CR16) 2015; 55 B Wang (180_CR29) 2015; 55 Y Wang (180_CR32) 2015 Y Gao (180_CR10) 2015; 65 HW Schreier (180_CR23) 2000; 9 A BruckH (180_CR5) 1989; 29 J Xu (180_CR11) 2014; 55 B Pan (180_CR15) 2016; 79 X Shao (180_CR13) 2015; 71 B Blaysat (180_CR24) 2016 S Baker (180_CR8) 2004; 56 M Bornert (180_CR31) 2009; 49 B Pan (180_CR21) 2013; 51 L Yu (180_CR28) 2015; 26 180_CR2 B Pan (180_CR4) 2006; 17 180_CR22 G Besnard (180_CR36) 2006; 46 |
| References_xml | – ident: CR22 – year: 2016 ident: CR33 article-title: Theoretical analysis on the measurement errors of local 2D DIC: part II assessment of strain errors of the local smoothing method–approaching an answer to the overlap question publication-title: Strain – volume: 51 start-page: 1223 year: 2011 end-page: 1235 ident: CR3 article-title: Recent progress in digital image correlation publication-title: Exp Mech doi: 10.1007/s11340-010-9418-3 – volume: 56 start-page: 1090 year: 2001 end-page: 1097 ident: CR7 article-title: Equivalence and efficiency of image alignment algorithms publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – volume: 45 start-page: 160 issue: 2 year: 2009 end-page: 178 ident: CR20 article-title: Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurements publication-title: Strain doi: 10.1111/j.1475-1305.2008.00592.x – volume: 29 start-page: 261 year: 1989 end-page: 267 ident: CR5 article-title: Digital image correlation using Newton-Raphson method of partial differential correction publication-title: Exp Mech doi: 10.1007/BF02321405 – volume: 42 start-page: 303 issue: 3 year: 2002 end-page: 310 ident: CR27 article-title: Systematic errors in digital image correlation due to undermatched subset shape functions publication-title: Exp Mech doi: 10.1007/BF02410987 – volume: 48 start-page: 469 issue: 4 year: 2010 end-page: 477 ident: CR30 article-title: Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.08.010 – volume: 36 start-page: 763 issue: 5 year: 2011 end-page: 765 ident: CR34 article-title: Subpixel image registration with reduced bias publication-title: Opt Lett doi: 10.1364/OL.36.000763 – ident: CR2 – volume: 9 start-page: 2915 issue: 11 year: 2000 end-page: 2921 ident: CR23 article-title: Systematic errors in digital image correlation caused by intensity interpolation publication-title: Opt Eng doi: 10.1117/1.1314593 – volume: 49 start-page: 353 issue: 3 year: 2009 end-page: 370 ident: CR31 article-title: Assessment of digital image correlation measurement errors: methodology and results publication-title: Exp Mech doi: 10.1007/s11340-008-9204-7 – volume: 23 start-page: 19242 issue: 15 year: 2015 end-page: 19260 ident: CR25 article-title: Fourier-based interpolation bias prediction in digital image correlation publication-title: Opt Express doi: 10.1364/OE.23.019242 – volume: 58 start-page: 126 year: 2014 end-page: 135 ident: CR17 article-title: An efficient and accurate 3D displacement tracking algorithm for digital volume correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.02.003 – volume: 17 start-page: 1615 year: 2006 end-page: 1621 ident: CR4 article-title: Performance of sub-pixel registration algorithms in digital image correlation publication-title: Meas Sci Tech doi: 10.1088/0957-0233/17/6/045 – volume: 79 start-page: 73 year: 2016 end-page: 80 ident: CR15 article-title: Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation publication-title: NDT E Int doi: 10.1016/j.ndteint.2015.12.006 – volume: 47 start-page: 701 issue: 5 year: 2007 end-page: 707 ident: CR18 article-title: Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images publication-title: Exp Mech doi: 10.1007/s11340-006-9005-9 – volume: 49 start-page: 5501 year: 2010 end-page: 5509 ident: CR35 article-title: Equivalence of digital image correlation criteria for pattern matching publication-title: Appl Opt doi: 10.1364/AO.49.005501 – volume: 56 start-page: 221 year: 2004 end-page: 255 ident: CR8 article-title: Lucas-Kanade 20 years on: a unifying framework publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000011205.11775.fd – volume: 54 start-page: 034106 issue: 3 year: 2015 ident: CR12 article-title: Superfast robust digital image correlation analysis using parallel computing publication-title: Opt Eng doi: 10.1117/1.OE.54.3.034106 – volume: 49 start-page: 841 issue: 7 year: 2011 end-page: 847 ident: CR6 article-title: A fast digital image correlation method for deformation measurement publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2011.02.023 – volume: 49 start-page: 313 issue: 4 year: 2013 end-page: 334 ident: CR37 article-title: Formulation of Lucas-Kanade digital image correlation algorithms for non-contact deformation measurements: a review publication-title: Strain doi: 10.1111/str.12039 – volume: 71 start-page: 9 year: 2015 end-page: 19 ident: CR13 article-title: Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2015.03.005 – volume: 46 start-page: 789 issue: 6 year: 2006 end-page: 803 ident: CR36 article-title: “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Châtelier bands publication-title: Exp Mech doi: 10.1007/s11340-006-9824-8 – volume: 55 start-page: 963 issue: 5 year: 2014 end-page: 979 ident: CR11 article-title: Using image gradients to improve robustness of digital image correlation to non-uniform illumination: effects of weighting and normalization choices publication-title: Exp Mech doi: 10.1007/s11340-015-9996-1 – volume: 51 start-page: 1161 issue: 10 year: 2013 end-page: 1167 ident: CR21 article-title: Bias error reduction of digital image correlation using Gaussian pre-filtering publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2013.04.009 – volume: 55 start-page: 1105 issue: 6 year: 2015 end-page: 1122 ident: CR16 article-title: Ncorr: open-source 2D digital image correlation Matlab software publication-title: Exp Mech doi: 10.1007/s11340-015-0009-1 – volume: 20 start-page: 062001 issue: 6 year: 2009 ident: CR1 article-title: Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review publication-title: Meas Sci Tech doi: 10.1088/0957-0233/20/6/062001 – volume: 65 start-page: 73 year: 2015 end-page: 80 ident: CR10 article-title: High-efficiency and high-accuracy digital image correlation for three-dimensional measurement publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.05.013 – volume: 65 start-page: 93 year: 2015 end-page: 102 ident: CR14 article-title: Path-independent digital image correlation with high accuracy, speed and robustness publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.06.011 – volume: 51 start-page: 248 issue: 3 year: 2015 end-page: 263 ident: CR26 article-title: Experimental analysis of the errors due to polynomial interpolation in digital image correlation publication-title: Strain doi: 10.1111/str.12137 – year: 2015 ident: CR32 article-title: Theoretical analysis on the measurement errors of local 2D DIC: part I temporal and spatial uncertainty quantification of displacement measurements publication-title: Strain – volume: 55 start-page: 1717 issue: 9 year: 2015 end-page: 1727 ident: CR29 article-title: Random errors in digital image correlation due to matched or overmatched shape functions publication-title: Exp Mech doi: 10.1007/s11340-015-0080-7 – volume: 53 start-page: 1277 year: 2013 end-page: 1289 ident: CR9 article-title: Fast, robust and accurate digital image correlation calculation without redundant computations publication-title: Exp Mech doi: 10.1007/s11340-013-9717-6 – year: 2016 ident: CR24 article-title: Effect of interpolation in noise propagation from images to DIC displacement maps publication-title: Int J Numer Methods Eng – volume: 50 start-page: 48 issue: 1 year: 2014 end-page: 56 ident: CR38 article-title: An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss–Newton algorithm publication-title: Strain doi: 10.1111/str.12066 – volume: 16 start-page: 7037 issue: 10 year: 2008 end-page: 7048 ident: CR19 article-title: Study of subset size selection in digital image correlation for speckle patterns publication-title: Opt Express doi: 10.1364/OE.16.007037 – volume: 26 start-page: 045202 issue: 4 year: 2015 ident: CR28 article-title: The errors in digital image correlation due to overmatched shape functions publication-title: Meas Sci Tech doi: 10.1088/0957-0233/26/4/045202 – volume: 17 start-page: 1615 year: 2006 ident: 180_CR4 publication-title: Meas Sci Tech doi: 10.1088/0957-0233/17/6/045 – volume: 55 start-page: 1105 issue: 6 year: 2015 ident: 180_CR16 publication-title: Exp Mech doi: 10.1007/s11340-015-0009-1 – volume: 9 start-page: 2915 issue: 11 year: 2000 ident: 180_CR23 publication-title: Opt Eng doi: 10.1117/1.1314593 – volume: 55 start-page: 963 issue: 5 year: 2014 ident: 180_CR11 publication-title: Exp Mech doi: 10.1007/s11340-015-9996-1 – volume: 51 start-page: 248 issue: 3 year: 2015 ident: 180_CR26 publication-title: Strain doi: 10.1111/str.12137 – volume: 42 start-page: 303 issue: 3 year: 2002 ident: 180_CR27 publication-title: Exp Mech doi: 10.1007/BF02410987 – year: 2015 ident: 180_CR32 publication-title: Strain doi: 10.1111/str.12173 – ident: 180_CR2 – volume: 71 start-page: 9 year: 2015 ident: 180_CR13 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2015.03.005 – volume: 56 start-page: 1090 year: 2001 ident: 180_CR7 publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: 180_CR22 doi: 10.1007/s11340-016-0130-9 – volume: 45 start-page: 160 issue: 2 year: 2009 ident: 180_CR20 publication-title: Strain doi: 10.1111/j.1475-1305.2008.00592.x – volume: 55 start-page: 1717 issue: 9 year: 2015 ident: 180_CR29 publication-title: Exp Mech doi: 10.1007/s11340-015-0080-7 – volume: 65 start-page: 93 year: 2015 ident: 180_CR14 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.06.011 – volume: 26 start-page: 045202 issue: 4 year: 2015 ident: 180_CR28 publication-title: Meas Sci Tech doi: 10.1088/0957-0233/26/4/045202 – volume: 49 start-page: 5501 year: 2010 ident: 180_CR35 publication-title: Appl Opt doi: 10.1364/AO.49.005501 – volume: 49 start-page: 313 issue: 4 year: 2013 ident: 180_CR37 publication-title: Strain doi: 10.1111/str.12039 – volume: 20 start-page: 062001 issue: 6 year: 2009 ident: 180_CR1 publication-title: Meas Sci Tech doi: 10.1088/0957-0233/20/6/062001 – volume: 50 start-page: 48 issue: 1 year: 2014 ident: 180_CR38 publication-title: Strain doi: 10.1111/str.12066 – year: 2016 ident: 180_CR33 publication-title: Strain doi: 10.1111/str.12174 – volume: 29 start-page: 261 year: 1989 ident: 180_CR5 publication-title: Exp Mech doi: 10.1007/BF02321405 – volume: 79 start-page: 73 year: 2016 ident: 180_CR15 publication-title: NDT E Int doi: 10.1016/j.ndteint.2015.12.006 – volume: 53 start-page: 1277 year: 2013 ident: 180_CR9 publication-title: Exp Mech doi: 10.1007/s11340-013-9717-6 – volume: 36 start-page: 763 issue: 5 year: 2011 ident: 180_CR34 publication-title: Opt Lett doi: 10.1364/OL.36.000763 – volume: 51 start-page: 1161 issue: 10 year: 2013 ident: 180_CR21 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2013.04.009 – volume: 54 start-page: 034106 issue: 3 year: 2015 ident: 180_CR12 publication-title: Opt Eng doi: 10.1117/1.OE.54.3.034106 – volume: 58 start-page: 126 year: 2014 ident: 180_CR17 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.02.003 – volume: 16 start-page: 7037 issue: 10 year: 2008 ident: 180_CR19 publication-title: Opt Express doi: 10.1364/OE.16.007037 – year: 2016 ident: 180_CR24 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5212 – volume: 46 start-page: 789 issue: 6 year: 2006 ident: 180_CR36 publication-title: Exp Mech doi: 10.1007/s11340-006-9824-8 – volume: 56 start-page: 221 year: 2004 ident: 180_CR8 publication-title: Int J Comput Vision doi: 10.1023/B:VISI.0000011205.11775.fd – volume: 23 start-page: 19242 issue: 15 year: 2015 ident: 180_CR25 publication-title: Opt Express doi: 10.1364/OE.23.019242 – volume: 51 start-page: 1223 year: 2011 ident: 180_CR3 publication-title: Exp Mech doi: 10.1007/s11340-010-9418-3 – volume: 65 start-page: 73 year: 2015 ident: 180_CR10 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2014.05.013 – volume: 49 start-page: 353 issue: 3 year: 2009 ident: 180_CR31 publication-title: Exp Mech doi: 10.1007/s11340-008-9204-7 – volume: 48 start-page: 469 issue: 4 year: 2010 ident: 180_CR30 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2009.08.010 – volume: 47 start-page: 701 issue: 5 year: 2007 ident: 180_CR18 publication-title: Exp Mech doi: 10.1007/s11340-006-9005-9 – volume: 49 start-page: 841 issue: 7 year: 2011 ident: 180_CR6 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2011.02.023 |
| SSID | ssj0007372 |
| Score | 2.3899248 |
| Snippet | The two major subpixel registration algorithms, currently being used in subset-based digital image correlation, are the classic Newton-Raphson (FA-NR)... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1395 |
| SubjectTerms | Algorithms Bias Biomedical Engineering and Bioengineering Characterization and Evaluation of Materials Computing time Control Convolution Digital imaging Displacement Dynamical Systems Engineering Error analysis Image enhancement Interpolation Lasers Newton-Raphson method Noise Noise levels Optical Devices Optics Photonics Pixels Proving Random errors Registration Set theory Shape functions Solid Mechanics Vibration |
| Title | Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms |
| URI | https://link.springer.com/article/10.1007/s11340-016-0180-z https://www.proquest.com/docview/1880870609 |
| Volume | 56 |
| WOSCitedRecordID | wos000383599900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1741-2765 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007372 issn: 0014-4851 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8UPejBbyOKpgdPmiUd3dbOG0GIXoxBNNyW7tEiCWxkgB_89bb7ADRqoud1L037-utr3-vvh9C5Icp2OVcWU_q46ugtyeKeIywpKHg6oJDgQyo2we7ueKfj3-fvuMdFtXuRkkyRevHYzaamFNE2J2BOrNkqWtOmuVmNrYenOfwa3ZUMfh1L98MuUpnfmfi8GS0izC9J0XSvaW7_q5c7aCsPLXEt84VdtCKjPbS5RDi4j6bX_Z5RCcG3Q40juG6kObJiOGwuZHEjek4rAnANYJoIeMci6uJGSjNh3mhe4Rquz5ULcaxw-zXGGnxG_Tc5wC3Zm_Pw4tqgFyfa6HB8gB6bjXb9xsqFFyygtjexgHN9SgPmK1rtei71QiYcwruScunakoBLSejaoqoAPC6IpxhRzCc-MBYCC-khKkVxJI8QBuKBCqnQUYRwfAqh4kqjDPg27xINrWVEihkIIGclN-IYg2DBp2xGNDCVaGZEg1kZXcx_GWWUHL81rhTTGuSrcxwYDjqT3yV-GV0W07j0-Sdjx39qfYI2qsYP0sq_CipNkqk8RevwMumPk7PUaT8AeUvnzQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54A_XBuzivefBJKaRL26S-jTlR1CE6xbeSniVzsHWyi7dfb9K1m4oK-tw0hCT9zknPl-8D2LdC2b4Q2uHaHFc9E5IcEXjSUZJhYBIKhSGmZhO8WhX39-FVdo-7l7Pd85JkitTjy24us1RE156ABXXeJmHaMwHL8viub-5G8Gt9V4bw6zlmHG5eyvyui8_BaJxhfimKprHmZPFfo1yChSy1JKXhXliGCZWswPwHwcFVGBw3G9YlhJy1DY6QsrXmGJLhiP0hSyrJQ8oIICXEQVfiK5FJnVRSmQl7R_OIlEh55FxIOprUnjvEgM9j80W1yLVqjHR4SanV6HRNp-3eGtyeVGrlUyczXnCQuUHfQSHMKQ15qFmxHvgsiLn0qKgrJpTvKoo-o7HvyqJGDISkgeZU85CGyHmMPGbrMJV0ErUBBGmAOmbSZBHSCxnGWmiDMhi6ok4NtBaA5isQYaZKbs0xWtFYT9nOaGSZaHZGo7cCHIxeeRxKcvzWeDtf1ij7OnuR1aCz9V0aFuAwX8YPj3_qbPNPrfdg9rR2eRFdnFXPt2CuaPdEygLchql-d6B2YAaf-s1edzfdwO9fP-qx |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VqCo4lD6oSEvpHnoqslhnbe-aWxQSFYEiBBRxs9bj3TRScKI8aMuvZ8ePhFZQCXH2erTaHc_DM_N9AF8JKDtUynrSunQ1cC7JU1GgPaMFRi6gMBhjQTYhez11dRWfVjyn07rbvS5JljMNhNKUz_bHmd1fDr75gtoSfcqGFfduV2AtIM4gStfPLxemmDhYSlMceG5Pfl3WfEjE345pGW3-UyAt_E5389k7fgOvq5CTtUodeQsvTP4ONu4BEb6H-eGgT-wh7Oja2RfWJsqOskmO0Y9a1sl_Fp0CrIU4n2j8w3SesU4BP0GzmwesxdoLRkM2suzi14g5ozQe_DZDdmb6C3xe1hr2RxMn9Hq6BT-6nYv2d68iZPBQ-NHMQ6Vc9oYytqKZRaGIUqkDrjIjlAl9wzEUPA193bSIkdI8spJbGfMYpUxRpuIDrOaj3GwDQx6hTYV20YUOYoGpVdZZH4x9lXFnchvA69tIsEIrJ9KMYbLEWaYTTahDjU40uW3At8Ur4xKq43-Ld-orTqqvdpoQNh3VfXncgL36Su89fkzYxyet_gKvTg-7yclR7_gTrDdJJYrmwB1YnU3m5jO8xJvZYDrZLXT5Dqzv85U |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Digital+Image+Correlation+with+Enhanced+Accuracy+and+Efficiency%3A+A+Comparison+of+Two+Subpixel+Registration+Algorithms&rft.jtitle=Experimental+mechanics&rft.au=Pan%2C+B&rft.au=Wang%2C+B&rft.date=2016-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0014-4851&rft.eissn=1741-2765&rft.volume=56&rft.issue=8&rft.spage=1395&rft.epage=1409&rft_id=info:doi/10.1007%2Fs11340-016-0180-z&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4851&client=summon |