Integrative Analysis of Open Datasets for Stress Prediction
Purpose Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to s...
Saved in:
| Published in: | Journal of medical and biological engineering Vol. 45; no. 3; pp. 385 - 399 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1609-0985, 2199-4757 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Purpose
Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to systematically monitor individuals daily to investigate their physiological reactions to potential stressors. The aim of this study is to investigate the potential of training reliable and accurate ML and DL models for the prediction of acute stress based on available open datasets.
Methods
The open datasets include physiological signals collected using wearable sensors during stress characterization experiments and made available to the public. Various machine and deep learning (ML/DL) models were tested and compared based on their accuracy (ACC). Harmonizing techniques were also included to increase the generalizability of the models and reduce their dependence on sensors and experimental protocols variations.
Results
The models achieved test-set accuracies over 80% for different classification problems, while the combination of the available data led to more accurate models for the binary classification problem (over 90%). Harmonizing differences between participants and datasets led to more generalizable models with encouraging initial results (around 70% accuracy) when evaluated with unseen subjects.
Conclusion
The extracted models can all be used depending on the classification problem and the experimental settings/protocols. All models could play a significant role towards forming and developing a stress prediction ‘service’, taking into account the impact of using different sensors, and, thus, having to proceed to required adjustments. |
|---|---|
| AbstractList | PurposeStress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to systematically monitor individuals daily to investigate their physiological reactions to potential stressors. The aim of this study is to investigate the potential of training reliable and accurate ML and DL models for the prediction of acute stress based on available open datasets.MethodsThe open datasets include physiological signals collected using wearable sensors during stress characterization experiments and made available to the public. Various machine and deep learning (ML/DL) models were tested and compared based on their accuracy (ACC). Harmonizing techniques were also included to increase the generalizability of the models and reduce their dependence on sensors and experimental protocols variations.ResultsThe models achieved test-set accuracies over 80% for different classification problems, while the combination of the available data led to more accurate models for the binary classification problem (over 90%). Harmonizing differences between participants and datasets led to more generalizable models with encouraging initial results (around 70% accuracy) when evaluated with unseen subjects.ConclusionThe extracted models can all be used depending on the classification problem and the experimental settings/protocols. All models could play a significant role towards forming and developing a stress prediction ‘service’, taking into account the impact of using different sensors, and, thus, having to proceed to required adjustments. Purpose Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to systematically monitor individuals daily to investigate their physiological reactions to potential stressors. The aim of this study is to investigate the potential of training reliable and accurate ML and DL models for the prediction of acute stress based on available open datasets. Methods The open datasets include physiological signals collected using wearable sensors during stress characterization experiments and made available to the public. Various machine and deep learning (ML/DL) models were tested and compared based on their accuracy (ACC). Harmonizing techniques were also included to increase the generalizability of the models and reduce their dependence on sensors and experimental protocols variations. Results The models achieved test-set accuracies over 80% for different classification problems, while the combination of the available data led to more accurate models for the binary classification problem (over 90%). Harmonizing differences between participants and datasets led to more generalizable models with encouraging initial results (around 70% accuracy) when evaluated with unseen subjects. Conclusion The extracted models can all be used depending on the classification problem and the experimental settings/protocols. All models could play a significant role towards forming and developing a stress prediction ‘service’, taking into account the impact of using different sensors, and, thus, having to proceed to required adjustments. |
| Author | Fotopoulos, Dimitris Ladakis, Ioannis Chouvarda, Ioanna |
| Author_xml | – sequence: 1 givenname: Ioannis orcidid: 0000-0002-3457-1333 surname: Ladakis fullname: Ladakis, Ioannis email: iladakig@auth.gr organization: Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki – sequence: 2 givenname: Dimitris surname: Fotopoulos fullname: Fotopoulos, Dimitris organization: Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki – sequence: 3 givenname: Ioanna surname: Chouvarda fullname: Chouvarda, Ioanna organization: Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki |
| BookMark | eNp9kE1LAzEQhoNUsNb-AU8LnqOTzTeeSv0qFCqo55DdJmVL3a2ZVGh_vasVvDmXubzPy8xzTgZt1wZCLhlcMwB9gwKMUBRKSQGsNPRwQoYls5YKLfWADJkCS8EaeUbGiGvoh1ulmBmS21mbwyr53HyGYtL6zR4bLLpYLLahLe589hgyFrFLxUtOAbF4TmHZ1Lnp2gtyGv0Gw_h3j8jbw_3r9InOF4-z6WROa85UprWuDK8qJqSBGIAxEbS0AqxWZRV54IzZ6FUZTM25kf0zsOSV4iIaXTG_5CNydezdpu5jFzC7dbdL_a3oeKm0ENqUsk-Vx1SdOsQUotum5t2nvWPgvj25oyfXe3I_ntyhh_gRwj7crkL6q_6H-gK9-2uf |
| Cites_doi | 10.1109/HORA55278.2022.9799933 10.1007/s10439-012-0668-3 10.1109/JBHI.2015.2446195 10.1109/TITS.2005.848368 10.1109/ICABME.2015.7323251 10.1109/IEMBS.2007.4353378 10.3390/app11178275 10.3390/s20164402 10.1016/j.procs.2017.09.090 10.1109/MECO.2016.7525765 10.3390/bios12070465 10.1109/ICREST.2019.8644259 10.1145/3329189.3329233 10.1145/3242969.3242985 10.3390/e25020194 10.1016/j.dr.2006.02.004 10.1161/01.CIR.93.5.1043 10.21227/ybsw-yr53 10.1016/j.bspc.2021.102651 10.3758/s13428-020-01516-y 10.1037/0033-2909.130.4.601 10.1109/SiPS.2016.27 10.1145/3594739.3610734 10.1016/j.bspc.2019.101736 10.3390/s19081849 10.1007/s10865-018-00008-x 10.1145/3167132.3167395 10.18178/ijmlc.2018.8.1.659 10.1145/3173574.3174011 10.3390/s21072381 10.48550/arXiv.2104.13638 10.1016/j.ijchp.2015.08.005 10.1159/000119004 10.1016/j.bspc.2015.02.012 10.1109/EMBC.2016.7591557 10.1145/2663204.2663257 10.3390/data5040091 10.13026/cerq-fc86 10.31887/DCNS.2006.8.4/bmcewen 10.3389/fpubh.2017.00258 10.1101/2020.03.17.995431 10.21227/q4td-yd35 10.1109/ICIRCA48905.2020.9183244 10.1038/s41592-020-0772-5 10.3390/s21082873 10.21227/e1n2-jx32 10.1145/3397482.3450732 10.1038/s41597-022-01361-y 10.1088/1742-6596/1950/1/012047 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION K9. |
| DOI | 10.1007/s40846-025-00958-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) |
| DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2199-4757 |
| EndPage | 399 |
| ExternalDocumentID | 10_1007_s40846_025_00958_z |
| GrantInformation_xml | – fundername: Aristotle University of Thessaloniki |
| GroupedDBID | --- 0R~ 188 203 2UF 4.4 406 53G 8RM 9RA AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AIAKS AIGIU AILAN AINHJ AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATFKH ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA BAWUL BGNMA C6C CEFSP CNMHZ CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HG6 HRMNR IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J P2P PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUXDW UG4 UOJIU UTJUX UZ5 UZXMN VFIZW ZMTXR AAYXX ABRTQ CITATION K9. |
| ID | FETCH-LOGICAL-c316t-c7b83bb14580fe0114e759409762bf3e3119fa62e8c33854080d3b634f87b1ad3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001519239000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1609-0985 |
| IngestDate | Sat Nov 01 14:57:22 EDT 2025 Sat Nov 29 07:50:30 EST 2025 Thu Jul 10 06:04:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Deep learning Stress detection Physiological data Machine learning Biosignals Stress assessment Supervised models Open datasets |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-c7b83bb14580fe0114e759409762bf3e3119fa62e8c33854080d3b634f87b1ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3457-1333 |
| OpenAccessLink | https://link.springer.com/10.1007/s40846-025-00958-z |
| PQID | 3267447825 |
| PQPubID | 2044285 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3267447825 crossref_primary_10_1007_s40846_025_00958_z springer_journals_10_1007_s40846_025_00958_z |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of medical and biological engineering |
| PublicationTitleAbbrev | J. Med. Biol. Eng |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | 958_CR25 958_CR24 958_CR22 J Lee (958_CR55) 2021; 21 958_CR21 958_CR20 958_CR1 S Hosseini (958_CR30) 2022; 9 E Garcia-Ceja (958_CR11) 2015; 20 958_CR29 958_CR28 S Sriramprakash (958_CR26) 2017; 115 P Siirtola (958_CR27) 2020; 20 958_CR16 958_CR15 958_CR14 KM Dalmeida (958_CR23) 2021; 21 958_CR10 958_CR53 G Kumar (958_CR54) 2021 C Kirschbaum (958_CR48) 1993; 28 M Zubair (958_CR38) 2020; 57 958_CR19 958_CR18 958_CR17 B Padmaja (958_CR12) 2018; 8 958_CR52 958_CR51 958_CR50 SC Segerstrom (958_CR2) 2004; 130 958_CR45 958_CR44 R Castaldo (958_CR36) 2015; 18 MJ Zawadzki (958_CR4) 2019; 42 K Liu (958_CR46) 2023; 25 958_CR41 958_CR40 P Schönfeld (958_CR6) 2016; 16 958_CR37 958_CR35 M Joseph (958_CR47) 2021 958_CR34 958_CR33 958_CR31 D Makowski (958_CR49) 2021; 53 A Rossi (958_CR32) 2020; 5 958_CR39 T Force (958_CR43) 1996; 17 958_CR7 958_CR9 JM Yentes (958_CR42) 2013 958_CR8 BJ Ellis (958_CR3) 2006; 26 YS Can (958_CR13) 2019; 19 BS McEwen (958_CR5) 2022 |
| References_xml | – ident: 958_CR9 – ident: 958_CR18 doi: 10.1109/HORA55278.2022.9799933 – year: 2013 ident: 958_CR42 doi: 10.1007/s10439-012-0668-3 – volume: 20 start-page: 1053 issue: 4 year: 2015 ident: 958_CR11 publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2015.2446195 – ident: 958_CR19 doi: 10.1109/TITS.2005.848368 – ident: 958_CR20 doi: 10.1109/ICABME.2015.7323251 – ident: 958_CR45 doi: 10.1109/IEMBS.2007.4353378 – year: 2021 ident: 958_CR54 doi: 10.3390/app11178275 – volume: 20 start-page: 4402 issue: 16 year: 2020 ident: 958_CR27 publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s20164402 – ident: 958_CR10 – volume: 115 start-page: 359 year: 2017 ident: 958_CR26 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2017.09.090 – ident: 958_CR1 – ident: 958_CR52 – ident: 958_CR21 doi: 10.1109/MECO.2016.7525765 – ident: 958_CR8 – ident: 958_CR41 doi: 10.3390/bios12070465 – ident: 958_CR50 – ident: 958_CR22 doi: 10.1109/ICREST.2019.8644259 – ident: 958_CR7 doi: 10.1145/3329189.3329233 – ident: 958_CR14 doi: 10.1145/3242969.3242985 – volume: 25 start-page: 194 issue: 2 year: 2023 ident: 958_CR46 publication-title: Entropy doi: 10.3390/e25020194 – volume: 26 start-page: 175 issue: 2 year: 2006 ident: 958_CR3 publication-title: Developmental Review doi: 10.1016/j.dr.2006.02.004 – volume: 17 start-page: 354 year: 1996 ident: 958_CR43 publication-title: Eur Hear J doi: 10.1161/01.CIR.93.5.1043 – ident: 958_CR33 doi: 10.21227/ybsw-yr53 – ident: 958_CR44 doi: 10.1016/j.bspc.2021.102651 – volume: 53 start-page: 1689 issue: 4 year: 2021 ident: 958_CR49 publication-title: Behavior Research Methods doi: 10.3758/s13428-020-01516-y – volume: 130 start-page: 601 issue: 4 year: 2004 ident: 958_CR2 publication-title: Psychological Bulletin doi: 10.1037/0033-2909.130.4.601 – ident: 958_CR24 doi: 10.1109/SiPS.2016.27 – ident: 958_CR29 doi: 10.1145/3594739.3610734 – volume: 57 start-page: 101736 year: 2020 ident: 958_CR38 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2019.101736 – volume: 19 start-page: 1849 issue: 8 year: 2019 ident: 958_CR13 publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s19081849 – volume: 42 start-page: 545 issue: 3 year: 2019 ident: 958_CR4 publication-title: Journal of Behavioral Medicine doi: 10.1007/s10865-018-00008-x – ident: 958_CR28 doi: 10.1145/3167132.3167395 – volume: 8 start-page: 33 issue: 1 year: 2018 ident: 958_CR12 publication-title: International Journal of Machine Learning and Computing doi: 10.18178/ijmlc.2018.8.1.659 – ident: 958_CR39 doi: 10.1145/3173574.3174011 – volume: 21 start-page: 2381 issue: 7 year: 2021 ident: 958_CR55 publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s21072381 – year: 2021 ident: 958_CR47 publication-title: ArXiv Preprint arXiv:2104 13638 doi: 10.48550/arXiv.2104.13638 – volume: 16 start-page: 1 issue: 1 year: 2016 ident: 958_CR6 publication-title: International Journal of Clinical and Health Psychology doi: 10.1016/j.ijchp.2015.08.005 – volume: 28 start-page: 76 issue: 1–2 year: 1993 ident: 958_CR48 publication-title: Neuropsychobiology doi: 10.1159/000119004 – volume: 18 start-page: 370 year: 2015 ident: 958_CR36 publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2015.02.012 – ident: 958_CR40 doi: 10.1109/EMBC.2016.7591557 – ident: 958_CR25 doi: 10.1145/2663204.2663257 – volume: 5 start-page: 91 issue: 4 year: 2020 ident: 958_CR32 publication-title: Data doi: 10.3390/data5040091 – ident: 958_CR31 doi: 10.13026/cerq-fc86 – year: 2022 ident: 958_CR5 publication-title: Dialogues in Clinical Neuroscience doi: 10.31887/DCNS.2006.8.4/bmcewen – ident: 958_CR37 doi: 10.3389/fpubh.2017.00258 – ident: 958_CR51 doi: 10.1101/2020.03.17.995431 – ident: 958_CR35 doi: 10.21227/q4td-yd35 – ident: 958_CR15 doi: 10.1109/ICIRCA48905.2020.9183244 – ident: 958_CR53 doi: 10.1038/s41592-020-0772-5 – volume: 21 start-page: 2873 issue: 8 year: 2021 ident: 958_CR23 publication-title: Sensors (Basel, Switzerland) doi: 10.3390/s21082873 – ident: 958_CR34 doi: 10.21227/e1n2-jx32 – ident: 958_CR17 doi: 10.1145/3397482.3450732 – volume: 9 start-page: 255 issue: 1 year: 2022 ident: 958_CR30 publication-title: Scientific Data doi: 10.1038/s41597-022-01361-y – ident: 958_CR16 doi: 10.1088/1742-6596/1950/1/012047 |
| SSID | ssj0000396618 |
| Score | 2.3402047 |
| Snippet | Purpose
Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent... PurposeStress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 385 |
| SubjectTerms | Accuracy Biological Techniques Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biomedicine Classification Data collection Datasets Deep learning Electrocardiography Electromyography Feature selection Heart rate Machine learning Open data Original Article Physiology Predictions Quality of life Regenerative Medicine/Tissue Engineering Sensors Signal processing Stress Support vector machines Wearable computers |
| Title | Integrative Analysis of Open Datasets for Stress Prediction |
| URI | https://link.springer.com/article/10.1007/s40846-025-00958-z https://www.proquest.com/docview/3267447825 |
| Volume | 45 |
| WOSCitedRecordID | wos001519239000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 2199-4757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000396618 issn: 1609-0985 databaseCode: RSV dateStart: 20150201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEB20etCD32K1Sg7eNLDZZDcJnkQtClKKVelt2WQT8NJKd_XQX2-S7rYqetBzQggvH_Myk3kDcKpjrTllBRY2iTCTivkzR7AsosJSZqTRoWrJPe_1xHAo-3VSWNn8dm9CkuGmnie7scjZSuzLr3peIPB0GVacuRO-YMPD4HnuWYmoo_DBsUdS7_mXIqmzZX4e5qtFWtDMb5HRYHC6m_-b6hZs1AQTXc52xDYsmdEOrH-SHdyFi7taI8LddKhRJUFji_zvEnSdV86yVSVydBYNQioJ6k98PMev4R48dW8er25xXUQBa0rSCmuuBFWKsERE1vjnj-GJ9CpXaaysd4ESafM0NkK716rjbyIqqEops4Irkhd0H1qj8cgcAGIqIanmUsmCME5pbry8nmJxbI3mNm_DWQNk9jrTysjmqsgBksxBkgVIsmkbOg3WWX1uysyRSc6YYy1JG84bbBfNv492-LfuR7AWh-Xx7pQOtKrJmzmGVf1evZSTk7CfPgBI3cQD |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BQQIGvhGFAh7YIFISO7EtJgRUrShVRQvqFsWOLbG0qAkM_fXYbtICggFmW5b1_HHPd753AOcylJJiknlMR75HuCD2zAUez_xMY6K4kq5qSYd2u2w45L0yKSyvfrtXIUl3U8-T3YhvbKVny69aXsC86TKsEGOxrGL-Y_957lnxsaHwzrEXxNbzz1lUZsv8PMxXi7Sgmd8io87gNLf-N9Vt2CwJJrqe7YgdWFKjXdj4JDu4B1ftUiPC3HSoUiVBY43s7xJ0mxbGshU5MnQW9V0qCepNbDzHruE-PDXvBjctryyi4EkcxIUnqWBYiIBEzNfKPn8UjbhVuYpDoa0LNOA6jUPFpHmtGv7G_AyLGBPNqAjSDB9AbTQeqUNARERBLCkXPAsIxThVVl5PkDDUSlKd1uGiAjJ5nWllJHNVZAdJYiBJHCTJtA6NCuukPDd5YsgkJcSwlqgOlxW2i-bfRzv6W_czWGsNHjpJp929P4b10C2Vda00oFZM3tQJrMr34iWfnLq99QGDXcbn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH7oFNGDv8Xp1By8abFt0ibBkziHwzEGU9mtNGkCXrqxVQ_7602ydpuiB_HcEsqXpO97v74HcClDKSkmmcd05HuEC2LvXODxzM80Joor6aaWdGi3ywYD3lvq4nfV7lVKctbTYFWa8uJmlOmbeeMb8Y3d9OwoVssRmDddhTViC-mtv95_nUdZfGzovAvyBbHNAnAWlZ0zPy_z1TotKOe3LKkzPq2d_3_2LmyXxBPdzU7KHqyofB-2luQID-C2XWpHmD8gqtRK0FAjW3WCmmlhLF4xQYbmor5rMUG9sc3z2L09hJfWw_P9o1cOV_AkDuLCk1QwLERAIuZrZd0iRSNu1a_iUGgbGg24TuNQMWm8WMPrmJ9hEWOiGRVBmuEjqOXDXB0DIiIKYkm54FlAKMapsrJ7goShVpLqtA5XFajJaKahkczVkh0kiYEkcZAk0zo0KtyT8j5NEkMyKSGGzUR1uK5wXjz-fbWTv71-ARu9ZivptLtPp7AZup2yEZcG1IrxuzqDdflRvE3G5-6YfQJT7s_L |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Analysis+of+Open+Datasets+for+Stress+Prediction&rft.jtitle=Journal+of+medical+and+biological+engineering&rft.au=Ladakis%2C+Ioannis&rft.au=Fotopoulos%2C+Dimitris&rft.au=Chouvarda%2C+Ioanna&rft.date=2025-06-01&rft.issn=1609-0985&rft.eissn=2199-4757&rft_id=info:doi/10.1007%2Fs40846-025-00958-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40846_025_00958_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-0985&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-0985&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-0985&client=summon |