Integrative Analysis of Open Datasets for Stress Prediction

Purpose Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of medical and biological engineering Ročník 45; číslo 3; s. 385 - 399
Hlavní autoři: Ladakis, Ioannis, Fotopoulos, Dimitris, Chouvarda, Ioanna
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2025
Springer Nature B.V
Témata:
ISSN:1609-0985, 2199-4757
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Purpose Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to systematically monitor individuals daily to investigate their physiological reactions to potential stressors. The aim of this study is to investigate the potential of training reliable and accurate ML and DL models for the prediction of acute stress based on available open datasets. Methods The open datasets include physiological signals collected using wearable sensors during stress characterization experiments and made available to the public. Various machine and deep learning (ML/DL) models were tested and compared based on their accuracy (ACC). Harmonizing techniques were also included to increase the generalizability of the models and reduce their dependence on sensors and experimental protocols variations. Results The models achieved test-set accuracies over 80% for different classification problems, while the combination of the available data led to more accurate models for the binary classification problem (over 90%). Harmonizing differences between participants and datasets led to more generalizable models with encouraging initial results (around 70% accuracy) when evaluated with unseen subjects. Conclusion The extracted models can all be used depending on the classification problem and the experimental settings/protocols. All models could play a significant role towards forming and developing a stress prediction ‘service’, taking into account the impact of using different sensors, and, thus, having to proceed to required adjustments.
AbstractList PurposeStress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to systematically monitor individuals daily to investigate their physiological reactions to potential stressors. The aim of this study is to investigate the potential of training reliable and accurate ML and DL models for the prediction of acute stress based on available open datasets.MethodsThe open datasets include physiological signals collected using wearable sensors during stress characterization experiments and made available to the public. Various machine and deep learning (ML/DL) models were tested and compared based on their accuracy (ACC). Harmonizing techniques were also included to increase the generalizability of the models and reduce their dependence on sensors and experimental protocols variations.ResultsThe models achieved test-set accuracies over 80% for different classification problems, while the combination of the available data led to more accurate models for the binary classification problem (over 90%). Harmonizing differences between participants and datasets led to more generalizable models with encouraging initial results (around 70% accuracy) when evaluated with unseen subjects.ConclusionThe extracted models can all be used depending on the classification problem and the experimental settings/protocols. All models could play a significant role towards forming and developing a stress prediction ‘service’, taking into account the impact of using different sensors, and, thus, having to proceed to required adjustments.
Purpose Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent stress affects psychological and physiological functionality, potentially reducing the quality of life. Therefore, it is of great interest to systematically monitor individuals daily to investigate their physiological reactions to potential stressors. The aim of this study is to investigate the potential of training reliable and accurate ML and DL models for the prediction of acute stress based on available open datasets. Methods The open datasets include physiological signals collected using wearable sensors during stress characterization experiments and made available to the public. Various machine and deep learning (ML/DL) models were tested and compared based on their accuracy (ACC). Harmonizing techniques were also included to increase the generalizability of the models and reduce their dependence on sensors and experimental protocols variations. Results The models achieved test-set accuracies over 80% for different classification problems, while the combination of the available data led to more accurate models for the binary classification problem (over 90%). Harmonizing differences between participants and datasets led to more generalizable models with encouraging initial results (around 70% accuracy) when evaluated with unseen subjects. Conclusion The extracted models can all be used depending on the classification problem and the experimental settings/protocols. All models could play a significant role towards forming and developing a stress prediction ‘service’, taking into account the impact of using different sensors, and, thus, having to proceed to required adjustments.
Author Fotopoulos, Dimitris
Ladakis, Ioannis
Chouvarda, Ioanna
Author_xml – sequence: 1
  givenname: Ioannis
  orcidid: 0000-0002-3457-1333
  surname: Ladakis
  fullname: Ladakis, Ioannis
  email: iladakig@auth.gr
  organization: Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki
– sequence: 2
  givenname: Dimitris
  surname: Fotopoulos
  fullname: Fotopoulos, Dimitris
  organization: Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki
– sequence: 3
  givenname: Ioanna
  surname: Chouvarda
  fullname: Chouvarda, Ioanna
  organization: Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki
BookMark eNp9kE1LAzEQhoNUsNb-AU8LnqOTzTeeSv0qFCqo55DdJmVL3a2ZVGh_vasVvDmXubzPy8xzTgZt1wZCLhlcMwB9gwKMUBRKSQGsNPRwQoYls5YKLfWADJkCS8EaeUbGiGvoh1ulmBmS21mbwyr53HyGYtL6zR4bLLpYLLahLe589hgyFrFLxUtOAbF4TmHZ1Lnp2gtyGv0Gw_h3j8jbw_3r9InOF4-z6WROa85UprWuDK8qJqSBGIAxEbS0AqxWZRV54IzZ6FUZTM25kf0zsOSV4iIaXTG_5CNydezdpu5jFzC7dbdL_a3oeKm0ENqUsk-Vx1SdOsQUotum5t2nvWPgvj25oyfXe3I_ntyhh_gRwj7crkL6q_6H-gK9-2uf
Cites_doi 10.1109/HORA55278.2022.9799933
10.1007/s10439-012-0668-3
10.1109/JBHI.2015.2446195
10.1109/TITS.2005.848368
10.1109/ICABME.2015.7323251
10.1109/IEMBS.2007.4353378
10.3390/app11178275
10.3390/s20164402
10.1016/j.procs.2017.09.090
10.1109/MECO.2016.7525765
10.3390/bios12070465
10.1109/ICREST.2019.8644259
10.1145/3329189.3329233
10.1145/3242969.3242985
10.3390/e25020194
10.1016/j.dr.2006.02.004
10.1161/01.CIR.93.5.1043
10.21227/ybsw-yr53
10.1016/j.bspc.2021.102651
10.3758/s13428-020-01516-y
10.1037/0033-2909.130.4.601
10.1109/SiPS.2016.27
10.1145/3594739.3610734
10.1016/j.bspc.2019.101736
10.3390/s19081849
10.1007/s10865-018-00008-x
10.1145/3167132.3167395
10.18178/ijmlc.2018.8.1.659
10.1145/3173574.3174011
10.3390/s21072381
10.48550/arXiv.2104.13638
10.1016/j.ijchp.2015.08.005
10.1159/000119004
10.1016/j.bspc.2015.02.012
10.1109/EMBC.2016.7591557
10.1145/2663204.2663257
10.3390/data5040091
10.13026/cerq-fc86
10.31887/DCNS.2006.8.4/bmcewen
10.3389/fpubh.2017.00258
10.1101/2020.03.17.995431
10.21227/q4td-yd35
10.1109/ICIRCA48905.2020.9183244
10.1038/s41592-020-0772-5
10.3390/s21082873
10.21227/e1n2-jx32
10.1145/3397482.3450732
10.1038/s41597-022-01361-y
10.1088/1742-6596/1950/1/012047
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
K9.
DOI 10.1007/s40846-025-00958-z
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2199-4757
EndPage 399
ExternalDocumentID 10_1007_s40846_025_00958_z
GrantInformation_xml – fundername: Aristotle University of Thessaloniki
GroupedDBID ---
0R~
188
203
2UF
4.4
406
53G
8RM
9RA
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AIAKS
AIGIU
AILAN
AINHJ
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATFKH
ATHPR
AUKKA
AVWKF
AVXWI
AXYYD
AYFIA
BAWUL
BGNMA
C6C
CEFSP
CNMHZ
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HG6
HRMNR
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
P2P
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUXDW
UG4
UOJIU
UTJUX
UZ5
UZXMN
VFIZW
ZMTXR
AAYXX
ABRTQ
CITATION
K9.
ID FETCH-LOGICAL-c316t-c7b83bb14580fe0114e759409762bf3e3119fa62e8c33854080d3b634f87b1ad3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001519239000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1609-0985
IngestDate Sat Nov 01 14:57:22 EDT 2025
Sat Nov 29 07:50:30 EST 2025
Thu Jul 10 06:04:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Deep learning
Stress detection
Physiological data
Machine learning
Biosignals
Stress assessment
Supervised models
Open datasets
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-c7b83bb14580fe0114e759409762bf3e3119fa62e8c33854080d3b634f87b1ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3457-1333
OpenAccessLink https://link.springer.com/10.1007/s40846-025-00958-z
PQID 3267447825
PQPubID 2044285
PageCount 15
ParticipantIDs proquest_journals_3267447825
crossref_primary_10_1007_s40846_025_00958_z
springer_journals_10_1007_s40846_025_00958_z
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of medical and biological engineering
PublicationTitleAbbrev J. Med. Biol. Eng
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References 958_CR25
958_CR24
958_CR22
J Lee (958_CR55) 2021; 21
958_CR21
958_CR20
958_CR1
S Hosseini (958_CR30) 2022; 9
E Garcia-Ceja (958_CR11) 2015; 20
958_CR29
958_CR28
S Sriramprakash (958_CR26) 2017; 115
P Siirtola (958_CR27) 2020; 20
958_CR16
958_CR15
958_CR14
KM Dalmeida (958_CR23) 2021; 21
958_CR10
958_CR53
G Kumar (958_CR54) 2021
C Kirschbaum (958_CR48) 1993; 28
M Zubair (958_CR38) 2020; 57
958_CR19
958_CR18
958_CR17
B Padmaja (958_CR12) 2018; 8
958_CR52
958_CR51
958_CR50
SC Segerstrom (958_CR2) 2004; 130
958_CR45
958_CR44
R Castaldo (958_CR36) 2015; 18
MJ Zawadzki (958_CR4) 2019; 42
K Liu (958_CR46) 2023; 25
958_CR41
958_CR40
P Schönfeld (958_CR6) 2016; 16
958_CR37
958_CR35
M Joseph (958_CR47) 2021
958_CR34
958_CR33
958_CR31
D Makowski (958_CR49) 2021; 53
A Rossi (958_CR32) 2020; 5
958_CR39
T Force (958_CR43) 1996; 17
958_CR7
958_CR9
JM Yentes (958_CR42) 2013
958_CR8
BJ Ellis (958_CR3) 2006; 26
YS Can (958_CR13) 2019; 19
BS McEwen (958_CR5) 2022
References_xml – ident: 958_CR9
– ident: 958_CR18
  doi: 10.1109/HORA55278.2022.9799933
– year: 2013
  ident: 958_CR42
  doi: 10.1007/s10439-012-0668-3
– volume: 20
  start-page: 1053
  issue: 4
  year: 2015
  ident: 958_CR11
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2015.2446195
– ident: 958_CR19
  doi: 10.1109/TITS.2005.848368
– ident: 958_CR20
  doi: 10.1109/ICABME.2015.7323251
– ident: 958_CR45
  doi: 10.1109/IEMBS.2007.4353378
– year: 2021
  ident: 958_CR54
  doi: 10.3390/app11178275
– volume: 20
  start-page: 4402
  issue: 16
  year: 2020
  ident: 958_CR27
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s20164402
– ident: 958_CR10
– volume: 115
  start-page: 359
  year: 2017
  ident: 958_CR26
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.09.090
– ident: 958_CR1
– ident: 958_CR52
– ident: 958_CR21
  doi: 10.1109/MECO.2016.7525765
– ident: 958_CR8
– ident: 958_CR41
  doi: 10.3390/bios12070465
– ident: 958_CR50
– ident: 958_CR22
  doi: 10.1109/ICREST.2019.8644259
– ident: 958_CR7
  doi: 10.1145/3329189.3329233
– ident: 958_CR14
  doi: 10.1145/3242969.3242985
– volume: 25
  start-page: 194
  issue: 2
  year: 2023
  ident: 958_CR46
  publication-title: Entropy
  doi: 10.3390/e25020194
– volume: 26
  start-page: 175
  issue: 2
  year: 2006
  ident: 958_CR3
  publication-title: Developmental Review
  doi: 10.1016/j.dr.2006.02.004
– volume: 17
  start-page: 354
  year: 1996
  ident: 958_CR43
  publication-title: Eur Hear J
  doi: 10.1161/01.CIR.93.5.1043
– ident: 958_CR33
  doi: 10.21227/ybsw-yr53
– ident: 958_CR44
  doi: 10.1016/j.bspc.2021.102651
– volume: 53
  start-page: 1689
  issue: 4
  year: 2021
  ident: 958_CR49
  publication-title: Behavior Research Methods
  doi: 10.3758/s13428-020-01516-y
– volume: 130
  start-page: 601
  issue: 4
  year: 2004
  ident: 958_CR2
  publication-title: Psychological Bulletin
  doi: 10.1037/0033-2909.130.4.601
– ident: 958_CR24
  doi: 10.1109/SiPS.2016.27
– ident: 958_CR29
  doi: 10.1145/3594739.3610734
– volume: 57
  start-page: 101736
  year: 2020
  ident: 958_CR38
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2019.101736
– volume: 19
  start-page: 1849
  issue: 8
  year: 2019
  ident: 958_CR13
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s19081849
– volume: 42
  start-page: 545
  issue: 3
  year: 2019
  ident: 958_CR4
  publication-title: Journal of Behavioral Medicine
  doi: 10.1007/s10865-018-00008-x
– ident: 958_CR28
  doi: 10.1145/3167132.3167395
– volume: 8
  start-page: 33
  issue: 1
  year: 2018
  ident: 958_CR12
  publication-title: International Journal of Machine Learning and Computing
  doi: 10.18178/ijmlc.2018.8.1.659
– ident: 958_CR39
  doi: 10.1145/3173574.3174011
– volume: 21
  start-page: 2381
  issue: 7
  year: 2021
  ident: 958_CR55
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s21072381
– year: 2021
  ident: 958_CR47
  publication-title: ArXiv Preprint arXiv:2104 13638
  doi: 10.48550/arXiv.2104.13638
– volume: 16
  start-page: 1
  issue: 1
  year: 2016
  ident: 958_CR6
  publication-title: International Journal of Clinical and Health Psychology
  doi: 10.1016/j.ijchp.2015.08.005
– volume: 28
  start-page: 76
  issue: 1–2
  year: 1993
  ident: 958_CR48
  publication-title: Neuropsychobiology
  doi: 10.1159/000119004
– volume: 18
  start-page: 370
  year: 2015
  ident: 958_CR36
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2015.02.012
– ident: 958_CR40
  doi: 10.1109/EMBC.2016.7591557
– ident: 958_CR25
  doi: 10.1145/2663204.2663257
– volume: 5
  start-page: 91
  issue: 4
  year: 2020
  ident: 958_CR32
  publication-title: Data
  doi: 10.3390/data5040091
– ident: 958_CR31
  doi: 10.13026/cerq-fc86
– year: 2022
  ident: 958_CR5
  publication-title: Dialogues in Clinical Neuroscience
  doi: 10.31887/DCNS.2006.8.4/bmcewen
– ident: 958_CR37
  doi: 10.3389/fpubh.2017.00258
– ident: 958_CR51
  doi: 10.1101/2020.03.17.995431
– ident: 958_CR35
  doi: 10.21227/q4td-yd35
– ident: 958_CR15
  doi: 10.1109/ICIRCA48905.2020.9183244
– ident: 958_CR53
  doi: 10.1038/s41592-020-0772-5
– volume: 21
  start-page: 2873
  issue: 8
  year: 2021
  ident: 958_CR23
  publication-title: Sensors (Basel, Switzerland)
  doi: 10.3390/s21082873
– ident: 958_CR34
  doi: 10.21227/e1n2-jx32
– ident: 958_CR17
  doi: 10.1145/3397482.3450732
– volume: 9
  start-page: 255
  issue: 1
  year: 2022
  ident: 958_CR30
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01361-y
– ident: 958_CR16
  doi: 10.1088/1742-6596/1950/1/012047
SSID ssj0000396618
Score 2.3402047
Snippet Purpose Stress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent...
PurposeStress is the physiological or psychological response to internal or external stressors. By causing physiological and behavioral changes, persistent...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 385
SubjectTerms Accuracy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biomedicine
Classification
Data collection
Datasets
Deep learning
Electrocardiography
Electromyography
Feature selection
Heart rate
Machine learning
Open data
Original Article
Physiology
Predictions
Quality of life
Regenerative Medicine/Tissue Engineering
Sensors
Signal processing
Stress
Support vector machines
Wearable computers
Title Integrative Analysis of Open Datasets for Stress Prediction
URI https://link.springer.com/article/10.1007/s40846-025-00958-z
https://www.proquest.com/docview/3267447825
Volume 45
WOSCitedRecordID wos001519239000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 2199-4757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000396618
  issn: 1609-0985
  databaseCode: RSV
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BYYCBN6K85IENLMW149hiQkAFS1VRQN2iOLEllhY1gaG_nrObtIBggC1SolN0Pt_3-c53B3BWOKZ0hMYbO2eoYIJRLQtHhdEW8cEkGTNh2ETS66nhUPfrorCyue3epCSDp54Xu4kIsZL68aueFyg6XYYVhDvlBzY8DJ7nkZWII4UPgT0mfeRfq7iulvlZzFdEWtDMb5nRADjdzf_96hZs1ASTXM0sYhuW7GgH1j-1HdyFy_u6RwR6OtJ0JSFjR_ztEnKTVYhsVUmQzpJBKCUh_YnP5_g13IOn7u3j9R2thyjQnDNZ0TwxihvDRKwiZ_3xxyax9l2uZMc4HwJl2mWyY1WOp1XkbyoquJFcOJUYlhV8H1qj8cgeACm0EbGOo1xmGh8kukalUIRVkWWF5m04bxSZvs56ZaTzrshBJSmqJA0qSadtOG50ndb7pkyRTCZCIGuJ23DR6Hbx-ndph3_7_AjWOmF5fDjlGFrV5M2ewGr-Xr2Uk9NgTx9fAsQW
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDLVgIAEHvhGDATlwg0jNmqaJOCFg2sSYJjbQblHTJhKXDW2Fw349SdZugOAAt0qtrMpx7Bc7fgY4zwzhIrDGGxmjMCWUYMEyg6kS2sYHFSdE-WETcafDBwPRLZrCJuVt97Ik6T31vNmNBjZWYjd-1eECjqfLsEJtxHKM-Y-953lmJQgthPeJPcJc5l_wqOiW-VnM14i0gJnfKqM-4DS2_ver27BZAEx0PbOIHVjSw13Y-EQ7uAdXrYIjwno6VLKSoJFB7nYJuk1yG9nyCbJwFvV8Kwnqjl09x63hPjw17vo3TVwMUcBpSFiO01jxUClCIx4Y7Y4_Oo6EY7lidWVcCpQIk7C65qk9rVr8xoMsVCykhseKJFl4AJXhaKgPAWVC0UhEQcoSYR-YdY2cWxGaB5pkIqzCRalI-TrjypBzVmSvEmlVIr1K5LQKtVLXstg3E2nBZEypRS1RFS5L3S5e_y7t6G-fn8Fas__Qlu1W5_4Y1ut-qVxqpQaVfPymT2A1fc9fJuNTb1sfmmbG-g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_oFNGD3-J0ag7eNKxZ0zTBkziHQxmDqewWmjYBL9vYqof99SZZu03Rg3grtDzKy0ve7339AnCZGcJFYI03MkZhSijBgmUGUyW09Q8qTojyl03EnQ7v90V3aYrfd7uXJcnZTINjaRrk9VFm6vPBNxpYv4ndVawOI3A8XYU16hrpXbzee51nWYLQwnmf5CPMVQEEj4rJmZ_FfPVOC8j5rUrqnU9r5_-_vQvbBfBEtzNL2YMVPdiHrSU6wgO4aRfcEfYERCVbCRoa5LpOUDPJrcfLJ8jCXNTzIyaoO3Z1Hre2h_DSun--e8DF5Qo4DQnLcRorHipFaMQDo11YpONIOPYr1lDGpUaJMAlraJ7aKNbiOh5koWIhNTxWJMnCI6gMhgN9DCgTikYiClKWCPvA7JHJuRWheaBJJsIqXJVKlaMZh4acsyV7lUirEulVIqdVqJV6l8V-mkgLMmNKLZqJqnBd6nnx-ndpJ3_7_AI2us2WfGp3Hk9hs-FXymVcalDJx-_6DNbTj_xtMj73ZvYJavzP3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrative+Analysis+of+Open+Datasets+for+Stress+Prediction&rft.jtitle=Journal+of+medical+and+biological+engineering&rft.au=Ladakis%2C+Ioannis&rft.au=Fotopoulos%2C+Dimitris&rft.au=Chouvarda%2C+Ioanna&rft.date=2025-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1609-0985&rft.eissn=2199-4757&rft.volume=45&rft.issue=3&rft.spage=385&rft.epage=399&rft_id=info:doi/10.1007%2Fs40846-025-00958-z&rft.externalDocID=10_1007_s40846_025_00958_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-0985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-0985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-0985&client=summon