Domain Decomposition Spectral Method for Mixed Inhomogeneous Boundary Value Problems of High Order Differential Equations on Unbounded Domains
In this paper, we develop domain decomposition spectral method for mixed inhomogeneous boundary value problems of high order differential equations defined on unbounded domains. We introduce an orthogonal family of new generalized Laguerre functions, with the weight function x α , α being any real n...
Saved in:
| Published in: | Journal of scientific computing Vol. 53; no. 2; pp. 451 - 480 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Boston
Springer US
01.11.2012
Springer Nature B.V |
| Subjects: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we develop domain decomposition spectral method for mixed inhomogeneous boundary value problems of high order differential equations defined on unbounded domains. We introduce an orthogonal family of new generalized Laguerre functions, with the weight function
x
α
,
α
being any real number. The corresponding quasi-orthogonal approximation and Gauss-Radau type interpolation are investigated, which play important roles in the related spectral and collocation methods. As examples of applications, we propose the domain decomposition spectral methods for two fourth order problems, and the spectral method with essential imposition of boundary conditions. The spectral accuracy is proved. Numerical results demonstrate the effectiveness of suggested algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-012-9581-z |