Interval-Valued Programming Problem with Infinite Constraints
In this paper, we explore a class of interval-valued programming problem where constraints are interval-valued and infinite. Necessary optimality conditions are derived. Notion of generalized ( Φ , ρ ) - invexity is utilized to establish sufficient optimality conditions. Further, two duals, namely W...
Uloženo v:
| Vydáno v: | Journal of the Operations Research Society of China (Internet) Ročník 6; číslo 4; s. 611 - 626 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Beijing
Operations Research Society of China
01.12.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 2194-668X, 2194-6698 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we explore a class of interval-valued programming problem where constraints are interval-valued and infinite. Necessary optimality conditions are derived. Notion of generalized
(
Φ
,
ρ
)
-
invexity is utilized to establish sufficient optimality conditions. Further, two duals, namely Wolfe and Mond–Weir, are proposed for which duality results are proved. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2194-668X 2194-6698 |
| DOI: | 10.1007/s40305-018-0206-6 |