Distributed Coordination for Nonsmooth Convex Optimization via Saddle-Point Dynamics

This paper considers continuous-time coordination algorithms for networks of agents that seek to collectively solve a general class of nonsmooth convex optimization problems with an inherent distributed structure. Our algorithm design builds on the characterization of the solutions of the nonsmooth...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of nonlinear science Ročník 29; číslo 4; s. 1247 - 1272
Hlavní autoři: Cortés, Jorge, Niederländer, Simon K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 15.08.2019
Springer Nature B.V
Témata:
ISSN:0938-8974, 1432-1467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper considers continuous-time coordination algorithms for networks of agents that seek to collectively solve a general class of nonsmooth convex optimization problems with an inherent distributed structure. Our algorithm design builds on the characterization of the solutions of the nonsmooth convex program as saddle points of an augmented Lagrangian. We show that the associated saddle-point dynamics are asymptotically correct but, in general, not distributed because of the presence of a global penalty parameter. This motivates the design of a discontinuous saddle-point-like algorithm that enjoys the same convergence properties and is fully amenable to distributed implementation. Our convergence proofs rely on the identification of a novel global Lyapunov function for saddle-point dynamics. This novelty also allows us to identify mild convexity and regularity conditions on the objective function that guarantee the exponential convergence rate of the proposed algorithms for convex optimization problems subject to equality constraints. Various examples illustrate our discussion.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-018-9516-4