Bourgain Algebras of Douglas Algebras

Let A be a Banach algebra and let B be a linear subspace of A. Recall that A has the Dunford Pettis property if whenever ƒn→ 0 weakly in A* and φn → 0 weakly in A* then φn(ƒn) → 0. Bourgain showed that H∞ has the Dunford Pettis property using the theory of ultraproducts. The Dunford Pettis property...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Canadian journal of mathematics Ročník 44; číslo 4; s. 797 - 804
Hlavní autori: Gorkin, Pamela, Izuchi, Keiji, Mortini, Raymond
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 01.08.1992
Predmet:
ISSN:0008-414X, 1496-4279
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Let A be a Banach algebra and let B be a linear subspace of A. Recall that A has the Dunford Pettis property if whenever ƒn→ 0 weakly in A* and φn → 0 weakly in A* then φn(ƒn) → 0. Bourgain showed that H∞ has the Dunford Pettis property using the theory of ultraproducts. The Dunford Pettis property is related to the notion of Bourgain algebra, denoted Bb, introduced by [6] Cima and Timoney. The algebra Bb is the set of ƒ in A such that if ƒn → 0 weakly in B then dist(ƒƒn, B) —> 0. Bourgain showed [2] that a closed subspace X of C(L)y where L is a compact Hausdorff space, has the Dunford Pettis property if Xb — C(L). Cima and Timoney proved that Bb is a closed subalgebra of A and that if B is an algebra then B⊂Bb. In this paper we study the Bourgain algebra associated with various algebras of functions on the unit circle T.
AbstractList Let A be a Banach algebra and let B be a linear subspace of A. Recall that A has the Dunford Pettis property if whenever ƒ n → 0 weakly in A* and φn → 0 weakly in A* then φn(ƒ n ) → 0. Bourgain showed that H ∞ has the Dunford Pettis property using the theory of ultraproducts. The Dunford Pettis property is related to the notion of Bourgain algebra, denoted B b , introduced by [6] Cima and Timoney. The algebra B b is the set of ƒ in A such that if ƒ n → 0 weakly in B then dist(ƒƒ n , B ) —> 0. Bourgain showed [2] that a closed subspace X of C(L)y where L is a compact Hausdorff space, has the Dunford Pettis property if X b — C(L). Cima and Timoney proved that Bb is a closed subalgebra of A and that if B is an algebra then B ⊂ B b . In this paper we study the Bourgain algebra associated with various algebras of functions on the unit circle T.
Let A be a Banach algebra and let B be a linear subspace of A. Recall that A has the Dunford Pettis property if whenever ƒn→ 0 weakly in A* and φn → 0 weakly in A* then φn(ƒn) → 0. Bourgain showed that H∞ has the Dunford Pettis property using the theory of ultraproducts. The Dunford Pettis property is related to the notion of Bourgain algebra, denoted Bb, introduced by [6] Cima and Timoney. The algebra Bb is the set of ƒ in A such that if ƒn → 0 weakly in B then dist(ƒƒn, B) —> 0. Bourgain showed [2] that a closed subspace X of C(L)y where L is a compact Hausdorff space, has the Dunford Pettis property if Xb — C(L). Cima and Timoney proved that Bb is a closed subalgebra of A and that if B is an algebra then B⊂Bb. In this paper we study the Bourgain algebra associated with various algebras of functions on the unit circle T.
Author Gorkin, Pamela
Izuchi, Keiji
Mortini, Raymond
Author_xml – sequence: 1
  givenname: Pamela
  surname: Gorkin
  fullname: Gorkin, Pamela
  organization: Bucknell University, Lewisburg, Pennsylvania 17837, U.S.A
– sequence: 2
  givenname: Keiji
  surname: Izuchi
  fullname: Izuchi, Keiji
  organization: Kanagawa University, Rokkakubashi, Kanagawa, Yokohama 221, Japan
– sequence: 3
  givenname: Raymond
  surname: Mortini
  fullname: Mortini, Raymond
  organization: Mathematisches Institut I, Universität Karlsruhe, Englerstrasse 2, D-7500 Karlsruhe, Germany
BookMark eNp1kD1PwzAQhi1UJNLCypyF0eX8GWcsgfKhIhaQ2CzbcSJXaYKcdODf44qyIHW6e096Xum5OZr1Q-8Ruiaw5ESw2-rlFZOypBh4geUZyggvJea0KGcoAwCFOeGfF2g-jtsUmRQkQzd3wz62JvT5qmu9jWbMhya_H_Ztl9a_2yU6b0w3-qvjXKCP9cN79YQ3b4_P1WqDHSNywlZxy5gC64SnRaOo4uCASiprzi2UwjlhbQm1ZTXYxgsrTAHMKnCuVkKxBVr-9ro4jGP0jf6KYWfityagD5I6SeqDpE6SWiaA_wNcmMwUhn6KJnSnMThiZmdjqFuvt-kPfXI7hfwA09Blzw
CitedBy_id crossref_primary_10_1007_s11785_014_0421_z
crossref_primary_10_1017_S0013091500023518
crossref_primary_10_1216_rmjm_1181072203
crossref_primary_10_1017_S0305004100001602
ContentType Journal Article
Copyright Copyright © Canadian Mathematical Society 1992
Copyright_xml – notice: Copyright © Canadian Mathematical Society 1992
DBID AAYXX
CITATION
DOI 10.4153/CJM-1992-047-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1496-4279
EndPage 804
ExternalDocumentID 10_4153_CJM_1992_047_6
GroupedDBID --Z
-~X
09C
0R~
186
3O-
69Q
6TJ
AAIKC
AAMNW
AAYEQ
ABBZL
ABCQX
ABEFU
ABGDZ
ABJNI
ABVKB
ABXAU
ACDLN
ACGFO
ACIPV
ACNCT
ADKIL
ADVJH
AENCP
AGABE
AGJUD
AHRGI
AI.
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ARZZG
ATUCA
AYIQA
BCGOX
BESQT
CCUQV
CFBFF
CGQII
CJCSC
DOHLZ
EBS
EGQIC
EJD
FRP
IH6
IOO
JHPGK
L7B
LW7
MVM
NHB
NZEOI
OK1
P2P
RCA
RCD
S10
VH1
WFFJZ
XJT
XOL
XSW
YYP
ZMEZD
AAXMD
AAYXX
ABUFD
ADXHL
AFZFC
CITATION
ID FETCH-LOGICAL-c316t-b84b3380bc5e27f82840c02626d44b095cc5bb90db3d0bfe5b5a703b80ccd8583
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10.4153/cjm-1992-047-6&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-414X
IngestDate Sat Nov 29 04:36:12 EST 2025
Tue Nov 18 19:38:06 EST 2025
Tue Jan 21 06:20:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 46J10
46J30
Language English
License https://www.cambridge.org/core/terms
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c316t-b84b3380bc5e27f82840c02626d44b095cc5bb90db3d0bfe5b5a703b80ccd8583
OpenAccessLink https://www.cambridge.org/core/services/aop-cambridge-core/content/view/28277763A75EE79247438639F26EFCC2/S0008414X00010841a.pdf/div-class-title-bourgain-algebras-of-douglas-algebras-div.pdf
PageCount 8
ParticipantIDs crossref_primary_10_4153_CJM_1992_047_6
crossref_citationtrail_10_4153_CJM_1992_047_6
cambridge_journals_10_4153_CJM_1992_047_6
PublicationCentury 1900
PublicationDate 19920801
1992-08-01
PublicationDateYYYYMMDD 1992-08-01
PublicationDate_xml – month: 08
  year: 1992
  text: 19920801
  day: 01
PublicationDecade 1990
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
PublicationTitle Canadian journal of mathematics
PublicationTitleAlternate Can. j. math
PublicationYear 1992
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References Hoffman (S0008414X00010841_ref010) 1962
Younis (S0008414X00010841_ref017) 1985; 15
S0008414X00010841_ref016
Sundberg (S0008414X00010841_ref015) 1983; 276
Cima (S0008414X00010841_ref006) 1987; 34
Newman (S0008414X00010841_ref013) 1959; 92
Hoffman (S0008414X00010841_ref011) 1967; 86
Bourgain (S0008414X00010841_ref002) 1984; 77
Cima (S0008414X00010841_ref005) 1989; 105
Marshall (S0008414X00010841_ref012) 1976; 137
Chang (S0008414X00010841_ref004) 1976; 137
Sarason (S0008414X00010841_ref014) 1978
Gorkin (S0008414X00010841_ref008) 1988; 104
Axler (S0008414X00010841_ref001) 1984; 31
S0008414X00010841_ref009
Budde (S0008414X00010841_ref003) 1982
Garnett (S0008414X00010841_ref007) 1981
References_xml – volume-title: Function theory on the unit circle
  year: 1978
  ident: S0008414X00010841_ref014
– ident: S0008414X00010841_ref009
– volume: 31
  start-page: 89
  year: 1984
  ident: S0008414X00010841_ref001
  article-title: Michigan Math. J.
  publication-title: Divisibility in Douglas algebras
– volume-title: Bounded analytic functions
  year: 1981
  ident: S0008414X00010841_ref007
– volume-title: Support sets and Gleason parts ofM(H°°)
  year: 1982
  ident: S0008414X00010841_ref003
– volume: 15
  start-page: 555
  year: 1985
  ident: S0008414X00010841_ref017
  article-title: Arch. Math.
  publication-title: Division in Douglas algebras and some applications
– volume: 86
  start-page: 74
  year: 1967
  ident: S0008414X00010841_ref011
  article-title: Ann. of Math. (2)
  publication-title: Bounded analytic functions and Gleason parts
– volume: 137
  start-page: 91
  year: 1976
  ident: S0008414X00010841_ref012
  article-title: Acta Math.
  publication-title: Subalgebrasof L∞ containing H∞
– volume: 77
  start-page: 245
  year: 1984
  ident: S0008414X00010841_ref002
  article-title: Studia Math.
  publication-title: The Dunford Pettis property for the ball algebras the polydisc algebras and Sobolev spaces,
– ident: S0008414X00010841_ref016
– volume: 34
  start-page: 99
  year: 1987
  ident: S0008414X00010841_ref006
  article-title: Michigan Math. J.
  publication-title: The Dunford Pettis property for certain planar uniform algebras
– volume: 105
  start-page: 121
  year: 1989
  ident: S0008414X00010841_ref005
  article-title: Proc. Amer. Math. Soc.
  publication-title: Completely continuous HankeI operators on H∞ and Bourgain algebras,
– volume: 137
  start-page: 81
  year: 1976
  ident: S0008414X00010841_ref004
  article-title: Acta. Math.
  publication-title: characterization of Douglas algebras
– volume-title: Banach spaces of analytic functions
  year: 1962
  ident: S0008414X00010841_ref010
– volume: 276
  start-page: 551
  year: 1983
  ident: S0008414X00010841_ref015
  article-title: Trans. Amer. Math. Soc.
  publication-title: Interpolating sequences for QAB
– volume: 92
  start-page: 501
  year: 1959
  ident: S0008414X00010841_ref013
  article-title: Trans. Amer. Math. Soc.
  publication-title: Interpolation in H∞
– volume: 104
  start-page: 1086
  year: 1988
  ident: S0008414X00010841_ref008
  article-title: Proc. Amer. Math. Soc.
  publication-title: Functions not vanishing on trivial Gleason parts of Douglas algebras
SSID ssj0003651
Score 1.409094
Snippet Let A be a Banach algebra and let B be a linear subspace of A. Recall that A has the Dunford Pettis property if whenever ƒn→ 0 weakly in A* and φn → 0 weakly...
Let A be a Banach algebra and let B be a linear subspace of A. Recall that A has the Dunford Pettis property if whenever ƒ n → 0 weakly in A* and φn → 0 weakly...
SourceID crossref
cambridge
SourceType Enrichment Source
Index Database
Publisher
StartPage 797
Title Bourgain Algebras of Douglas Algebras
URI https://www.cambridge.org/core/product/identifier/S0008414X00010841/type/journal_article
Volume 44
WOSCitedRecordID wos10.4153/cjm-1992-047-6&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAJQ
  databaseName: Google Magazines
  customDbUrl:
  eissn: 1496-4279
  dateEnd: 19961231
  omitProxy: false
  ssIdentifier: ssj0003651
  issn: 0008-414X
  databaseCode: 69Q
  dateStart: 19490101
  isFulltext: true
  titleUrlDefault: http://www.google.com/books/magazines
  providerName: Google.com
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdGx4Edpo0P0bGhHDYhDoY08VeOrAK2SZsAFam3KP5oVdSmVdtNZX89z7HjhqmVxoFLFD3ZSZ2f9b76_HsIncqOEOAHZ5irzGarCo1FUhhMtLHHMDUYIVE1m-A3N6Lfz755eoJF1U6Al6VYrbLZf4UaZAC2PTr7D3CHh4IA7gF0uALscH0U8OcwaFjYNMZ4aP8Vrmo1vJ8cZE2fNBAUNFgkJoHNNfjcX6u0uvM6J2Yc1Pnlve2n4s74jH6NAoJTy09QyX8Uv2H1ep1gcMWook4w1EoTUOy4QsoPxulJkjFMEtcHplakjsjRbxjS0IrcleDWBtb1G36ou8GTsBwS3atr7H4F4XgDSfYD4xVKCiGYsU_IYX5u5-cwP2dP0G7CaWbVHcu-BxOdMupbKbqVOTZPO__j3-9vMm40PJeGC9I7QPs-dog-OcwP0Y4pn6O96zVUL9BZjX5UIx1NB5FHP8heop9fPve6F9h3wsAq7bAlloLINBWxVNQkfABRMokVRM8J04RI8JKVolJmsZapjuXAUEkLUOVSxEppQUX6CrXKaWleo0hTCU4fBKKCJ4QpXTAmeaogyqRgtolso_dhxbnfd4t889dtI1x_kVx5Snnb2WS8dfy7MH7myFS2jDx69Mg36Nl60x6j1nJ-a07QU3W3HC3mbyvY_wCzJ2Q9
linkProvider Google.com
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bourgain+Algebras+of+Douglas+Algebras&rft.jtitle=Canadian+journal+of+mathematics&rft.au=Gorkin%2C+Pamela&rft.au=Izuchi%2C+Keiji&rft.au=Mortini%2C+Raymond&rft.date=1992-08-01&rft.issn=0008-414X&rft.eissn=1496-4279&rft.volume=44&rft.issue=4&rft.spage=797&rft.epage=804&rft_id=info:doi/10.4153%2FCJM-1992-047-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_4153_CJM_1992_047_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-414X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-414X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-414X&client=summon