Sensitivity Analysis of a Stationary Point Set Map Under Total Perturbations. Part 2: Robinson Stability
In Part 1 of this paper, we have estimated the Fréchet coderivative and the Mordukhovich coderivative of the stationary point set map of a smooth parametric optimization problem with one smooth functional constraint under total perturbations. From these estimates, necessary and sufficient conditions...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 180; číslo 1; s. 117 - 139 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.01.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In Part 1 of this paper, we have estimated the Fréchet coderivative and the Mordukhovich coderivative of the stationary point set map of a smooth parametric optimization problem with one smooth functional constraint under total perturbations. From these estimates, necessary and sufficient conditions for the local Lipschitz-like property of the map have been obtained. In this part, we establish sufficient conditions for the Robinson stability of the stationary point set map. This allows us to revisit and extend several stability theorems in indefinite quadratic programming. A comparison of our results with the ones which can be obtained via another approach is also given. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-018-1295-4 |