Sensitivity Analysis of a Stationary Point Set Map Under Total Perturbations. Part 2: Robinson Stability

In Part 1 of this paper, we have estimated the Fréchet coderivative and the Mordukhovich coderivative of the stationary point set map of a smooth parametric optimization problem with one smooth functional constraint under total perturbations. From these estimates, necessary and sufficient conditions...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 180; no. 1; pp. 117 - 139
Main Authors: Huyen, Duong Thi Kim, Yao, Jen-Chih, Yen, Nguyen Dong
Format: Journal Article
Language:English
Published: New York Springer US 01.01.2019
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Part 1 of this paper, we have estimated the Fréchet coderivative and the Mordukhovich coderivative of the stationary point set map of a smooth parametric optimization problem with one smooth functional constraint under total perturbations. From these estimates, necessary and sufficient conditions for the local Lipschitz-like property of the map have been obtained. In this part, we establish sufficient conditions for the Robinson stability of the stationary point set map. This allows us to revisit and extend several stability theorems in indefinite quadratic programming. A comparison of our results with the ones which can be obtained via another approach is also given.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-018-1295-4