On a Hierarchy of Spectral Isomorphism Invariants
We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial charact...
Gespeichert in:
| Veröffentlicht in: | Computational complexity Jg. 34; H. 2; S. 19 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1016-3328, 1420-8954 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial characterization of this hierarchy in terms of the walk counts. This allows us to give a complete answer to Fürer's question about the strength of his invariants in distinguishing non-isomorphic graphs in comparison with the 2-dimensional Weisfeiler-Leman algorithm, extending the recent work of Rattan and Seppelt (SODA 2023). As another application of the characterization, we prove that almost all graphs are determined up to isomorphism in terms of the spectrum and the angles, which is of interest in view of the long-standing open problem whether almost all graphs are determined by their eigenvalues alone. Finally, we describe the exact relationship between the hierarchy and the Weisfeiler-Leman algorithms for small dimensions, as also some other important spectral characteristics of a graph such as the generalized and the main spectra. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1016-3328 1420-8954 |
| DOI: | 10.1007/s00037-025-00270-x |