On a Hierarchy of Spectral Isomorphism Invariants

We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational complexity Jg. 34; H. 2; S. 19
Hauptverfasser: Arvind, V., Fuhlbrück, Frank, Köbler, Johannes, Verbitsky, Oleg
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.12.2025
Springer Nature B.V
Schlagworte:
ISSN:1016-3328, 1420-8954
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial characterization of this hierarchy in terms of the walk counts. This allows us to give a complete answer to Fürer's question about the strength of his invariants in distinguishing non-isomorphic graphs in comparison with the 2-dimensional Weisfeiler-Leman algorithm, extending the recent work of Rattan and Seppelt (SODA 2023). As another application of the characterization, we prove that almost all graphs are determined up to isomorphism in terms of the spectrum and the angles, which is of interest in view of the long-standing open problem whether almost all graphs are determined by their eigenvalues alone. Finally, we describe the exact relationship between the hierarchy and the Weisfeiler-Leman algorithms for small dimensions, as also some other important spectral characteristics of a graph such as the generalized and the main spectra.
AbstractList We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed by the set of standard basis vectors and their projections onto eigenspaces of the adjacency matrix. We provide a purely combinatorial characterization of this hierarchy in terms of the walk counts. This allows us to give a complete answer to Fürer's question about the strength of his invariants in distinguishing non-isomorphic graphs in comparison with the 2-dimensional Weisfeiler-Leman algorithm, extending the recent work of Rattan and Seppelt (SODA 2023). As another application of the characterization, we prove that almost all graphs are determined up to isomorphism in terms of the spectrum and the angles, which is of interest in view of the long-standing open problem whether almost all graphs are determined by their eigenvalues alone. Finally, we describe the exact relationship between the hierarchy and the Weisfeiler-Leman algorithms for small dimensions, as also some other important spectral characteristics of a graph such as the generalized and the main spectra.
ArticleNumber 19
Author Köbler, Johannes
Verbitsky, Oleg
Arvind, V.
Fuhlbrück, Frank
Author_xml – sequence: 1
  givenname: V.
  surname: Arvind
  fullname: Arvind, V.
  organization: The Institute of Mathematical Sciences (HBNI) and Chennai, Mathematical Institute
– sequence: 2
  givenname: Frank
  surname: Fuhlbrück
  fullname: Fuhlbrück, Frank
  organization: Institut für Informatik, Humboldt Universität zu Berlin
– sequence: 3
  givenname: Johannes
  surname: Köbler
  fullname: Köbler, Johannes
  organization: Institut für Informatik, Humboldt Universität zu Berlin
– sequence: 4
  givenname: Oleg
  surname: Verbitsky
  fullname: Verbitsky, Oleg
  email: oleg.verbitsky@hu-berlin.de
  organization: Institut für Informatik, Humboldt Universität zu Berlin
BookMark eNp9kE1LAzEURYNUsK3-AVcDrqMvyeSjSylqC4Uu1HXIZBI7pU3GZCrtv3fqCO5cvbu45z44EzQKMTiEbgncEwD5kAGASQyUYwAqAR8v0JiUFLCa8XLUZyACM0bVFZrkvAUgXLFyjMg6FKZYNC6ZZDenIvritXW2S2ZXLHPcx9RumrwvluHLpMaELl-jS2922d383il6f356my_wav2ynD-usGVEdLgqiZcVdVVpFdgSnKlBMe-U8rJ2YISbUSJKz62gNTOSzwgXrPaGe2tpTdgU3Q27bYqfB5c7vY2HFPqXmlEhOVAF5xYdWjbFnJPzuk3N3qSTJqDPavSgRvdq9I8afewhNkC5L4cPl_6m_6G-AVffaCQ
Cites_doi 10.1007/s10801-021-01065-3
10.37236/209
10.1016/0024-3795(93)90491-6
10.1016/j.ejc.2011.03.012
10.1137/0209047
10.1017/CBO9780511801518
10.1007/978-1-4613-8354-3_5
10.1016/S0195-6698(03)00100-8
10.1007/s00224-020-09990-9
10.1016/j.laa.2009.07.019
10.1017/CBO9781139086547
10.1145/2897518.2897542
10.1016/j.laa.2006.07.017
10.1002/jgt.20461
10.1016/0095-8956(80)90058-1
10.1016/S0024-3795(03)00483-X
10.1137/15M1049622
10.1090/S0273-0979-06-01126-8
10.1137/1.9781611977554.ch87
10.1007/BF01305232
10.1016/0024-3795(82)90104-5
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
JQ2
DOI 10.1007/s00037-025-00270-x
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1420-8954
ExternalDocumentID 10_1007_s00037_025_00270_x
GroupedDBID -~C
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
MA-
MBV
N9A
NPVJJ
NQJWS
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
5VS
AAOBN
AARHV
AAYTO
AAYXX
ABJCF
ABQSL
ABULA
ACBXY
ADHKG
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARAPS
AZQEC
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FSGXE
GNUQQ
H13
HCIFZ
HZ~
IHE
K7-
KOW
M2P
M4Y
M7S
N2Q
NDZJH
NU0
O9-
PHGZM
PHGZT
PQGLB
PTHSS
R4E
RNI
RZK
S26
S28
SCJ
SCLPG
T16
UZXMN
VFIZW
AESKC
JQ2
ID FETCH-LOGICAL-c316t-b41f7b2eb4c80c40ead083fe88f7de0a6e92164f5c62d3a7591563dfa5fcc2d13
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001603605400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1016-3328
IngestDate Sun Nov 02 05:12:12 EST 2025
Sat Nov 29 06:57:05 EST 2025
Wed Dec 10 12:25:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords combinatorial refinement
strongly regular graphs
68Q25
Graph isomorphism
68R10
spectra of graphs
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b41f7b2eb4c80c40ead083fe88f7de0a6e92164f5c62d3a7591563dfa5fcc2d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s00037-025-00270-x
PQID 3267502801
PQPubID 2044003
ParticipantIDs proquest_journals_3267502801
crossref_primary_10_1007_s00037_025_00270_x
springer_journals_10_1007_s00037_025_00270_x
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational complexity
PublicationTitleAbbrev comput. complex
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 270_CR1
270_CR2
270_CR5
270_CR23
270_CR6
270_CR24
270_CR3
270_CR25
270_CR4
270_CR26
270_CR9
270_CR20
270_CR7
270_CR21
270_CR8
270_CR22
270_CR27
270_CR28
270_CR29
270_CR12
270_CR34
270_CR13
270_CR35
270_CR14
270_CR15
270_CR30
270_CR31
270_CR10
270_CR32
270_CR11
270_CR33
270_CR16
270_CR17
270_CR18
270_CR19
References_xml – ident: 270_CR22
  doi: 10.1007/s10801-021-01065-3
– ident: 270_CR4
  doi: 10.37236/209
– ident: 270_CR12
  doi: 10.1016/0024-3795(93)90491-6
– ident: 270_CR16
  doi: 10.1016/j.ejc.2011.03.012
– ident: 270_CR3
  doi: 10.1137/0209047
– ident: 270_CR10
  doi: 10.1017/CBO9780511801518
– ident: 270_CR5
– ident: 270_CR7
– ident: 270_CR24
  doi: 10.1007/978-1-4613-8354-3_5
– ident: 270_CR1
– ident: 270_CR18
  doi: 10.1016/S0195-6698(03)00100-8
– ident: 270_CR26
– ident: 270_CR17
  doi: 10.1007/s00224-020-09990-9
– ident: 270_CR15
  doi: 10.1016/j.laa.2009.07.019
– ident: 270_CR11
  doi: 10.1017/CBO9781139086547
– ident: 270_CR30
– ident: 270_CR2
  doi: 10.1145/2897518.2897542
– ident: 270_CR32
  doi: 10.1016/j.laa.2006.07.017
– ident: 270_CR19
– ident: 270_CR13
  doi: 10.1002/jgt.20461
– ident: 270_CR34
– ident: 270_CR21
  doi: 10.1016/0095-8956(80)90058-1
– ident: 270_CR23
– ident: 270_CR33
  doi: 10.1016/S0024-3795(03)00483-X
– ident: 270_CR29
– ident: 270_CR25
  doi: 10.1137/15M1049622
– ident: 270_CR8
– ident: 270_CR20
  doi: 10.1090/S0273-0979-06-01126-8
– ident: 270_CR28
  doi: 10.1137/1.9781611977554.ch87
– ident: 270_CR6
  doi: 10.1007/BF01305232
– ident: 270_CR27
  doi: 10.1016/0024-3795(82)90104-5
– ident: 270_CR9
– ident: 270_CR31
– ident: 270_CR14
– ident: 270_CR35
SSID ssj0015834
Score 2.3746395
Snippet We consider a hierarchy of graph invariants that naturally extends the spectral invariants defined by Fürer (Lin. Alg. Appl. 2010) based on the angles formed...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 19
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Combinatorial analysis
Computational Mathematics and Numerical Analysis
Computer Science
Eigenvalues
Graphs
Invariants
Isomorphism
Title On a Hierarchy of Spectral Isomorphism Invariants
URI https://link.springer.com/article/10.1007/s00037-025-00270-x
https://www.proquest.com/docview/3267502801
Volume 34
WOSCitedRecordID wos001603605400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1420-8954
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015834
  issn: 1016-3328
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hwgADhQKiUJAHNrCU2nk4I0JU7UBBvNQtchxbdGiCmlLBv-ecVwWCAbImsqzPZ993Od99AGeur4Wl8tQ3gZUwMzEVknmU45EotQn7JijFJoLxWEwm4V1VFJbXt93rlGRxUjfFbkWvFGrlV20s5VBkjuvo7oQVbLh_eG5yB54oc8lIZijnTFSlMj-P8dUdrTjmt7Ro4W0G7f_Ncwe2K3ZJLktz2IU1nXagXSs3kGojd2DrpunWmu9B_zYlkgynthZZvXyQzBArS2__gZBRns0yXItpPiOjdImRtb04sw9Pg-vHqyGtpBSo4n1_QWMXQY-Zjl0lHOU6aD_IvYwWwgSJdqSvQ4aBk_GUzxIuAy_EuI4nRnpGKZb0-QG00izVh0A8ybST4CNjz9WOkQa3cKB40YjHSLcL5zWi0WvZMSNqeiMX2ESITVRgE713oVeDHlW7J4-QUiKRYeg8u3BRg7x6_ftoR3_7_Bg2mV2n4nZKD1qL-Zs-gQ21XEzz-WlhVZ-lBMZz
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EBfVgtSpWq-7Bmy4km_dRxNJiW0Wr9BY2m13soYk0tei_dzavouhBc01Ylm9ndr7JvADObVf6mspTV3l6hJmKqM-ZQy28ErlUgam8YtiENxz643FwXxaFZVW2exWSzG_qutgt75VC9fhV7UsZFJnjmo0WS3fMf3h8rmMHjl_EkpHMUMtiflkq8_MaX83RkmN-C4vm1qbT-N8-d2C7ZJfkqhCHXViRSRMa1eQGUipyE7YGdbfWbA_Mu4Rw0p3oWmTx8kFSRfRYev0PhPSydJriWUyyKeklC_SsdeLMPjx1bkbXXVqOUqDCMt05jWwEPWIysoVvCNtA-UHupaTvKy-WBndlwNBxUo5wWWxxzwnQr7NixR0lBItN6wBWkzSRh0AczqQR48Mjx5aG4gpV2BNW3ohHcbsFFxWi4WvRMSOseyPn2ISITZhjE763oF2BHpbak4VIKZHIMDSeLbisQF6-_n21o799fgYb3dGgH_Z7w9tj2GT6zPJMlTaszmdv8gTWxWI-yWanuYR9AvzEyVc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH6IiujBalWsVp2DNx2azGQ9ilpa1FpwobcwmcxgD01KE4v-e2eyVUUPYq4JQ3hL3vfylg_g1HKEp6E8dqSrKcxkiD1GbEzVJ5EJ6ZvSLcgm3MHAG4384acp_rzbvSpJFjMNektTnHWmkezUg2_53hSsqVh1XmVghSJXLN1Ir_P1h-e6jmB7RV1ZARtMKfHKsZmfz_gamhZ481uJNI883cb_33kLNkvUiS4KM9mGJRE3oVExOqDSwZuwcVdvcU13wLyPEUO9sZ5R5i_vKJFI09XrfyOonyaTROlonE5QP56rjFs31OzCU_f68bKHS4oFzKnpZDi0lDJCIkKLewa3DGVXCpNJ4XnSjYTBHOETlVBJmzskosy1fZXv0UgyW3JOIpPuwXKcxGIfkM2IMCJ1sdC2hCGZVK7tcpov6JHMasFZJd1gWmzSCOqdyblsAiWbIJdN8NaCdqWAoPSqNFBQUwEcooJqC84rgS9u_37awd8eP4G14VU3uO0Pbg5hnWiV5Q0sbVjOZq_iCFb5PBuns-Pc2D4A94vSOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+a+Hierarchy+of+Spectral+Isomorphism+Invariants&rft.jtitle=Computational+complexity&rft.au=Arvind%2C+V&rft.au=Fuhlbr%C3%BCck%2C+Frank&rft.au=K%C3%B6bler%2C+Johannes&rft.au=Verbitsky%2C+Oleg&rft.date=2025-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1016-3328&rft.eissn=1420-8954&rft.volume=34&rft.issue=2&rft.spage=19&rft_id=info:doi/10.1007%2Fs00037-025-00270-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1016-3328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1016-3328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1016-3328&client=summon