Multisource surveillance video data coding with hierarchical knowledge library

The rapidly increasing surveillance video data has challenged the existing video coding standards. Even though knowledge based video coding scheme has been proposed to remove redundancy of moving objects across multiple videos and achieved great coding efficiency improvement, it still has difficulti...

Full description

Saved in:
Bibliographic Details
Published in:Multimedia tools and applications Vol. 78; no. 11; pp. 14705 - 14731
Main Authors: Chen, Yu, Hu, Ruimin, Xiao, Jing, Xu, Liang, Wang, Zhongyuan
Format: Journal Article
Language:English
Published: New York Springer US 01.06.2019
Springer Nature B.V
Subjects:
ISSN:1380-7501, 1573-7721
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The rapidly increasing surveillance video data has challenged the existing video coding standards. Even though knowledge based video coding scheme has been proposed to remove redundancy of moving objects across multiple videos and achieved great coding efficiency improvement, it still has difficulties to cope with complicated visual changes of objects resulting from various factors. In this paper, a novel hierarchical knowledge extraction method is proposed. Common knowledge on three coarse-to-fine levels, namely category level, object level and video level, are extracted from history data to model the initial appearance, stable changes and temporal changes respectively for better object representation and redundancy removal. In addition, we apply the extracted hierarchical knowledge to surveillance video coding tasks and establish a hybrid prediction based coding framework. On the one hand, hierarchical knowledge is projected to the image plane to generate reference for I frames to achieve better prediction performance. On the other hand, we develop a transform based prediction for P/B frames to reduce the computational complexity while improve the coding efficiency. Experimental results demonstrate the effectiveness of our proposed method.
AbstractList The rapidly increasing surveillance video data has challenged the existing video coding standards. Even though knowledge based video coding scheme has been proposed to remove redundancy of moving objects across multiple videos and achieved great coding efficiency improvement, it still has difficulties to cope with complicated visual changes of objects resulting from various factors. In this paper, a novel hierarchical knowledge extraction method is proposed. Common knowledge on three coarse-to-fine levels, namely category level, object level and video level, are extracted from history data to model the initial appearance, stable changes and temporal changes respectively for better object representation and redundancy removal. In addition, we apply the extracted hierarchical knowledge to surveillance video coding tasks and establish a hybrid prediction based coding framework. On the one hand, hierarchical knowledge is projected to the image plane to generate reference for I frames to achieve better prediction performance. On the other hand, we develop a transform based prediction for P/B frames to reduce the computational complexity while improve the coding efficiency. Experimental results demonstrate the effectiveness of our proposed method.
Author Xu, Liang
Xiao, Jing
Hu, Ruimin
Chen, Yu
Wang, Zhongyuan
Author_xml – sequence: 1
  givenname: Yu
  surname: Chen
  fullname: Chen, Yu
  organization: National Engineering Research Center for Multimedia and Software, Wuhan University
– sequence: 2
  givenname: Ruimin
  surname: Hu
  fullname: Hu, Ruimin
  email: hrm@whu.edu.cn
  organization: National Engineering Research Center for Multimedia and Software, Wuhan University, Hubei Key Laboratory of Multimedia and Network Communication Engineering, Wuhan University
– sequence: 3
  givenname: Jing
  surname: Xiao
  fullname: Xiao, Jing
  organization: National Engineering Research Center for Multimedia and Software, Wuhan University
– sequence: 4
  givenname: Liang
  surname: Xu
  fullname: Xu, Liang
  organization: National Engineering Research Center for Multimedia and Software, Wuhan University
– sequence: 5
  givenname: Zhongyuan
  surname: Wang
  fullname: Wang, Zhongyuan
  organization: National Engineering Research Center for Multimedia and Software, Wuhan University
BookMark eNp9kMtKAzEUhoNUsK0-gLsB19FcJsnMUoo3qLrRdcgkmTZ1zNQk0-LbmzKCIOjqXDjf-c_5Z2Die28BOMfoEiMkriLGqCQQ4QryijBYHoEpZoJCIQie5JxWCAqG8AmYxbhBCHNGyil4ehy65GI_BG2LOISddV2nfC52zti-MCqpQvfG-VWxd2ldrJ0NKui106or3ny_76xZ2aJzTW5_noLjVnXRnn3HOXi9vXlZ3MPl893D4noJNcU8wYboFlFLCNPClJVtBK8N16pCpsQVa0xuM8sF40IJZmtOlWlrRamtia5ynIOLce829B-DjUlu8gs-S0qCKWGEUX6YwuOUDn2MwbZyG9x7PlNiJA-2ydE2mW2TB9tkmRnxi9EuqeR6n4Jy3b8kGcmYVfzKhp-b_oa-AAcQhEo
CitedBy_id crossref_primary_10_1007_s11280_020_00793_z
crossref_primary_10_3390_rs12030497
Cites_doi 10.1109/CVPR.2011.5995616
10.1145/2601097.2601206
10.1109/TPAMI.2004.1262177
10.1016/j.neucom.2015.08.096
10.1109/TMM.2017.2766043
10.1109/TMM.2016.2645398
10.1109/ICIP.2017.8296285
10.1109/TCSVT.2010.2041820
10.1109/TIP.2016.2551366
10.1023/A:1007924428535
10.1109/JPROC.2010.2098830
10.1109/ISM.2016.0065
10.1109/TIP.2014.2352036
10.1109/TCSVT.2015.2389511
10.1007/978-3-319-48890-5_28
10.1109/TBC.2017.2781118
10.1109/TCSVT.2012.2221191
10.1109/TMM.2016.2581590
10.1109/TIP.2018.2867740
10.1145/2502081.2502145
10.1609/aaai.v30i1.9969
10.1109/TMM.2011.2180705
10.1609/aaai.v30i1.10155
10.1109/TMM.2013.2239629
10.1007/978-3-642-33718-5_60
10.1109/TPAMI.2003.1195991
10.1109/TCSVT.2003.815165
10.1007/978-3-319-10602-1_54
10.1145/2393347.2396294
10.1145/1101149.1101289
10.1109/TCSVT.2015.2477935
10.1109/ICME.2013.6607570
10.1109/ICALIP.2012.6376591
10.1109/TMM.2018.2867742
10.1109/TBDATA.2017.2715815
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-018-6825-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection (ProQuest)
Computing Database
Research Library (ProQuest)
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 14731
ExternalDocumentID 10_1007_s11042_018_6825_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
3EH
5QI
AAOBN
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCJ
SCLPG
T16
TEORI
UZXMN
VFIZW
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-b2cf03e225c7d48eb769d6ca80d4185bdc7d5e67567a75e963adf9a33e92c8a33
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000474249700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1380-7501
IngestDate Tue Nov 04 22:08:15 EST 2025
Sat Nov 29 03:26:04 EST 2025
Tue Nov 18 22:25:29 EST 2025
Fri Feb 21 02:37:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Redundancy removal
Hybrid prediction
Surveillance video data
Visual changes
Hierarchical knowledge extraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b2cf03e225c7d48eb769d6ca80d4185bdc7d5e67567a75e963adf9a33e92c8a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2132525363
PQPubID 54626
PageCount 27
ParticipantIDs proquest_journals_2132525363
crossref_primary_10_1007_s11042_018_6825_4
crossref_citationtrail_10_1007_s11042_018_6825_4
springer_journals_10_1007_s11042_018_6825_4
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Azizpour, H., & Laptev, I. (2012). Object detection using strongly-supervised deformable part models. In European Conference on Computer Vision, Springer, pp. 836-849
Guo, X., Li, S., & Cao, X. (2013). Motion matters: A novel framework for compressing surveillance videos. In Proceedings of the 21st ACM international conference on Multimedia, ACM, pp. 549-552
XiaoJHuRLiaoLChenYWangZXiongZKnowledge-based coding of objects for multisource surveillance video dataIEEE Trans Multimedia20161891691170610.1109/TMM.2016.2581590
Weinzaepfel, P., Jégou, H., & Pérez, P. (2011). Reconstructing an image from its local descriptors. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE, pp. 337-344
WangHTianTMaMWuJJoint Compression of Near-Duplicate VideosIEEE Trans Multimedia201719590892010.1109/TMM.2016.2645398
ZhangXTianYHuangTDongSGaoWOptimizing the hierarchical prediction and coding in HEVC for surveillance and conference videos with background modelingIEEE Trans Image Process2014231045114526330009810.1109/TIP.2014.23520361374.94461
Chen, C., Cai, J., Lin, W., & Shi, G. (2012). Surveillance video coding via low-rank and sparse decomposition. In Proceedings of the 20th ACM international conference on Multimedia, ACM, pp. 713-716
ShaoZCaiJWangZSmart Monitoring Cameras Driven Intelligent Processing to Big Surveillance Video DataIEEE Transactions on Big Data20184110511610.1109/TBDATA.2017.2715815
TsaiTHLinCYExploring contextual redundancy in improving object-based video coding for video sensor networks surveillanceIEEE Trans Multimedia201214366968210.1109/TMM.2011.2180705
VetroAWiegandTSullivanGJOverview of the stereo and multiview video coding extensions of the H. 264/MPEG-4 AVC standardProc IEEE201199462664210.1109/JPROC.2010.2098830
Ma, C., Liu, D., Peng, X., & Wu, F. (2017). Surveillance video coding with vehicle library. In Image Processing (ICIP), 2017 IEEE International Conference on, IEEE, pp. 270-274
Shi, Z., Sun, X., & Wu, F. (2013). Feature-based image set compression. In Multimedia and Expo (ICME), 2013 IEEE International Conference on, IEEE, pp. 1-6
YueHSunXYangJWuFCloud-based image coding for mobile devices—Toward thousands to one compressionIEEE Trans Multimedia201315484585710.1109/TMM.2013.2239629
Hakeem, A., Shafique, K., & Shah, M. (2005). An object-based video coding framework for video sequences obtained from static cameras. In Proceedings of the 13th annual ACM international conference on Multimedia, ACM, pp. 608-617
LinCZhaoYXiaoJTilloTRegion-based multiple description coding for multiview video plus depth videoIEEE Trans Multimedia20182051209122310.1109/TMM.2017.2766043
Au, O., Li, S., Zou, R., Dai, W., & Sun, L. (2012). Digital photo album compression based on global motion compensation and intra/inter prediction. In Audio, Language and Image Processing (ICALIP), 2012 International Conference on, IEEE, pp. 84-90
BellSBalaKSnavelyNIntrinsic images in the wildACM Trans Graph201433415910.1145/2601097.2601206
PaulMEfficient Multiview Video Coding Using 3-D Coding and Saliency-Based Bit AllocationIEEE Trans Broadcast201864223524610.1109/TBC.2017.2781118
WuHSunXYangJZengWWuFLossless compression of JPEG coded photo collectionsIEEE Trans Image Process201625626842696349365810.1109/TIP.2016.255136607011700
Liu, Y., Nie, L., Han, L., Zhang, L., & Rosenblum, D. S. (2015). Action2Activity: Recognizing Complex Activities from Sensor Data. In IJCAI, pp. 1617-1623
Liu, L., Cheng, L., Liu, Y., Jia, Y., & Rosenblum, D. S. (2016). Recognizing Complex Activities by a Probabilistic Interval-Based Model. In AAAI, pp. 1266-1272
YangYLiuQHeXLiuZCross-View Multi-Lateral Filter for Compressed Multi-View Depth VideoIEEE Trans Image Process2019281302315386318310.1109/TIP.2018.286774007014387
Waechter, M., Moehrle, N., & Goesele, M. (2014). Let there be color! Large-scale texturing of 3D reconstructions. In European Conference on Computer Vision, Springer, pp. 836-850
WiegandTSullivanGJBjontegaardGLuthraAOverview of the H. 264/AVC video coding standardIEEE Trans circuits syst video technol200313756057610.1109/TCSVT.2003.815165
NgKTWuQChanSCShumHYObject-based coding for plenoptic videosIEEE Trans Circuits Syst Video Technol201020454856210.1109/TCSVT.2010.2041820
LiuYNieLLiuLRosenblumDSFrom action to activity: sensor-based activity recognitionNeurocomputing201618110811510.1016/j.neucom.2015.08.096
Bjontegarrd, G. (2001). Calculation of average PSNR differences between RD-curves. VCEG-M33
HM 16.20. https://hevc.hhi.fraunhofer.de. Accessed 14 Sept 2018
ComaniciuDRameshVMeerPKernel-based object trackingIEEE Trans Pattern Anal Mach Intell200325556457710.1109/TPAMI.2003.1195991
Liu, Y., Zhang, L., Nie, L., Yan, Y., & Rosenblum, D. S. (2016). Fortune Teller: Predicting Your Career Path. In AAAI, pp. 201-207
TechGChenYMüllerKOhmJRVetroAWangYKOverview of the multiview and 3D extensions of high efficiency video codingIEEE Trans Circuits Syst Video Technol2016261354910.1109/TCSVT.2015.2477935
PuricaAIMoraEGPesquet-PopescuBCagnazzoMIonescuBMultiview plus depth video coding with temporal prediction view synthesisIEEE Trans Circuits Syst Video Technol201626236037410.1109/TCSVT.2015.2389511
KolmogorovVZabinRWhat energy functions can be minimized via graph cutsIEEE Trans Pattern Anal Mach Intell200426214715910.1109/TPAMI.2004.1262177
TanTNSullivanGDBakerKDModel-based localisation and recognition of road vehiclesInt J Comput Vis199827152510.1023/A:1007924428535
Sreedhar, K. K., Aminlou, A., Hannuksela, M. M., & Gabbouj, M. (2016). Standard-compliant multiview video coding and streaming for virtual reality applications. In Multimedia (ISM), 2016 IEEE International Symposium on, IEEE, pp. 295-300
SullivanGJOhmJHanWJWiegandTOverview of the high efficiency video coding (HEVC) standardIEEE Trans circuits syst video technol201222121649166810.1109/TCSVT.2012.2221191
Wang, Q., Wang, Z., Xiao, J., Xiao, J., & Li, W. (2016). Fine-Grained Vehicle Recognition in Traffic Surveillance. In Pacific Rim Conference on Multimedia, Springer, pp. 285-295
Yang, Y., Li, B., Li, P., & Liu, Q. (2018). A Two-Stage Clustering Based 3D Visual Saliency Model for Dynamic Scenarios. IEEE Transactions on Multimedia
TH Tsai (6825_CR26) 2012; 14
T Wiegand (6825_CR32) 2003; 13
H Wu (6825_CR33) 2016; 25
J Xiao (6825_CR34) 2016; 18
X Zhang (6825_CR38) 2014; 23
6825_CR29
AI Purica (6825_CR19) 2016; 26
H Yue (6825_CR37) 2013; 15
6825_CR28
6825_CR21
6825_CR22
C Lin (6825_CR11) 2018; 20
V Kolmogorov (6825_CR10) 2004; 26
GJ Sullivan (6825_CR23) 2012; 22
Y Yang (6825_CR36) 2019; 28
KT Ng (6825_CR17) 2010; 20
S Bell (6825_CR3) 2014; 33
A Vetro (6825_CR27) 2011; 99
6825_CR5
6825_CR8
TN Tan (6825_CR24) 1998; 27
6825_CR7
6825_CR2
6825_CR1
D Comaniciu (6825_CR6) 2003; 25
6825_CR4
H Wang (6825_CR30) 2017; 19
Y Liu (6825_CR13) 2016; 181
6825_CR31
6825_CR9
6825_CR14
6825_CR15
6825_CR16
M Paul (6825_CR18) 2018; 64
Z Shao (6825_CR20) 2018; 4
G Tech (6825_CR25) 2016; 26
6825_CR12
6825_CR35
References_xml – reference: SullivanGJOhmJHanWJWiegandTOverview of the high efficiency video coding (HEVC) standardIEEE Trans circuits syst video technol201222121649166810.1109/TCSVT.2012.2221191
– reference: PuricaAIMoraEGPesquet-PopescuBCagnazzoMIonescuBMultiview plus depth video coding with temporal prediction view synthesisIEEE Trans Circuits Syst Video Technol201626236037410.1109/TCSVT.2015.2389511
– reference: KolmogorovVZabinRWhat energy functions can be minimized via graph cutsIEEE Trans Pattern Anal Mach Intell200426214715910.1109/TPAMI.2004.1262177
– reference: Chen, C., Cai, J., Lin, W., & Shi, G. (2012). Surveillance video coding via low-rank and sparse decomposition. In Proceedings of the 20th ACM international conference on Multimedia, ACM, pp. 713-716
– reference: NgKTWuQChanSCShumHYObject-based coding for plenoptic videosIEEE Trans Circuits Syst Video Technol201020454856210.1109/TCSVT.2010.2041820
– reference: Bjontegarrd, G. (2001). Calculation of average PSNR differences between RD-curves. VCEG-M33
– reference: Guo, X., Li, S., & Cao, X. (2013). Motion matters: A novel framework for compressing surveillance videos. In Proceedings of the 21st ACM international conference on Multimedia, ACM, pp. 549-552
– reference: Ma, C., Liu, D., Peng, X., & Wu, F. (2017). Surveillance video coding with vehicle library. In Image Processing (ICIP), 2017 IEEE International Conference on, IEEE, pp. 270-274
– reference: YueHSunXYangJWuFCloud-based image coding for mobile devices—Toward thousands to one compressionIEEE Trans Multimedia201315484585710.1109/TMM.2013.2239629
– reference: Liu, Y., Nie, L., Han, L., Zhang, L., & Rosenblum, D. S. (2015). Action2Activity: Recognizing Complex Activities from Sensor Data. In IJCAI, pp. 1617-1623
– reference: Hakeem, A., Shafique, K., & Shah, M. (2005). An object-based video coding framework for video sequences obtained from static cameras. In Proceedings of the 13th annual ACM international conference on Multimedia, ACM, pp. 608-617
– reference: YangYLiuQHeXLiuZCross-View Multi-Lateral Filter for Compressed Multi-View Depth VideoIEEE Trans Image Process2019281302315386318310.1109/TIP.2018.286774007014387
– reference: Weinzaepfel, P., Jégou, H., & Pérez, P. (2011). Reconstructing an image from its local descriptors. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE, pp. 337-344
– reference: PaulMEfficient Multiview Video Coding Using 3-D Coding and Saliency-Based Bit AllocationIEEE Trans Broadcast201864223524610.1109/TBC.2017.2781118
– reference: VetroAWiegandTSullivanGJOverview of the stereo and multiview video coding extensions of the H. 264/MPEG-4 AVC standardProc IEEE201199462664210.1109/JPROC.2010.2098830
– reference: Liu, L., Cheng, L., Liu, Y., Jia, Y., & Rosenblum, D. S. (2016). Recognizing Complex Activities by a Probabilistic Interval-Based Model. In AAAI, pp. 1266-1272
– reference: WiegandTSullivanGJBjontegaardGLuthraAOverview of the H. 264/AVC video coding standardIEEE Trans circuits syst video technol200313756057610.1109/TCSVT.2003.815165
– reference: HM 16.20. https://hevc.hhi.fraunhofer.de. Accessed 14 Sept 2018
– reference: Wang, Q., Wang, Z., Xiao, J., Xiao, J., & Li, W. (2016). Fine-Grained Vehicle Recognition in Traffic Surveillance. In Pacific Rim Conference on Multimedia, Springer, pp. 285-295
– reference: LiuYNieLLiuLRosenblumDSFrom action to activity: sensor-based activity recognitionNeurocomputing201618110811510.1016/j.neucom.2015.08.096
– reference: XiaoJHuRLiaoLChenYWangZXiongZKnowledge-based coding of objects for multisource surveillance video dataIEEE Trans Multimedia20161891691170610.1109/TMM.2016.2581590
– reference: WangHTianTMaMWuJJoint Compression of Near-Duplicate VideosIEEE Trans Multimedia201719590892010.1109/TMM.2016.2645398
– reference: WuHSunXYangJZengWWuFLossless compression of JPEG coded photo collectionsIEEE Trans Image Process201625626842696349365810.1109/TIP.2016.255136607011700
– reference: TanTNSullivanGDBakerKDModel-based localisation and recognition of road vehiclesInt J Comput Vis199827152510.1023/A:1007924428535
– reference: Waechter, M., Moehrle, N., & Goesele, M. (2014). Let there be color! Large-scale texturing of 3D reconstructions. In European Conference on Computer Vision, Springer, pp. 836-850
– reference: Au, O., Li, S., Zou, R., Dai, W., & Sun, L. (2012). Digital photo album compression based on global motion compensation and intra/inter prediction. In Audio, Language and Image Processing (ICALIP), 2012 International Conference on, IEEE, pp. 84-90
– reference: ComaniciuDRameshVMeerPKernel-based object trackingIEEE Trans Pattern Anal Mach Intell200325556457710.1109/TPAMI.2003.1195991
– reference: LinCZhaoYXiaoJTilloTRegion-based multiple description coding for multiview video plus depth videoIEEE Trans Multimedia20182051209122310.1109/TMM.2017.2766043
– reference: TechGChenYMüllerKOhmJRVetroAWangYKOverview of the multiview and 3D extensions of high efficiency video codingIEEE Trans Circuits Syst Video Technol2016261354910.1109/TCSVT.2015.2477935
– reference: TsaiTHLinCYExploring contextual redundancy in improving object-based video coding for video sensor networks surveillanceIEEE Trans Multimedia201214366968210.1109/TMM.2011.2180705
– reference: ZhangXTianYHuangTDongSGaoWOptimizing the hierarchical prediction and coding in HEVC for surveillance and conference videos with background modelingIEEE Trans Image Process2014231045114526330009810.1109/TIP.2014.23520361374.94461
– reference: Liu, Y., Zhang, L., Nie, L., Yan, Y., & Rosenblum, D. S. (2016). Fortune Teller: Predicting Your Career Path. In AAAI, pp. 201-207
– reference: Shi, Z., Sun, X., & Wu, F. (2013). Feature-based image set compression. In Multimedia and Expo (ICME), 2013 IEEE International Conference on, IEEE, pp. 1-6
– reference: Sreedhar, K. K., Aminlou, A., Hannuksela, M. M., & Gabbouj, M. (2016). Standard-compliant multiview video coding and streaming for virtual reality applications. In Multimedia (ISM), 2016 IEEE International Symposium on, IEEE, pp. 295-300
– reference: Azizpour, H., & Laptev, I. (2012). Object detection using strongly-supervised deformable part models. In European Conference on Computer Vision, Springer, pp. 836-849
– reference: BellSBalaKSnavelyNIntrinsic images in the wildACM Trans Graph201433415910.1145/2601097.2601206
– reference: Yang, Y., Li, B., Li, P., & Liu, Q. (2018). A Two-Stage Clustering Based 3D Visual Saliency Model for Dynamic Scenarios. IEEE Transactions on Multimedia
– reference: ShaoZCaiJWangZSmart Monitoring Cameras Driven Intelligent Processing to Big Surveillance Video DataIEEE Transactions on Big Data20184110511610.1109/TBDATA.2017.2715815
– ident: 6825_CR31
  doi: 10.1109/CVPR.2011.5995616
– volume: 33
  start-page: 159
  issue: 4
  year: 2014
  ident: 6825_CR3
  publication-title: ACM Trans Graph
  doi: 10.1145/2601097.2601206
– volume: 26
  start-page: 147
  issue: 2
  year: 2004
  ident: 6825_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1262177
– ident: 6825_CR9
– volume: 181
  start-page: 108
  year: 2016
  ident: 6825_CR13
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.096
– volume: 20
  start-page: 1209
  issue: 5
  year: 2018
  ident: 6825_CR11
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2017.2766043
– volume: 19
  start-page: 908
  issue: 5
  year: 2017
  ident: 6825_CR30
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2016.2645398
– ident: 6825_CR16
  doi: 10.1109/ICIP.2017.8296285
– volume: 20
  start-page: 548
  issue: 4
  year: 2010
  ident: 6825_CR17
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2010.2041820
– volume: 25
  start-page: 2684
  issue: 6
  year: 2016
  ident: 6825_CR33
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2016.2551366
– ident: 6825_CR4
– volume: 27
  start-page: 5
  issue: 1
  year: 1998
  ident: 6825_CR24
  publication-title: Int J Comput Vis
  doi: 10.1023/A:1007924428535
– volume: 99
  start-page: 626
  issue: 4
  year: 2011
  ident: 6825_CR27
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2010.2098830
– ident: 6825_CR22
  doi: 10.1109/ISM.2016.0065
– volume: 23
  start-page: 4511
  issue: 10
  year: 2014
  ident: 6825_CR38
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2352036
– volume: 26
  start-page: 360
  issue: 2
  year: 2016
  ident: 6825_CR19
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2015.2389511
– ident: 6825_CR29
  doi: 10.1007/978-3-319-48890-5_28
– volume: 64
  start-page: 235
  issue: 2
  year: 2018
  ident: 6825_CR18
  publication-title: IEEE Trans Broadcast
  doi: 10.1109/TBC.2017.2781118
– volume: 22
  start-page: 1649
  issue: 12
  year: 2012
  ident: 6825_CR23
  publication-title: IEEE Trans circuits syst video technol
  doi: 10.1109/TCSVT.2012.2221191
– volume: 18
  start-page: 1691
  issue: 9
  year: 2016
  ident: 6825_CR34
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2016.2581590
– volume: 28
  start-page: 302
  issue: 1
  year: 2019
  ident: 6825_CR36
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2018.2867740
– ident: 6825_CR7
  doi: 10.1145/2502081.2502145
– ident: 6825_CR15
  doi: 10.1609/aaai.v30i1.9969
– volume: 14
  start-page: 669
  issue: 3
  year: 2012
  ident: 6825_CR26
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2011.2180705
– ident: 6825_CR14
  doi: 10.1609/aaai.v30i1.10155
– volume: 15
  start-page: 845
  issue: 4
  year: 2013
  ident: 6825_CR37
  publication-title: IEEE Trans Multimedia
  doi: 10.1109/TMM.2013.2239629
– ident: 6825_CR2
  doi: 10.1007/978-3-642-33718-5_60
– volume: 25
  start-page: 564
  issue: 5
  year: 2003
  ident: 6825_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2003.1195991
– volume: 13
  start-page: 560
  issue: 7
  year: 2003
  ident: 6825_CR32
  publication-title: IEEE Trans circuits syst video technol
  doi: 10.1109/TCSVT.2003.815165
– ident: 6825_CR28
  doi: 10.1007/978-3-319-10602-1_54
– ident: 6825_CR5
  doi: 10.1145/2393347.2396294
– ident: 6825_CR8
  doi: 10.1145/1101149.1101289
– volume: 26
  start-page: 35
  issue: 1
  year: 2016
  ident: 6825_CR25
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2015.2477935
– ident: 6825_CR21
  doi: 10.1109/ICME.2013.6607570
– ident: 6825_CR1
  doi: 10.1109/ICALIP.2012.6376591
– ident: 6825_CR12
– ident: 6825_CR35
  doi: 10.1109/TMM.2018.2867742
– volume: 4
  start-page: 105
  issue: 1
  year: 2018
  ident: 6825_CR20
  publication-title: IEEE Transactions on Big Data
  doi: 10.1109/TBDATA.2017.2715815
SSID ssj0016524
Score 2.1795874
Snippet The rapidly increasing surveillance video data has challenged the existing video coding standards. Even though knowledge based video coding scheme has been...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14705
SubjectTerms Coding
Coding standards
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Knowledge
Multimedia Information Systems
Redundancy
Special Purpose and Application-Based Systems
Surveillance
Video data
SummonAdditionalLinks – databaseName: ABI/INFORM Collection (ProQuest)
  dbid: M0C
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBQgFRKMgDE8jCefg1IVRRsVAxgNQtsh1nQg309fuxE6cBJLowRUocK8rn853v9QFcK56mPNcxZpoJ7CzwGGubRDhShZbECKJYUZFN8PFYTCbyJTjc5iGtstkTq406L433kd_F7thEY5qw5P7jE3vWKB9dDRQa27DjLRuf0vdMhusoAqOB1FYQ7DRj1EQ1q9K5yBemkEhg5g5JOP2pl1pj81d8tFI7o-5_P_gQDoLBiR7qFXIEW3bag25D5oCCbPdg_1tnwmMYV4W5tWcfzZezlfXsRG4g8nV7JfKJpciUXvEh78pFnlK7Cko4zNHaUYeCk-gE3kaPr8MnHKgXsEkitsA6NgVJrBN2w_NUWM2ZzJlRguS-243O3W1q3WGDccWpdVKs8kKqJLEyNsJdT6EzLaf2DJCyuXTHJqJtYVNmqSKpjotCclVwLintA2l-fGZCX3JPj_GetR2VPVaZwyrzWGVpH27Wr3zUTTk2DR40-GRBPudZC04fbhuE28d_Tna-ebIL2HMGlaxTyQbQWcyW9hJ2zcohNruqFucXxAbqbA
  priority: 102
  providerName: ProQuest
Title Multisource surveillance video data coding with hierarchical knowledge library
URI https://link.springer.com/article/10.1007/s11042-018-6825-4
https://www.proquest.com/docview/2132525363
Volume 78
WOSCitedRecordID wos000474249700026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHeDAjihL5QMnkCVn8XYEVISEKBVr4RLZjnNCLWop3884TVpAgAQXR0kcK5rJZDbPPIADI9NU5jamwgpF0QKPqfVJRCNTWM2cYkYUJdiEbLdVt6s7VR33sN7tXqckyz_1tNgtCqUkLFJUoFtD01mYR22nAl7D9c39JHUgeIVkqxhFdRjVqczvlvisjKYW5pekaKlrzlb-9ZarsFyZluR4_C2swYzvrcNKDdtAKileh6UPPQg3oF2W4I5j-GQ4Grz5gEOEE0mo0OuTsIWUuH5QcSQEbUkAzy7TD8hdMgnJkSoctAl3Z63b03NagSxQl0TildrYFSzxKNZO5qnyVgqdC2cUy0NfG5vjZe7RrRDSSO5RXk1eaJMkXsdO4XEL5nr9nt8GYnyu0UFi1hc-FZ4bltq4KLQ0hZSa8wawmtqZqzqQByCM52zaOzlQL0PqZYF6WdqAw8kjL-P2G79N3qtZmFWSOMxidLd5zBORNOCoZtn09o-L7fxp9i4soiWlx3vI9mDudTDy-7Dg3pCBgybMyofHJsyftNqdazy7kBTHS3YaxvgKxw5_apaf8Tv19-ZV
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hqNRyYAu0YmFpfWgvRVYdJ_HjUFUIikALqx6oxC21HeeEdukuD_Gn-I3M5LHbVio3Dr0mtqXEn-fpmQ_gg9NZpksvufLKcLTAJfcxTXjiKm9FMMKpqiab0KORubiw35fgoauFoWuVnUysBXU5CRQj_yzRbcplnqr069UvTqxRlF3tKDQaWAzj_R26bLMvJ4e4vx-lPPp2fnDMW1YBHtJEXXMvQyXSiDgOusxM9FrZUgVnREmNXHyJj_OIdrTSTucRAerKyro0jVYG4ygAiiJ_JUuNpnM11HyetVB5S6JrBEdNnHRZ1LpUL6FCGJEYrtAp49mfenBh3P6Vj63V3FHvf_tBr2GtNajZfnMC1mEpjjeg15FVsFZ2bcDqb50XN2FUFx43mQs2u5neRmJfwoGM6hInjC7OsjAhxc4oVM2IMrxOuiCm2TwQydog2Bv48Szf-BaWx5Nx3ALmYmnRLRQ-VjFTMXci87KqrHaV1jbP-yC6jS5C23ed6D8ui0XHaMJGgdgoCBtF1odP8ylXTdORpwYPOjwUrfyZFQsw9GGvQ9Ti9T8X2356sffw8vj87LQ4PRkNd-AVGo-2uTY3gOXr6U3chRfhFndv-q4-GAx-PjfQHgEyD0he
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTxQxFH8hSAweRBHjCmoPepE0dDrTdnowhgAbCGazB00Il7HttCeyi7uA8V_zr-O9-dhVE7lx4DofTWb66_t-7wfw3pmiMLWXXHtdcrTAJfcxz3jmkrcilMLp1JBNmNGoPDuz4xX43ffCUFllLxMbQV1PA8XI9yS6TUqqXOd7qSuLGB8OP1_-4MQgRZnWnk6jhchp_PUT3bf5p5ND3OsPUg6Pvh4c845hgIc801fcy5BEHhHTwdRFGb3RttbBlaKmoS6-xssqok2tjTMqIlhdnazL82hlKB0FQ1H8PzLoY1I54VidLzIYWnWEuqXgqJWzPqPatO1l1BQjspJrdNB48bdOXBq6_-RmG5U33HjIP-sZPO0MbbbfnoznsBInm7DRk1iwTqZtwpM_JjK-gFHTkNxmNNj8enYTiZUJH2TUrzhlVFDLwpQUPqMQNiMq8SYZg1hniwAl64JjW_DtXr7xJaxOppP4CpiLtUV3UfiYYqGjcqLwMiVrXDLGKjUA0W96Fbp57EQLclEtJ0kTTirESUU4qYoBfFy8ctkOI7nr4Z0eG1Unl-bVEhgD2O3Rtbz938Ve373YO3iM-Kq-nIxOt2EdbUrbVtPtwOrV7Dq-gbVwg5s3e9ucEQbf7xtntxqIUYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multisource+surveillance+video+data+coding+with+hierarchical+knowledge+library&rft.jtitle=Multimedia+tools+and+applications&rft.au=Chen%2C+Yu&rft.au=Hu%2C+Ruimin&rft.au=Xiao%2C+Jing&rft.au=Xu%2C+Liang&rft.date=2019-06-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=11&rft.spage=14705&rft.epage=14731&rft_id=info:doi/10.1007%2Fs11042-018-6825-4&rft.externalDocID=10_1007_s11042_018_6825_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon