Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection
In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in th...
Uloženo v:
| Vydáno v: | Computer modeling in engineering & sciences Ročník 140; číslo 2; s. 1563 - 1593 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Henderson
Tech Science Press
2024
|
| Témata: | |
| ISSN: | 1526-1506, 1526-1492, 1526-1506 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The Whale Optimization Algorithm (WOA) is widely used in optimization problems because of its simplicity and easy implementation. In this paper, we propose a multi-strategy assisted multi-objective WOA (MSMOWOA) to address feature selection. To enhance the algorithm’s search ability, we integrate multiple strategies such as Levy flight, Grey Wolf Optimizer, and adaptive mutation into it. Additionally, we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity. Results on fourteen University of California Irvine (UCI) datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance. The source code can be accessed from the website: . |
|---|---|
| AbstractList | In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The Whale Optimization Algorithm (WOA) is widely used in optimization problems because of its simplicity and easy implementation. In this paper, we propose a multi-strategy assisted multi-objective WOA (MSMOWOA) to address feature selection. To enhance the algorithm’s search ability, we integrate multiple strategies such as Levy flight, Grey Wolf Optimizer, and adaptive mutation into it. Additionally, we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity. Results on fourteen University of California Irvine (UCI) datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance. The source code can be accessed from the website: . |
| Author | Chen, Zhikun Zhang, Zheng Zhou, Chong Wei, Xuemeng Yang, Deng |
| Author_xml | – sequence: 1 givenname: Deng surname: Yang fullname: Yang, Deng – sequence: 2 givenname: Chong surname: Zhou fullname: Zhou, Chong – sequence: 3 givenname: Xuemeng surname: Wei fullname: Wei, Xuemeng – sequence: 4 givenname: Zhikun surname: Chen fullname: Chen, Zhikun – sequence: 5 givenname: Zheng surname: Zhang fullname: Zhang, Zheng |
| BookMark | eNp9kE1LAzEQhoMo2FZ_gLeA56352m32WIpVodJDFcFLyGYnbcp-1CQV6q932_UgHjzNMLzPDPMM0XnTNoDQDSVjzjIi7kwNYcwIE2MiJBH5GRrQlGUJTUl2_qu_RMMQtoTwjMt8gN6f91V0ySp6HWF9wNMQXIhQ4n6-LLZgovsE_LbRFeDlLrrafeno2gZPq3XrXdzU2LYez0HHvQe8guqItM0VurC6CnD9U0fodX7_MntMFsuHp9l0kRhOs5hoKHWZypRYYYSQnJZSMGKyEqw1RlMLLNWSlFawguRFyVkhs1yyPDN0IsDwEbrt9-58-7GHENW23fumO6k4I4QynkrSpSZ9yvg2BA9WGRdPf3Svu0pRok4i1VGkOopUvciOpH_InXe19od_mG-QN3pV |
| CitedBy_id | crossref_primary_10_1016_j_compag_2025_109905 |
| Cites_doi | 10.1016/j.eswa.2021.114737 10.1109/ACCESS.2018.2879848 10.1016/j.eswa.2021.115312 10.1109/78.738245 10.1016/j.asoc.2021.108250 10.1007/s00521-021-06224-y 10.1109/TEVC.2004.826067 10.1109/ACCESS.2022.3189476 10.1016/j.jbi.2018.07.014 10.1142/S1793557121501722 10.1109/4235.850656 10.1016/j.eswa.2021.115870 10.1016/j.neucom.2022.04.083 10.1016/0167-8655(94)90127-9 10.1016/j.inffus.2023.02.016 10.1186/s40854-022-00441-7 10.1016/j.asoc.2023.110130 10.1016/j.knosys.2022.108787 10.1016/j.asoc.2018.07.016 10.1016/j.eswa.2015.10.039 10.1109/TEVC.2015.2504420 10.1016/j.asoc.2021.107887 10.1016/j.chaos.2023.113472 10.1007/s00521-022-07852-8 10.1016/j.knosys.2020.106553 10.1016/j.asoc.2023.110558 10.1016/j.eswa.2016.06.004 10.1109/TCYB.2017.2714145 10.1016/j.cie.2020.106628 10.1016/j.knosys.2021.107761 10.1109/TCYB.2022.3185554 10.1109/ACCESS.2021.3138403 10.1109/TCYB.2019.2944141 10.1016/j.knosys.2020.106560 10.1016/S1672-6529(11)60020-6 10.3233/IDA-1997-1302 10.1109/JSTARS.2021.3056593 10.1016/j.eswa.2008.08.022 10.1016/j.knosys.2020.106131 10.1016/j.ins.2017.09.028 10.1109/ACCESS.2019.2906757 10.1016/j.knosys.2021.106894 10.1016/j.asoc.2017.11.006 10.1109/4235.996017 10.1016/j.eswa.2020.113873 10.1016/j.asoc.2020.106092 10.1016/j.eswa.2022.117255 10.1006/jcis.2000.7365 10.1016/j.neucom.2017.04.053 10.1016/j.patcog.2009.06.009 10.1016/j.asoc.2021.107698 10.1109/TSMCB.2012.2227469 10.1016/j.compbiomed.2021.105166 10.1016/j.swevo.2021.100847 10.1016/j.advengsoft.2016.01.008 10.1109/TPAMI.2004.105 |
| ContentType | Journal Article |
| Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.32604/cmes.2024.048049 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One Coronavirus Research Database ProQuest Central Engineering Research Database ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1526-1506 |
| EndPage | 1593 |
| ExternalDocumentID | 10_32604_cmes_2024_048049 |
| GroupedDBID | -~X AAFWJ AAYXX ABJCF ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION EBS EJD F5P HCIFZ IPNFZ J9A K7- M7S OK1 PHGZM PHGZT PIMPY PQGLB PTHSS RIG RTS 7SC 7TB 8FD 8FE 8FG ABUWG AZQEC COVID DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c316t-aedad5850f4c44831d8420c6deffcca1fe25a80df42b09bd32b8698296c174ec3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001202633100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-1506 1526-1492 |
| IngestDate | Sat Sep 06 07:31:39 EDT 2025 Sat Nov 29 08:16:19 EST 2025 Tue Nov 18 22:08:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-aedad5850f4c44831d8420c6deffcca1fe25a80df42b09bd32b8698296c174ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3200123580?pq-origsite=%requestingapplication% |
| PQID | 3200123580 |
| PQPubID | 2048798 |
| PageCount | 31 |
| ParticipantIDs | proquest_journals_3200123580 crossref_citationtrail_10_32604_cmes_2024_048049 crossref_primary_10_32604_cmes_2024_048049 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computer modeling in engineering & sciences |
| PublicationYear | 2024 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Xue (ref45) 2012; 43 Reeves (ref12) 1999; 47 Qasim (ref17) 2021; 14 Jović (ref36) 2015 Deb (ref60) 2002; 6 Hu (ref28) 2022; 237 Mafarja (ref52) 2017; 260 Zheng (ref55) 2018; 7 Hancer (ref19) 2018; 422 Long (ref25) 2022; 202 Han (ref46) 2021; 62 Hussien (ref53) 2019 Dhiman (ref39) 2021; 211 Urbanowicz (ref9) 2018; 85 Bandyopadhyay (ref24) 2021; 111 Hu (ref2) 2022; 142 Dash (ref6) 1997; 1 Caruana (ref35) 1994 Li (ref51) 2023; 145 Azhagusundari (ref10) 2013; 2 Kl (ref13) 2021; 219 Aljarah (ref23) 2020; 147 Pudil (ref34) 1994; 15 Wang (ref33) 2023; 137 Tasci (ref37) 2023; 172 Pei (ref63) 2023 Piri (ref48) 2021; 10 Nguyen (ref15) 2019; 51 Nouri-Moghaddam (ref47) 2021; 175 Too (ref43) 2021; 212 Liu (ref41) 2011; 8 Ma (ref21) 2022; 248 Zhao (ref62) 2016; 35 Htun (ref3) 2023; 9 Coello (ref58) 2004; 8 Hammouri (ref38) 2020; 203 Sun (ref64) 2023; 95 Zhang (ref49) 2022; 10 Aghdam (ref4) 2009; 36 Oh (ref40) 2004; 26 Gheyas (ref5) 2010; 43 Tran (ref42) 2017; 48 Ranjan (ref11) 2018; 71 Got (ref31) 2021; 183 Wang (ref32) 2021; 44 Ewees (ref27) 2023; 35 Hu (ref14) 2021; 113 Zorarpaci (ref20) 2016; 62 Weh (ref61) 2001; 235 Mafarja (ref54) 2018; 62 Wang (ref50) 2023; 53 Too (ref57) 2021; 33 Hamdani (ref44) 2007 Houssein (ref26) 2022; 187 Mirjalili (ref59) 2016; 47 Goel (ref1) 2022; 115 Mirjalili (ref30) 2016; 95 Xue (ref7) 2015; 20 Dokeroglu (ref29) 2022; 494 Tubishat (ref22) 2021; 164 Agrawal (ref56) 2020; 89 Al-Tashi (ref18) 2019; 7 Ghasemi (ref8) 2020 Raymer (ref16) 2000; 4 |
| References_xml | – volume: 175 start-page: 114737 year: 2021 ident: ref47 article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114737 – volume: 7 start-page: 14908 year: 2018 ident: ref55 article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879848 – volume: 183 start-page: 115312 year: 2021 ident: ref31 article-title: Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115312 – volume: 47 start-page: 123 year: 1999 ident: ref12 article-title: Sequential algorithms for observation selection publication-title: IEEE Transactions on Signal Processing doi: 10.1109/78.738245 – volume: 115 start-page: 108250 year: 2022 ident: ref1 article-title: Multi-COVID-Net: Multi-objective optimized network for COVID-19 diagnosis from chest X-ray images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.108250 – volume: 33 start-page: 16229 year: 2021 ident: ref57 article-title: Spatial bound whale optimization algorithm: An efficient high-dimensional feature selection approach publication-title: Neural Computing and Applications doi: 10.1007/s00521-021-06224-y – volume: 8 start-page: 256 year: 2004 ident: ref58 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826067 – volume: 10 start-page: 72973 year: 2022 ident: ref49 article-title: Multiobjective Harris hawks optimization with associative learning and chaotic local search for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3189476 – volume: 85 start-page: 189 year: 2018 ident: ref9 article-title: Relief-based feature selection: Introduction and review publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2018.07.014 – volume: 14 start-page: 2150172 year: 2021 ident: ref17 article-title: A new hybrid algorithm based on binary gray wolf optimization and firefly algorithm for features selection publication-title: Asian-European Journal of Mathematics doi: 10.1142/S1793557121501722 – volume: 35 start-page: 1 year: 2016 ident: ref62 article-title: Connected Fermat spirals for layered fabrication publication-title: ACM Transactions on Graphics – volume: 4 start-page: 164 year: 2000 ident: ref16 article-title: Dimensionality reduction using genetic algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.850656 – volume: 187 start-page: 115870 year: 2022 ident: ref26 article-title: An efficient slime Mould algorithm for solving multi-objective optimization problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115870 – year: 2015 ident: ref36 article-title: A review of feature selection methods with applications – volume: 494 start-page: 269 year: 2022 ident: ref29 article-title: A comprehensive survey on recent metaheuristics for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.083 – volume: 15 start-page: 1119 year: 1994 ident: ref34 article-title: Floating search methods in feature selection publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(94)90127-9 – volume: 95 start-page: 91 year: 2023 ident: ref64 article-title: TFSFB: Two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary whale optimization for imbalanced data publication-title: Information Fusion doi: 10.1016/j.inffus.2023.02.016 – volume: 9 start-page: 26 year: 2023 ident: ref3 article-title: Survey of feature selection and extraction techniques for stock market prediction publication-title: Financial Innovation doi: 10.1186/s40854-022-00441-7 – volume: 137 start-page: 110130 year: 2023 ident: ref33 article-title: A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110130 – volume: 248 start-page: 108787 year: 2022 ident: ref21 article-title: Multi-strategy ensemble binary hunger games search for feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2022.108787 – volume: 71 start-page: 994 year: 2018 ident: ref11 article-title: LFNN: Lion fuzzy neural network-based evolutionary model for text classification using context and sense based features publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.07.016 – volume: 47 start-page: 106 year: 2016 ident: ref59 article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.039 – volume: 20 start-page: 606 year: 2015 ident: ref7 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2504420 – volume: 113 start-page: 107887 year: 2021 ident: ref14 article-title: Multimodal particle swarm optimization for feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107887 – volume: 172 start-page: 113472 year: 2023 ident: ref37 article-title: QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2023.113472 – volume: 35 start-page: 3307 year: 2023 ident: ref27 article-title: Enhanced feature selection technique using slime Mould algorithm: A case study on chemical data publication-title: Neural Computing and Applications doi: 10.1007/s00521-022-07852-8 – volume: 212 start-page: 106553 year: 2021 ident: ref43 article-title: A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106553 – volume: 145 start-page: 110558 year: 2023 ident: ref51 article-title: Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2023.110558 – volume: 62 start-page: 91 year: 2016 ident: ref20 article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection publication-title: Expert Systems with Application doi: 10.1016/j.eswa.2016.06.004 – volume: 48 start-page: 1733 year: 2017 ident: ref42 article-title: A new representation in PSO for discretization-based feature selection publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2017.2714145 – volume: 147 start-page: 106628 year: 2020 ident: ref23 article-title: A dynamic locality multi-objective Salp swarm algorithm for feature selection publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2020.106628 – year: 2023 ident: ref63 article-title: A survey on unbalanced classification: How can evolutionary computation help? publication-title: IEEE Transactions on Evolutionary Computation – volume: 237 start-page: 107761 year: 2022 ident: ref28 article-title: Dispersed foraging slime Mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107761 – volume: 53 start-page: 5276 year: 2023 ident: ref50 article-title: Information-theory-based nondominated sorting ant colony optimization for multiobjective feature selection in classification publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2022.3185554 – volume: 10 start-page: 1756 year: 2021 ident: ref48 article-title: A binary multi-objective chimp optimizer with dual archive for feature selection in the healthcare domain publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3138403 – volume: 51 start-page: 589 year: 2019 ident: ref15 article-title: A new binary particle swarm optimization approach: Momentum and dynamic balance between exploration and exploitation publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2019.2944141 – volume: 211 start-page: 106560 year: 2021 ident: ref39 article-title: BEPO: A novel binary emperor penguin optimizer for automatic feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106560 – volume: 8 start-page: 191 year: 2011 ident: ref41 article-title: An improved particle swarm optimization for feature selection publication-title: Journal of Bionic Engineering doi: 10.1016/S1672-6529(11)60020-6 – start-page: 28 year: 1994 ident: ref35 article-title: Greedy attribute selection – volume: 1 start-page: 131–156 year: 1997 ident: ref6 article-title: Feature selection for classification publication-title: Intelligent Data Analysis doi: 10.3233/IDA-1997-1302 – volume: 44 start-page: 2473 year: 2021 ident: ref32 article-title: Cross-scene hyperspectral feature selection via hybrid whale optimization algorithm with simulated annealing publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing doi: 10.1109/JSTARS.2021.3056593 – volume: 36 start-page: 6843 year: 2009 ident: ref4 article-title: Text feature selection using ant colony optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.08.022 – volume: 203 start-page: 106131 year: 2020 ident: ref38 article-title: An improved dragonfly algorithm for feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106131 – volume: 2 start-page: 18 year: 2013 ident: ref10 article-title: Feature selection based on information gain publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE) – volume: 422 start-page: 462 year: 2018 ident: ref19 article-title: Pareto front feature selection based on artificial bee colony optimization publication-title: Information Sciences doi: 10.1016/j.ins.2017.09.028 – volume: 7 start-page: 39496 year: 2019 ident: ref18 article-title: Binary optimization using hybrid grey wolf optimization for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2906757 – volume: 219 start-page: 106894 year: 2021 ident: ref13 article-title: A novel multi population based particle swarm optimization for feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106894 – volume: 62 start-page: 441 year: 2018 ident: ref54 article-title: Whale optimization approaches for wrapper feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.11.006 – volume: 6 start-page: 182 year: 2002 ident: ref60 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – start-page: 240 year: 2007 ident: ref44 article-title: Multi-objective feature selection with NSGA II – volume: 164 start-page: 113873 year: 2021 ident: ref22 article-title: Dynamic salp swarm algorithm for feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113873 – volume: 89 start-page: 106092 year: 2020 ident: ref56 article-title: Quantum based whale optimization algorithm for wrapper feature selection publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106092 – volume: 202 start-page: 117255 year: 2022 ident: ref25 article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117255 – volume: 235 start-page: 210 year: 2001 ident: ref61 article-title: Hyperbolic spirals as surface structures in thin layers publication-title: Journal of Colloid and Interface Science doi: 10.1006/jcis.2000.7365 – volume: 260 start-page: 302 year: 2017 ident: ref52 article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – volume: 43 start-page: 5 year: 2010 ident: ref5 article-title: Feature subset selection in large dimensionality domains publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.06.009 – volume: 111 start-page: 107698 year: 2021 ident: ref24 article-title: Harris hawks optimisation with simulated annealing as a deep feature selection method for screening of COVID-19 CT-scans publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2021.107698 – volume: 43 start-page: 1656 year: 2012 ident: ref45 article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2227469 – volume: 142 start-page: 105166 year: 2022 ident: ref2 article-title: Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.105166 – volume: 62 start-page: 100847 year: 2021 ident: ref46 article-title: Multi-objective particle swarm optimization with adaptive strategies for feature selection publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2021.100847 – year: 2020 ident: ref8 article-title: Feature selection in pre-diagnosis heart coronary artery disease detection: A heuristic approach for feature selection based on information gain ratio and Gini index – volume: 95 start-page: 51 year: 2016 ident: ref30 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – year: 2019 ident: ref53 publication-title: Recent trends in signal and image processing: ISSIP 2017 – volume: 26 start-page: 1424 year: 2004 ident: ref40 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.105 |
| SSID | ssj0036389 |
| Score | 2.3832996 |
| Snippet | In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1563 |
| SubjectTerms | Algorithms Classification Datasets Feature selection Multiple objective analysis Optimization Optimization algorithms Parameters Source code |
| Title | Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection |
| URI | https://www.proquest.com/docview/3200123580 |
| Volume | 140 |
| WOSCitedRecordID | wos001202633100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: P5Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: K7- dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: M7S dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: BENPR dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1526-1506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036389 issn: 1526-1506 databaseCode: PIMPY dateStart: 20000101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6iLQML5RRn5YEJKZDYSZpMCBAVCNFGFAR0iRIfFEQP2oLEv-fZcTgWFpYMcS7l8zvt9z2AvRx9jDzIUJBUmGOAEggUKZk5fiCalAvFwigzzSaa7XZ0fx8nNuE2tdsqS51oFLUYcZ0jP2TU1nW6R-NXR3eN0qurtoVGBWqaJcEzW_e6pSZm2hobvlQaOhgJ0GJVEx0W1z_kA6nZuql_oKuqNZXmT7v0Wy0bW9Oq__crl2DRepnkuJgWyzAnhytQLzs4ECvQq9Az9beOpaj9IAiWhl2Q4nwnfy70IbnroyEhHdQvA1u4SY5fHvHNs_6AoN9LtCv5NpGka_rq4Pga3LbObk7PHdttweHMC2dOJkUmMHhwlc8xZmOeiHzq8lBIpRBmT0mKmLpC-TR341wwmkdhHNE45BjVSM7WoTocDeUGEK7XElWgMqqY7wdZ7nlME5FJ7oXKo9kmuOW_TrmlItcdMV5SDEkMPKmGJ9XwpAU8m7D_dcu44OH46-KdEp3UiuQ0_YZm6-_hbVjQzyryLDtQnU3e5C7M8_fZ03TSgNrJWTu5bkDlsuk0zHzDYxL0cCS5uEoePgGTJ97z |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXChrKKsPsAFKZDYTpoeEKpYBCoUJEAgLiHxwqK2QBcQP8U3MpOF5cKNA9c4seL4eeaNnXkDsJogx0j8GBeSDRIMUHyNS8rEjvR1hSttRRDGabGJSqMRXl1VTwfgvciFod8qC5uYGmr9qGiPfFPwPK_T3X56dqhqFJ2uFiU0MljUzdsrhmzdrcNdnN81zvf3zncOnLyqgKOEF_Sc2OhYI0l2rVQYmwhPh5K7KtDGWhyOZw3Hd3e1lTxxq4kWPAmDasirgUL2bpTAfgdhWIqwQuuqXnEKyy_I-6f6rDxwMPLg2SkqEiRXbqqWIXVwLjcoi5ukO7_7wZ9uIPVt-6X_9lUmYDxn0ayWwX4SBkx7CkpFhQqWG6xpuE7zi51cgveNIRgJ1ppl10-Sh8zes8s7dJTsBO1nK09MZbXmLY60d9diyOsZUeV-x7CztG4Qts_AxZ-McBaG2o9tMwdM0Vmp9W3MrZDSjxPPEyS0ZpQXWI_HZXCLuY1ULrVOFT-aEYZcKRwigkNEcIgyOJRh_fORp0xn5LebFws0RLnJ6UZfUJj_vXkFRg_Oj4-io8NGfQHGqN9sT2kRhnqdvlmCEfXSu-92llN0M7j5a-B8AKRQOHU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Strategy+Assisted+Multi-Objective+Whale+Optimization+Algorithm+for+Feature+Selection&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Yang%2C+Deng&rft.au=Zhou%2C+Chong&rft.au=Wei%2C+Xuemeng&rft.au=Chen%2C+Zhikun&rft.date=2024&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=140&rft.issue=2&rft.spage=1563&rft.epage=1593&rft_id=info:doi/10.32604%2Fcmes.2024.048049&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2024_048049 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon |