Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection

In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer modeling in engineering & sciences Ročník 140; číslo 2; s. 1563 - 1593
Hlavní autoři: Yang, Deng, Zhou, Chong, Wei, Xuemeng, Chen, Zhikun, Zhang, Zheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Henderson Tech Science Press 2024
Témata:
ISSN:1526-1506, 1526-1492, 1526-1506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The Whale Optimization Algorithm (WOA) is widely used in optimization problems because of its simplicity and easy implementation. In this paper, we propose a multi-strategy assisted multi-objective WOA (MSMOWOA) to address feature selection. To enhance the algorithm’s search ability, we integrate multiple strategies such as Levy flight, Grey Wolf Optimizer, and adaptive mutation into it. Additionally, we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity. Results on fourteen University of California Irvine (UCI) datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance. The source code can be accessed from the website: .
AbstractList In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The Whale Optimization Algorithm (WOA) is widely used in optimization problems because of its simplicity and easy implementation. In this paper, we propose a multi-strategy assisted multi-objective WOA (MSMOWOA) to address feature selection. To enhance the algorithm’s search ability, we integrate multiple strategies such as Levy flight, Grey Wolf Optimizer, and adaptive mutation into it. Additionally, we utilize an external repository to store non-dominant solution sets and grid technology is used to maintain diversity. Results on fourteen University of California Irvine (UCI) datasets demonstrate that our proposed method effectively removes redundant features and improves classification performance. The source code can be accessed from the website: .
Author Chen, Zhikun
Zhang, Zheng
Zhou, Chong
Wei, Xuemeng
Yang, Deng
Author_xml – sequence: 1
  givenname: Deng
  surname: Yang
  fullname: Yang, Deng
– sequence: 2
  givenname: Chong
  surname: Zhou
  fullname: Zhou, Chong
– sequence: 3
  givenname: Xuemeng
  surname: Wei
  fullname: Wei, Xuemeng
– sequence: 4
  givenname: Zhikun
  surname: Chen
  fullname: Chen, Zhikun
– sequence: 5
  givenname: Zheng
  surname: Zhang
  fullname: Zhang, Zheng
BookMark eNp9kE1LAzEQhoMo2FZ_gLeA56352m32WIpVodJDFcFLyGYnbcp-1CQV6q932_UgHjzNMLzPDPMM0XnTNoDQDSVjzjIi7kwNYcwIE2MiJBH5GRrQlGUJTUl2_qu_RMMQtoTwjMt8gN6f91V0ySp6HWF9wNMQXIhQ4n6-LLZgovsE_LbRFeDlLrrafeno2gZPq3XrXdzU2LYez0HHvQe8guqItM0VurC6CnD9U0fodX7_MntMFsuHp9l0kRhOs5hoKHWZypRYYYSQnJZSMGKyEqw1RlMLLNWSlFawguRFyVkhs1yyPDN0IsDwEbrt9-58-7GHENW23fumO6k4I4QynkrSpSZ9yvg2BA9WGRdPf3Svu0pRok4i1VGkOopUvciOpH_InXe19od_mG-QN3pV
CitedBy_id crossref_primary_10_1016_j_compag_2025_109905
Cites_doi 10.1016/j.eswa.2021.114737
10.1109/ACCESS.2018.2879848
10.1016/j.eswa.2021.115312
10.1109/78.738245
10.1016/j.asoc.2021.108250
10.1007/s00521-021-06224-y
10.1109/TEVC.2004.826067
10.1109/ACCESS.2022.3189476
10.1016/j.jbi.2018.07.014
10.1142/S1793557121501722
10.1109/4235.850656
10.1016/j.eswa.2021.115870
10.1016/j.neucom.2022.04.083
10.1016/0167-8655(94)90127-9
10.1016/j.inffus.2023.02.016
10.1186/s40854-022-00441-7
10.1016/j.asoc.2023.110130
10.1016/j.knosys.2022.108787
10.1016/j.asoc.2018.07.016
10.1016/j.eswa.2015.10.039
10.1109/TEVC.2015.2504420
10.1016/j.asoc.2021.107887
10.1016/j.chaos.2023.113472
10.1007/s00521-022-07852-8
10.1016/j.knosys.2020.106553
10.1016/j.asoc.2023.110558
10.1016/j.eswa.2016.06.004
10.1109/TCYB.2017.2714145
10.1016/j.cie.2020.106628
10.1016/j.knosys.2021.107761
10.1109/TCYB.2022.3185554
10.1109/ACCESS.2021.3138403
10.1109/TCYB.2019.2944141
10.1016/j.knosys.2020.106560
10.1016/S1672-6529(11)60020-6
10.3233/IDA-1997-1302
10.1109/JSTARS.2021.3056593
10.1016/j.eswa.2008.08.022
10.1016/j.knosys.2020.106131
10.1016/j.ins.2017.09.028
10.1109/ACCESS.2019.2906757
10.1016/j.knosys.2021.106894
10.1016/j.asoc.2017.11.006
10.1109/4235.996017
10.1016/j.eswa.2020.113873
10.1016/j.asoc.2020.106092
10.1016/j.eswa.2022.117255
10.1006/jcis.2000.7365
10.1016/j.neucom.2017.04.053
10.1016/j.patcog.2009.06.009
10.1016/j.asoc.2021.107698
10.1109/TSMCB.2012.2227469
10.1016/j.compbiomed.2021.105166
10.1016/j.swevo.2021.100847
10.1016/j.advengsoft.2016.01.008
10.1109/TPAMI.2004.105
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.32604/cmes.2024.048049
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 1593
ExternalDocumentID 10_32604_cmes_2024_048049
GroupedDBID -~X
AAFWJ
AAYXX
ABJCF
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EBS
EJD
F5P
HCIFZ
IPNFZ
J9A
K7-
M7S
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
RIG
RTS
7SC
7TB
8FD
8FE
8FG
ABUWG
AZQEC
COVID
DWQXO
FR3
GNUQQ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-aedad5850f4c44831d8420c6deffcca1fe25a80df42b09bd32b8698296c174ec3
IEDL.DBID M7S
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001202633100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1526-1506
1526-1492
IngestDate Sat Sep 06 07:31:39 EDT 2025
Sat Nov 29 08:16:19 EST 2025
Tue Nov 18 22:08:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-aedad5850f4c44831d8420c6deffcca1fe25a80df42b09bd32b8698296c174ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200123580?pq-origsite=%requestingapplication%
PQID 3200123580
PQPubID 2048798
PageCount 31
ParticipantIDs proquest_journals_3200123580
crossref_citationtrail_10_32604_cmes_2024_048049
crossref_primary_10_32604_cmes_2024_048049
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2024
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Xue (ref45) 2012; 43
Reeves (ref12) 1999; 47
Qasim (ref17) 2021; 14
Jović (ref36) 2015
Deb (ref60) 2002; 6
Hu (ref28) 2022; 237
Mafarja (ref52) 2017; 260
Zheng (ref55) 2018; 7
Hancer (ref19) 2018; 422
Long (ref25) 2022; 202
Han (ref46) 2021; 62
Hussien (ref53) 2019
Dhiman (ref39) 2021; 211
Urbanowicz (ref9) 2018; 85
Bandyopadhyay (ref24) 2021; 111
Hu (ref2) 2022; 142
Dash (ref6) 1997; 1
Caruana (ref35) 1994
Li (ref51) 2023; 145
Azhagusundari (ref10) 2013; 2
Kl (ref13) 2021; 219
Aljarah (ref23) 2020; 147
Pudil (ref34) 1994; 15
Wang (ref33) 2023; 137
Tasci (ref37) 2023; 172
Pei (ref63) 2023
Piri (ref48) 2021; 10
Nguyen (ref15) 2019; 51
Nouri-Moghaddam (ref47) 2021; 175
Too (ref43) 2021; 212
Liu (ref41) 2011; 8
Ma (ref21) 2022; 248
Zhao (ref62) 2016; 35
Htun (ref3) 2023; 9
Coello (ref58) 2004; 8
Hammouri (ref38) 2020; 203
Sun (ref64) 2023; 95
Zhang (ref49) 2022; 10
Aghdam (ref4) 2009; 36
Oh (ref40) 2004; 26
Gheyas (ref5) 2010; 43
Tran (ref42) 2017; 48
Ranjan (ref11) 2018; 71
Got (ref31) 2021; 183
Wang (ref32) 2021; 44
Ewees (ref27) 2023; 35
Hu (ref14) 2021; 113
Zorarpaci (ref20) 2016; 62
Weh (ref61) 2001; 235
Mafarja (ref54) 2018; 62
Wang (ref50) 2023; 53
Too (ref57) 2021; 33
Hamdani (ref44) 2007
Houssein (ref26) 2022; 187
Mirjalili (ref59) 2016; 47
Goel (ref1) 2022; 115
Mirjalili (ref30) 2016; 95
Xue (ref7) 2015; 20
Dokeroglu (ref29) 2022; 494
Tubishat (ref22) 2021; 164
Agrawal (ref56) 2020; 89
Al-Tashi (ref18) 2019; 7
Ghasemi (ref8) 2020
Raymer (ref16) 2000; 4
References_xml – volume: 175
  start-page: 114737
  year: 2021
  ident: ref47
  article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114737
– volume: 7
  start-page: 14908
  year: 2018
  ident: ref55
  article-title: A novel hybrid algorithm for feature selection based on whale optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879848
– volume: 183
  start-page: 115312
  year: 2021
  ident: ref31
  article-title: Hybrid filter-wrapper feature selection using whale optimization algorithm: A multi-objective approach
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115312
– volume: 47
  start-page: 123
  year: 1999
  ident: ref12
  article-title: Sequential algorithms for observation selection
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/78.738245
– volume: 115
  start-page: 108250
  year: 2022
  ident: ref1
  article-title: Multi-COVID-Net: Multi-objective optimized network for COVID-19 diagnosis from chest X-ray images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.108250
– volume: 33
  start-page: 16229
  year: 2021
  ident: ref57
  article-title: Spatial bound whale optimization algorithm: An efficient high-dimensional feature selection approach
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-021-06224-y
– volume: 8
  start-page: 256
  year: 2004
  ident: ref58
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 10
  start-page: 72973
  year: 2022
  ident: ref49
  article-title: Multiobjective Harris hawks optimization with associative learning and chaotic local search for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3189476
– volume: 85
  start-page: 189
  year: 2018
  ident: ref9
  article-title: Relief-based feature selection: Introduction and review
  publication-title: Journal of Biomedical Informatics
  doi: 10.1016/j.jbi.2018.07.014
– volume: 14
  start-page: 2150172
  year: 2021
  ident: ref17
  article-title: A new hybrid algorithm based on binary gray wolf optimization and firefly algorithm for features selection
  publication-title: Asian-European Journal of Mathematics
  doi: 10.1142/S1793557121501722
– volume: 35
  start-page: 1
  year: 2016
  ident: ref62
  article-title: Connected Fermat spirals for layered fabrication
  publication-title: ACM Transactions on Graphics
– volume: 4
  start-page: 164
  year: 2000
  ident: ref16
  article-title: Dimensionality reduction using genetic algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.850656
– volume: 187
  start-page: 115870
  year: 2022
  ident: ref26
  article-title: An efficient slime Mould algorithm for solving multi-objective optimization problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115870
– year: 2015
  ident: ref36
  article-title: A review of feature selection methods with applications
– volume: 494
  start-page: 269
  year: 2022
  ident: ref29
  article-title: A comprehensive survey on recent metaheuristics for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.04.083
– volume: 15
  start-page: 1119
  year: 1994
  ident: ref34
  article-title: Floating search methods in feature selection
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(94)90127-9
– volume: 95
  start-page: 91
  year: 2023
  ident: ref64
  article-title: TFSFB: Two-stage feature selection via fusing fuzzy multi-neighborhood rough set with binary whale optimization for imbalanced data
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2023.02.016
– volume: 9
  start-page: 26
  year: 2023
  ident: ref3
  article-title: Survey of feature selection and extraction techniques for stock market prediction
  publication-title: Financial Innovation
  doi: 10.1186/s40854-022-00441-7
– volume: 137
  start-page: 110130
  year: 2023
  ident: ref33
  article-title: A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110130
– volume: 248
  start-page: 108787
  year: 2022
  ident: ref21
  article-title: Multi-strategy ensemble binary hunger games search for feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2022.108787
– volume: 71
  start-page: 994
  year: 2018
  ident: ref11
  article-title: LFNN: Lion fuzzy neural network-based evolutionary model for text classification using context and sense based features
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.016
– volume: 47
  start-page: 106
  year: 2016
  ident: ref59
  article-title: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.039
– volume: 20
  start-page: 606
  year: 2015
  ident: ref7
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2504420
– volume: 113
  start-page: 107887
  year: 2021
  ident: ref14
  article-title: Multimodal particle swarm optimization for feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107887
– volume: 172
  start-page: 113472
  year: 2023
  ident: ref37
  article-title: QLBP: Dynamic patterns-based feature extraction functions for automatic detection of mental health and cognitive conditions using EEG signals
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2023.113472
– volume: 35
  start-page: 3307
  year: 2023
  ident: ref27
  article-title: Enhanced feature selection technique using slime Mould algorithm: A case study on chemical data
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-022-07852-8
– volume: 212
  start-page: 106553
  year: 2021
  ident: ref43
  article-title: A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106553
– volume: 145
  start-page: 110558
  year: 2023
  ident: ref51
  article-title: Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2023.110558
– volume: 62
  start-page: 91
  year: 2016
  ident: ref20
  article-title: A hybrid approach of differential evolution and artificial bee colony for feature selection
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2016.06.004
– volume: 48
  start-page: 1733
  year: 2017
  ident: ref42
  article-title: A new representation in PSO for discretization-based feature selection
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2017.2714145
– volume: 147
  start-page: 106628
  year: 2020
  ident: ref23
  article-title: A dynamic locality multi-objective Salp swarm algorithm for feature selection
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2020.106628
– year: 2023
  ident: ref63
  article-title: A survey on unbalanced classification: How can evolutionary computation help?
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 237
  start-page: 107761
  year: 2022
  ident: ref28
  article-title: Dispersed foraging slime Mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107761
– volume: 53
  start-page: 5276
  year: 2023
  ident: ref50
  article-title: Information-theory-based nondominated sorting ant colony optimization for multiobjective feature selection in classification
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2022.3185554
– volume: 10
  start-page: 1756
  year: 2021
  ident: ref48
  article-title: A binary multi-objective chimp optimizer with dual archive for feature selection in the healthcare domain
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3138403
– volume: 51
  start-page: 589
  year: 2019
  ident: ref15
  article-title: A new binary particle swarm optimization approach: Momentum and dynamic balance between exploration and exploitation
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2019.2944141
– volume: 211
  start-page: 106560
  year: 2021
  ident: ref39
  article-title: BEPO: A novel binary emperor penguin optimizer for automatic feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106560
– volume: 8
  start-page: 191
  year: 2011
  ident: ref41
  article-title: An improved particle swarm optimization for feature selection
  publication-title: Journal of Bionic Engineering
  doi: 10.1016/S1672-6529(11)60020-6
– start-page: 28
  year: 1994
  ident: ref35
  article-title: Greedy attribute selection
– volume: 1
  start-page: 131–156
  year: 1997
  ident: ref6
  article-title: Feature selection for classification
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-1997-1302
– volume: 44
  start-page: 2473
  year: 2021
  ident: ref32
  article-title: Cross-scene hyperspectral feature selection via hybrid whale optimization algorithm with simulated annealing
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
  doi: 10.1109/JSTARS.2021.3056593
– volume: 36
  start-page: 6843
  year: 2009
  ident: ref4
  article-title: Text feature selection using ant colony optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.08.022
– volume: 203
  start-page: 106131
  year: 2020
  ident: ref38
  article-title: An improved dragonfly algorithm for feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106131
– volume: 2
  start-page: 18
  year: 2013
  ident: ref10
  article-title: Feature selection based on information gain
  publication-title: International Journal of Innovative Technology and Exploring Engineering (IJITEE)
– volume: 422
  start-page: 462
  year: 2018
  ident: ref19
  article-title: Pareto front feature selection based on artificial bee colony optimization
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.09.028
– volume: 7
  start-page: 39496
  year: 2019
  ident: ref18
  article-title: Binary optimization using hybrid grey wolf optimization for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906757
– volume: 219
  start-page: 106894
  year: 2021
  ident: ref13
  article-title: A novel multi population based particle swarm optimization for feature selection
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106894
– volume: 62
  start-page: 441
  year: 2018
  ident: ref54
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.11.006
– volume: 6
  start-page: 182
  year: 2002
  ident: ref60
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– start-page: 240
  year: 2007
  ident: ref44
  article-title: Multi-objective feature selection with NSGA II
– volume: 164
  start-page: 113873
  year: 2021
  ident: ref22
  article-title: Dynamic salp swarm algorithm for feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113873
– volume: 89
  start-page: 106092
  year: 2020
  ident: ref56
  article-title: Quantum based whale optimization algorithm for wrapper feature selection
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106092
– volume: 202
  start-page: 117255
  year: 2022
  ident: ref25
  article-title: Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117255
– volume: 235
  start-page: 210
  year: 2001
  ident: ref61
  article-title: Hyperbolic spirals as surface structures in thin layers
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1006/jcis.2000.7365
– volume: 260
  start-page: 302
  year: 2017
  ident: ref52
  article-title: Hybrid whale optimization algorithm with simulated annealing for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.053
– volume: 43
  start-page: 5
  year: 2010
  ident: ref5
  article-title: Feature subset selection in large dimensionality domains
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.06.009
– volume: 111
  start-page: 107698
  year: 2021
  ident: ref24
  article-title: Harris hawks optimisation with simulated annealing as a deep feature selection method for screening of COVID-19 CT-scans
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2021.107698
– volume: 43
  start-page: 1656
  year: 2012
  ident: ref45
  article-title: Particle swarm optimization for feature selection in classification: A multi-objective approach
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2227469
– volume: 142
  start-page: 105166
  year: 2022
  ident: ref2
  article-title: Detection of COVID-19 severity using blood gas analysis parameters and Harris hawks optimized extreme learning machine
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105166
– volume: 62
  start-page: 100847
  year: 2021
  ident: ref46
  article-title: Multi-objective particle swarm optimization with adaptive strategies for feature selection
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100847
– year: 2020
  ident: ref8
  article-title: Feature selection in pre-diagnosis heart coronary artery disease detection: A heuristic approach for feature selection based on information gain ratio and Gini index
– volume: 95
  start-page: 51
  year: 2016
  ident: ref30
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– year: 2019
  ident: ref53
  publication-title: Recent trends in signal and image processing: ISSIP 2017
– volume: 26
  start-page: 1424
  year: 2004
  ident: ref40
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.105
SSID ssj0036389
Score 2.3832996
Snippet In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1563
SubjectTerms Algorithms
Classification
Datasets
Feature selection
Multiple objective analysis
Optimization
Optimization algorithms
Parameters
Source code
Title Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection
URI https://www.proquest.com/docview/3200123580
Volume 140
WOSCitedRecordID wos001202633100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: P5Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: K7-
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: M7S
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: BENPR
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1526-1506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036389
  issn: 1526-1506
  databaseCode: PIMPY
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH6iLQML5RRn5YEJKZDYSZpMCBAVCNFGFAR0iRIfFEQP2oLEv-fZcTgWFpYMcS7l8zvt9z2AvRx9jDzIUJBUmGOAEggUKZk5fiCalAvFwigzzSaa7XZ0fx8nNuE2tdsqS51oFLUYcZ0jP2TU1nW6R-NXR3eN0qurtoVGBWqaJcEzW_e6pSZm2hobvlQaOhgJ0GJVEx0W1z_kA6nZuql_oKuqNZXmT7v0Wy0bW9Oq__crl2DRepnkuJgWyzAnhytQLzs4ECvQq9Az9beOpaj9IAiWhl2Q4nwnfy70IbnroyEhHdQvA1u4SY5fHvHNs_6AoN9LtCv5NpGka_rq4Pga3LbObk7PHdttweHMC2dOJkUmMHhwlc8xZmOeiHzq8lBIpRBmT0mKmLpC-TR341wwmkdhHNE45BjVSM7WoTocDeUGEK7XElWgMqqY7wdZ7nlME5FJ7oXKo9kmuOW_TrmlItcdMV5SDEkMPKmGJ9XwpAU8m7D_dcu44OH46-KdEp3UiuQ0_YZm6-_hbVjQzyryLDtQnU3e5C7M8_fZ03TSgNrJWTu5bkDlsuk0zHzDYxL0cCS5uEoePgGTJ97z
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSXChrKKsPsAFKZDYTpoeEKpYBCoUJEAgLiHxwqK2QBcQP8U3MpOF5cKNA9c4seL4eeaNnXkDsJogx0j8GBeSDRIMUHyNS8rEjvR1hSttRRDGabGJSqMRXl1VTwfgvciFod8qC5uYGmr9qGiPfFPwPK_T3X56dqhqFJ2uFiU0MljUzdsrhmzdrcNdnN81zvf3zncOnLyqgKOEF_Sc2OhYI0l2rVQYmwhPh5K7KtDGWhyOZw3Hd3e1lTxxq4kWPAmDasirgUL2bpTAfgdhWIqwQuuqXnEKyy_I-6f6rDxwMPLg2SkqEiRXbqqWIXVwLjcoi5ukO7_7wZ9uIPVt-6X_9lUmYDxn0ayWwX4SBkx7CkpFhQqWG6xpuE7zi51cgveNIRgJ1ppl10-Sh8zes8s7dJTsBO1nK09MZbXmLY60d9diyOsZUeV-x7CztG4Qts_AxZ-McBaG2o9tMwdM0Vmp9W3MrZDSjxPPEyS0ZpQXWI_HZXCLuY1ULrVOFT-aEYZcKRwigkNEcIgyOJRh_fORp0xn5LebFws0RLnJ6UZfUJj_vXkFRg_Oj4-io8NGfQHGqN9sT2kRhnqdvlmCEfXSu-92llN0M7j5a-B8AKRQOHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Strategy+Assisted+Multi-Objective+Whale+Optimization+Algorithm+for+Feature+Selection&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Yang%2C+Deng&rft.au=Zhou%2C+Chong&rft.au=Wei%2C+Xuemeng&rft.au=Chen%2C+Zhikun&rft.date=2024&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=140&rft.issue=2&rft.spage=1563&rft.epage=1593&rft_id=info:doi/10.32604%2Fcmes.2024.048049&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2024_048049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon