Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow
The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder. We employed highly resolved Large-Eddy Simulation and ensured that the computational grid was fine enough to resolve most of the scales. A p...
Gespeichert in:
| Veröffentlicht in: | Flow, turbulence and combustion Jg. 101; H. 2; S. 499 - 519 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.09.2018
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1386-6184, 1573-1987 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder. We employed highly resolved Large-Eddy Simulation and ensured that the computational grid was fine enough to resolve most of the scales. A perceptible fraction of the total dissipation is modeled. However, this fraction - about one third - is small enough so that the total dissipation suffers only marginally from some potential shortcomings of the turbulence model. Individual terms of the pseudo dissipation tensor and their Reynolds number scaling are discussed and compared. This tensor and thus the turbulent small scale structures are not isotropic at the Reynolds numbers investigated. Furthermore, the near-wall anisotropy under the horseshoe vortex is likely to persist to larger Reynolds numbers as it can be linked to a flapping of the near-wall layer. The turbulent length scale shows a strong spatial variability. In the region of the vortex system in the cylinder front, the distribution reveals a similar shape as the one of the turbulent kinetic energy and its amplitude is in the order of magnitude of the cylinder diameter. In contrast to the region dominated by the approach flow, the turbulent length scale is independent of the Reynolds number in the region dominated by the vortex system. Even though the flow investigated is in non-equilibrium, common a priori estimations and scalings of the Kolmogorov length scale based on macro scales give satisfying results. |
|---|---|
| AbstractList | The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder. We employed highly resolved Large-Eddy Simulation and ensured that the computational grid was fine enough to resolve most of the scales. A perceptible fraction of the total dissipation is modeled. However, this fraction - about one third - is small enough so that the total dissipation suffers only marginally from some potential shortcomings of the turbulence model. Individual terms of the pseudo dissipation tensor and their Reynolds number scaling are discussed and compared. This tensor and thus the turbulent small scale structures are not isotropic at the Reynolds numbers investigated. Furthermore, the near-wall anisotropy under the horseshoe vortex is likely to persist to larger Reynolds numbers as it can be linked to a flapping of the near-wall layer. The turbulent length scale shows a strong spatial variability. In the region of the vortex system in the cylinder front, the distribution reveals a similar shape as the one of the turbulent kinetic energy and its amplitude is in the order of magnitude of the cylinder diameter. In contrast to the region dominated by the approach flow, the turbulent length scale is independent of the Reynolds number in the region dominated by the vortex system. Even though the flow investigated is in non-equilibrium, common a priori estimations and scalings of the Kolmogorov length scale based on macro scales give satisfying results. |
| Author | Schanderl, Wolfgang Manhart, Michael |
| Author_xml | – sequence: 1 givenname: Wolfgang orcidid: 0000-0001-6151-4476 surname: Schanderl fullname: Schanderl, Wolfgang organization: Professorship for Hydromechanics, Technical University of Munich – sequence: 2 givenname: Michael surname: Manhart fullname: Manhart, Michael email: michael.manhart@tum.de organization: Professorship for Hydromechanics, Technical University of Munich |
| BookMark | eNp9kMtKAzEUhoNUsFUfwF3AdTQnM5PLUmpr1YKbisuQzKQlZczUZAbp2zvtCIKgq3MW_3cu3wSNQhMcQldAb4BScZuA5ionFCRRChiRJ2gMhcgIKClGfZ9JTjjI_AxNUtpSSrmgaowW9z4lvzOtbwJu1njVRdvVLrT42QfX-hLPgoubPfYBGzzd1z5ULuI3U9f4qQvlkZvXzecFOl2bOrnL73qOXuez1XRBli8Pj9O7JSkz4C0xTgFVFXDVHyfY2hWFYpUVtKTGGCvzgkmoLMuEVbaslDUMLHBaFIyrypbZOboe5u5i89G51Opt08XQr9QMoMi4BJb1KTGkytikFN1al749PtlG42sNVB-06UGb7rXpgzYtexJ-kbvo303c_8uwgUl9Nmxc_Lnpb-gLXYyAaA |
| CitedBy_id | crossref_primary_10_1017_jfm_2021_411 crossref_primary_10_1016_j_oceaneng_2024_117749 crossref_primary_10_1016_j_buildenv_2021_107985 crossref_primary_10_1016_j_oceaneng_2022_113104 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125981 crossref_primary_10_1063_5_0012358 crossref_primary_10_1680_jwama_22_00017 |
| Cites_doi | 10.1007/s10494-017-9865-3 10.1016/S0045-7930(03)00061-6 10.1063/1.3485774 10.1017/jfm.2015.341 10.1023/a:1009995426001 10.1063/1.858347 10.7551/mitpress/3014.001.0001 10.1016/j.compfluid.2016.01.002 10.1146/annurev-fluid-010814-014637 10.1017/jfm.2017.486 10.1002/fld.1227 10.1103/PhysRevE.93.033115 10.1007/978-3-642-85829-1 10.1098/rspa.1935.0158 10.1017/S0022112090001215 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media B.V., part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: Springer Science+Business Media B.V., part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10494-018-9912-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 1573-1987 |
| EndPage | 519 |
| ExternalDocumentID | 10_1007_s10494_018_9912_8 |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: MA2062/11 funderid: https://doi.org/10.13039/501100001659 – fundername: Leibniz Rechenzentrum grantid: pr84gi |
| GroupedDBID | -Y2 -~X .86 .DC .VR 06D 0R~ 0VY 1N0 2.D 203 29H 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFEXP AFGCZ AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AI. AIAKS AIDUJ AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9T PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SC5 SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZMTXR AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP ATHPR CITATION |
| ID | FETCH-LOGICAL-c316t-ae9109d16957372fe5592db70c0aaab845281db237b9bcd9ba21b16055269dbc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446583900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-6184 |
| IngestDate | Mon Oct 06 16:29:08 EDT 2025 Sat Nov 29 03:45:14 EST 2025 Tue Nov 18 22:36:13 EST 2025 Wed Apr 23 02:04:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Large-Eddy simulation Non-equilibrium flow Dissipation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-ae9109d16957372fe5592db70c0aaab845281db237b9bcd9ba21b16055269dbc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6151-4476 |
| PQID | 2115368123 |
| PQPubID | 2043591 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2115368123 crossref_citationtrail_10_1007_s10494_018_9912_8 crossref_primary_10_1007_s10494_018_9912_8 springer_journals_10_1007_s10494_018_9912_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal published in association with ERCOFTAC |
| PublicationTitle | Flow, turbulence and combustion |
| PublicationTitleAbbrev | Flow Turbulence Combust |
| PublicationYear | 2018 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | SchanderlWJenssenUStroblCManhartMThe structure and the budget of turbulent kinetic energy in front of a wall-mounted cylinderJ. Fluid Mech.2017827285321369285910.1017/jfm.2017.48606925202 Apsilidis, N., Khosronejad, A., Sotiropoulos, F., Dancey, C., Diplas, P.: Physical and numerical modeling of the turbulent flow field upstream of a bridge pier. In: International Conference on Scour and Erosion 6. Paris (2012) LumleyJLSome comments on turbulencePhys. Fluids A: Fluid Dyn.19924220321110.1063/1.8583470825.76365 BoseSTMoinPYouDGrid-independent large-eddy simulation using explicit filteringPhys. Fluids20102210105,10310.1063/1.3485774 AdrianRJWesterweelJParticle image velocimetry2011CambridgeCambridge University Press1359.76008 SchanderlWJenssenUManhartMNear-wall stress balance in front of a wall-mounted cylinderFlow Turbul. Combust.201799366568410.1007/s10494-017-9865-3 ManhartMA zonal grid algorithm for DNS of turbulent boundary layersComput. Fluids200433343546110.1016/S0045-7930(03)00061-6 PellerNDucALTremblayFManhartMHigh-order stable interpolations for immersed boundary methodsInt. J. Numer. Methods Fluids2006521175119310.1002/fld.1227 NicoudFDucrosFSubgrid-Scale stress modelling based on the square of the velocity gradient tensorFlow Turbul. Combust.199962318320010.1023/a:10099954260010980.76036 SchlichtingHGerstenKBoundary layer theory2000BerlinSpringer10.1007/978-3-642-85829-1 ApsilidisNDiplasPDanceyCLBouratsisPTime-resolved flow dynamics and reynolds number effects at a wall-cylinder junctionJ. Fluid Mech.201577647551110.1017/jfm.2015.341 DevenportWJSimpsonRLTime-dependent and time-averaged turbulence structure near the nose of a wing-body junctionJ. Fluid Mech.1990210235510.1017/S0022112090001215 PopeSBTurbulent flows2011CambridgeCambridge University Press1308.76134 LeschzinerMStatistical turbulence modelling for fluid dynamics – demystified2016LondonImperial College Press1334.76002 Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM Form No. 320–1951, pp. 195–210 (1967) NedićJTavoularisSEnergy dissipation scaling in uniformly sheared turbulencePhys. Rev. E201693033,11510.1103/PhysRevE.93.033115 VassilicosJCDissipation in turbulent flowsAnnu. Rev. Fluid Mech.201547195114372716310.1146/annurev-fluid-010814-014637 WernerHGrobstruktursimulation Der Turbulenten Stromung̈ über Eine Querliegende Rippe in Einem Plattenkanal Bei Hoher Reynoldszahl. Ph.D. Thesis1991MünchenTechnische Universität München TaylorGIStatistical theory of turbulenceProc. R. Soc. Lond. Math. Phys. Eng. Sci.193515187342144410.1098/rspa.1935.015861.0926.02 RichardsonLFWeather prediction by numerical process1922CambridgeCambridge University Press48.0629.07 SchanderlWManhartMReliability of wall shear stress estimations of the flow around a wall-mounted cylinderComput. Fluids2016128162910.1016/j.compfluid.2016.01.002 PellerNNumerische Simulation Turbulenter Stromungen̈ Mit Immersed Boundaries. Ph.D. thesis2010MünchenTechnische Universität München TennekesHLumleyJLA first course in turbulence1972CambridgeMIT Press0285.76018 GI Taylor (9912_CR3) 1935; 151 M Leschziner (9912_CR10) 2016 J Nedić (9912_CR7) 2016; 93 RJ Adrian (9912_CR1) 2011 H Werner (9912_CR21) 1991 W Schanderl (9912_CR12) 2016; 128 H Schlichting (9912_CR22) 2000 N Peller (9912_CR14) 2010 W Schanderl (9912_CR11) 2017; 99 N Apsilidis (9912_CR19) 2015; 776 H Tennekes (9912_CR2) 1972 M Manhart (9912_CR17) 2004; 33 JC Vassilicos (9912_CR5) 2015; 47 W Schanderl (9912_CR8) 2017; 827 ST Bose (9912_CR18) 2010; 22 9912_CR23 N Peller (9912_CR15) 2006; 52 9912_CR20 LF Richardson (9912_CR4) 1922 SB Pope (9912_CR9) 2011 WJ Devenport (9912_CR13) 1990; 210 JL Lumley (9912_CR6) 1992; 4 F Nicoud (9912_CR16) 1999; 62 |
| References_xml | – reference: LumleyJLSome comments on turbulencePhys. Fluids A: Fluid Dyn.19924220321110.1063/1.8583470825.76365 – reference: Apsilidis, N., Khosronejad, A., Sotiropoulos, F., Dancey, C., Diplas, P.: Physical and numerical modeling of the turbulent flow field upstream of a bridge pier. In: International Conference on Scour and Erosion 6. Paris (2012) – reference: TaylorGIStatistical theory of turbulenceProc. R. Soc. Lond. Math. Phys. Eng. Sci.193515187342144410.1098/rspa.1935.015861.0926.02 – reference: DevenportWJSimpsonRLTime-dependent and time-averaged turbulence structure near the nose of a wing-body junctionJ. Fluid Mech.1990210235510.1017/S0022112090001215 – reference: Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM Form No. 320–1951, pp. 195–210 (1967) – reference: LeschzinerMStatistical turbulence modelling for fluid dynamics – demystified2016LondonImperial College Press1334.76002 – reference: SchlichtingHGerstenKBoundary layer theory2000BerlinSpringer10.1007/978-3-642-85829-1 – reference: BoseSTMoinPYouDGrid-independent large-eddy simulation using explicit filteringPhys. Fluids20102210105,10310.1063/1.3485774 – reference: SchanderlWJenssenUManhartMNear-wall stress balance in front of a wall-mounted cylinderFlow Turbul. Combust.201799366568410.1007/s10494-017-9865-3 – reference: NedićJTavoularisSEnergy dissipation scaling in uniformly sheared turbulencePhys. Rev. E201693033,11510.1103/PhysRevE.93.033115 – reference: SchanderlWManhartMReliability of wall shear stress estimations of the flow around a wall-mounted cylinderComput. Fluids2016128162910.1016/j.compfluid.2016.01.002 – reference: PellerNDucALTremblayFManhartMHigh-order stable interpolations for immersed boundary methodsInt. J. Numer. Methods Fluids2006521175119310.1002/fld.1227 – reference: RichardsonLFWeather prediction by numerical process1922CambridgeCambridge University Press48.0629.07 – reference: ManhartMA zonal grid algorithm for DNS of turbulent boundary layersComput. Fluids200433343546110.1016/S0045-7930(03)00061-6 – reference: PopeSBTurbulent flows2011CambridgeCambridge University Press1308.76134 – reference: NicoudFDucrosFSubgrid-Scale stress modelling based on the square of the velocity gradient tensorFlow Turbul. Combust.199962318320010.1023/a:10099954260010980.76036 – reference: PellerNNumerische Simulation Turbulenter Stromungen̈ Mit Immersed Boundaries. Ph.D. thesis2010MünchenTechnische Universität München – reference: SchanderlWJenssenUStroblCManhartMThe structure and the budget of turbulent kinetic energy in front of a wall-mounted cylinderJ. Fluid Mech.2017827285321369285910.1017/jfm.2017.48606925202 – reference: ApsilidisNDiplasPDanceyCLBouratsisPTime-resolved flow dynamics and reynolds number effects at a wall-cylinder junctionJ. Fluid Mech.201577647551110.1017/jfm.2015.341 – reference: WernerHGrobstruktursimulation Der Turbulenten Stromung̈ über Eine Querliegende Rippe in Einem Plattenkanal Bei Hoher Reynoldszahl. Ph.D. Thesis1991MünchenTechnische Universität München – reference: AdrianRJWesterweelJParticle image velocimetry2011CambridgeCambridge University Press1359.76008 – reference: TennekesHLumleyJLA first course in turbulence1972CambridgeMIT Press0285.76018 – reference: VassilicosJCDissipation in turbulent flowsAnnu. Rev. Fluid Mech.201547195114372716310.1146/annurev-fluid-010814-014637 – volume: 99 start-page: 665 issue: 3 year: 2017 ident: 9912_CR11 publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-017-9865-3 – volume: 33 start-page: 435 issue: 3 year: 2004 ident: 9912_CR17 publication-title: Comput. Fluids doi: 10.1016/S0045-7930(03)00061-6 – volume: 22 start-page: 105,103 issue: 10 year: 2010 ident: 9912_CR18 publication-title: Phys. Fluids doi: 10.1063/1.3485774 – volume: 776 start-page: 475 year: 2015 ident: 9912_CR19 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.341 – volume: 62 start-page: 183 issue: 3 year: 1999 ident: 9912_CR16 publication-title: Flow Turbul. Combust. doi: 10.1023/a:1009995426001 – volume: 4 start-page: 203 issue: 2 year: 1992 ident: 9912_CR6 publication-title: Phys. Fluids A: Fluid Dyn. doi: 10.1063/1.858347 – volume-title: Particle image velocimetry year: 2011 ident: 9912_CR1 – volume-title: A first course in turbulence year: 1972 ident: 9912_CR2 doi: 10.7551/mitpress/3014.001.0001 – ident: 9912_CR23 – volume: 128 start-page: 16 year: 2016 ident: 9912_CR12 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.01.002 – ident: 9912_CR20 – volume: 47 start-page: 95 issue: 1 year: 2015 ident: 9912_CR5 publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010814-014637 – volume: 827 start-page: 285 year: 2017 ident: 9912_CR8 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.486 – volume-title: Statistical turbulence modelling for fluid dynamics – demystified year: 2016 ident: 9912_CR10 – volume: 52 start-page: 1175 year: 2006 ident: 9912_CR15 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1227 – volume: 93 start-page: 033,115 year: 2016 ident: 9912_CR7 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.033115 – volume-title: Boundary layer theory year: 2000 ident: 9912_CR22 doi: 10.1007/978-3-642-85829-1 – volume-title: Weather prediction by numerical process year: 1922 ident: 9912_CR4 – volume-title: Numerische Simulation Turbulenter Stromungen̈ Mit Immersed Boundaries. Ph.D. thesis year: 2010 ident: 9912_CR14 – volume-title: Grobstruktursimulation Der Turbulenten Stromung̈ über Eine Querliegende Rippe in Einem Plattenkanal Bei Hoher Reynoldszahl. Ph.D. Thesis year: 1991 ident: 9912_CR21 – volume: 151 start-page: 421 issue: 873 year: 1935 ident: 9912_CR3 publication-title: Proc. R. Soc. Lond. Math. Phys. Eng. Sci. doi: 10.1098/rspa.1935.0158 – volume-title: Turbulent flows year: 2011 ident: 9912_CR9 – volume: 210 start-page: 23 year: 1990 ident: 9912_CR13 publication-title: J. Fluid Mech. doi: 10.1017/S0022112090001215 |
| SSID | ssj0006709 |
| Score | 2.203785 |
| Snippet | The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 499 |
| SubjectTerms | Anisotropy Automotive Engineering Computational fluid dynamics Computational grids Computer simulation Cylinders Energy Energy dissipation Engineering Engineering Fluid Dynamics Engineering Thermodynamics Flapping Fluid flow Fluid- and Aerodynamics Heat and Mass Transfer Horseshoe vortices Kinetic energy Large eddy simulation Reynolds number Scaling Turbulence Turbulent flow Vortices |
| Title | Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow |
| URI | https://link.springer.com/article/10.1007/s10494-018-9912-8 https://www.proquest.com/docview/2115368123 |
| Volume | 101 |
| WOSCitedRecordID | wos000446583900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1987 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006709 issn: 1386-6184 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAP6qbidEoefPCDQpv0K48yN0RhiE7ZW2nSFAajk30o_vdesnSbooI-N3e0d7ncXXP3O4BTlSmVh0w5lEa548dB5qQyx5xHIyH7CiMK4ZphE1GnE_d6_N72cY_LavfyStKc1EvNbr6GsfXQQLmHZrwKa-jtYm2ND4_P8-NXA5KZLCsOHT3NpLzK_I7FZ2e0iDC_XIoaX9Pe_tdb7sCWDS3J1WwvVGFFFTXYXAIcrEHVmvKYnFm86fNduLlG4dvKajLMSXeKktbOiNwhJTIjLdMgSPoFSUnzfaARFkdE_4Int-gWDV17MHzbg6d2q9u8ceyABUcyL5w4qcJggWdeyAM9rSZXmF7QTESudNM0FbEfUAxnBWWR4EJmXKTUEx4mQHoseSYk24dKMSzUARAVUD-X3Fc5wxgFPz_Upp4xwXnqKlfUwS0lnUiLPq6HYAySBW6yllyCpImWXBLX4WJO8jKD3vhtcaNUX2KtcJxgchswDbDG6nBZqmvx-Edmh39afQQbVOvbFJ41oDIZTdUxrMvXSX88OjGb8wOdL9vp |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8JADG8UTdQHFdSIot6DD35kybbb1z0ahKAgMYqGt2V3uyUkBAwDjf-9vXEDNGqiz7s2W3u9trv2V4BTGUuZeFQatu0nhhO4sRGJBHMehYTsSIwouJkNm_Db7aDbZfe6jzvNq93zK8nspF5odnMUjK2FBsosNONlWHHQYak6vofH59nxqwDJsiwr8Aw1zSS_yvyOxWdnNI8wv1yKZr6mvvWvt9yGTR1akqvpXijCkhyUYGMBcLAERW3KKTnTeNPnO9C4RuHrymoyTEhngpJWzog0kRKZkVrWIEh6AxKR6ntfISyOiPoFT27RLWZ09f7wbRee6rVOtWHoAQuGoJY3NiKJwQKLLY-5alpNIjG9sGPum8KMoogHjmtjOMtt6nPGRcx4ZFvcwgRIjSWPuaB7UBgMB3IfiHRtJxHMkQnFGAU_31OmHlPOWGRKk5fBzCUdCo0-roZg9MM5brKSXIikoZJcGJThYkbyMoXe-G1xJVdfqK0wDTG5dakCWKNluMzVNX_8I7ODP60-gbVG564Vtm7azUNYt5XusyK0ChTGo4k8glXxOu6lo-Nso34A9HzezQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iuhBbVWsVt2DBx-E5p3sUfqgWikFq_QWsskGCiUtbar4751Jk7aKCuI5O0sys7Mzk935PoBLGUoZ2YZUdN2JFNO1QsUPIqx5CAnZlJhRCDUlm3A6Hbff592M53Sa33bPjyTnPQ2E0hQn1XEYVVca30yCtNXQWbmGLr0OGyZxBlG5_vSy2IoJnCytuFxbIWaT_Fjzuyk-B6ZltvnlgDSNO829f7_xPuxmKSe7m6-RIqzJuAQ7K0CEJShmLj5lVxkO9fUBtOpolOzGNRtFrDdDC1CQYm2UxMlYI20cZIOY-az2PiTkxQmjX_PsAcNlKtccjt4O4bnZ6NVaSka8oASGZieKLzGJ4KFmc4tYbCKJZYceCkcNVN_3hWtaOqa5QjccwUUQcuHrmtCwMCK68lAExhEU4lEsj4FJSzejgJsyMjB3wc-3aQsIDcG5r0pVlEHNte4FGSo5kWMMvSWeMmnOQ1GPNOe5ZbhZiIznkBy_Da7kpvQy75x6WPRaBgGvGWW4zU23fPzjZCd_Gn0BW91603u877RPYVsn06d30ypQSCYzeQabwWsymE7O0zX7AXO257E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissipation+of+Turbulent+Kinetic+Energy+in+a+Cylinder+Wall+Junction+Flow&rft.jtitle=Flow%2C+turbulence+and+combustion&rft.au=Schanderl%2C+Wolfgang&rft.au=Manhart%2C+Michael&rft.date=2018-09-01&rft.pub=Springer+Netherlands&rft.issn=1386-6184&rft.eissn=1573-1987&rft.volume=101&rft.issue=2&rft.spage=499&rft.epage=519&rft_id=info:doi/10.1007%2Fs10494-018-9912-8&rft.externalDocID=10_1007_s10494_018_9912_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-6184&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-6184&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-6184&client=summon |