Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow

The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder. We employed highly resolved Large-Eddy Simulation and ensured that the computational grid was fine enough to resolve most of the scales. A p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Flow, turbulence and combustion Jg. 101; H. 2; S. 499 - 519
Hauptverfasser: Schanderl, Wolfgang, Manhart, Michael
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.09.2018
Springer Nature B.V
Schlagworte:
ISSN:1386-6184, 1573-1987
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder. We employed highly resolved Large-Eddy Simulation and ensured that the computational grid was fine enough to resolve most of the scales. A perceptible fraction of the total dissipation is modeled. However, this fraction - about one third - is small enough so that the total dissipation suffers only marginally from some potential shortcomings of the turbulence model. Individual terms of the pseudo dissipation tensor and their Reynolds number scaling are discussed and compared. This tensor and thus the turbulent small scale structures are not isotropic at the Reynolds numbers investigated. Furthermore, the near-wall anisotropy under the horseshoe vortex is likely to persist to larger Reynolds numbers as it can be linked to a flapping of the near-wall layer. The turbulent length scale shows a strong spatial variability. In the region of the vortex system in the cylinder front, the distribution reveals a similar shape as the one of the turbulent kinetic energy and its amplitude is in the order of magnitude of the cylinder diameter. In contrast to the region dominated by the approach flow, the turbulent length scale is independent of the Reynolds number in the region dominated by the vortex system. Even though the flow investigated is in non-equilibrium, common a priori estimations and scalings of the Kolmogorov length scale based on macro scales give satisfying results.
AbstractList The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder. We employed highly resolved Large-Eddy Simulation and ensured that the computational grid was fine enough to resolve most of the scales. A perceptible fraction of the total dissipation is modeled. However, this fraction - about one third - is small enough so that the total dissipation suffers only marginally from some potential shortcomings of the turbulence model. Individual terms of the pseudo dissipation tensor and their Reynolds number scaling are discussed and compared. This tensor and thus the turbulent small scale structures are not isotropic at the Reynolds numbers investigated. Furthermore, the near-wall anisotropy under the horseshoe vortex is likely to persist to larger Reynolds numbers as it can be linked to a flapping of the near-wall layer. The turbulent length scale shows a strong spatial variability. In the region of the vortex system in the cylinder front, the distribution reveals a similar shape as the one of the turbulent kinetic energy and its amplitude is in the order of magnitude of the cylinder diameter. In contrast to the region dominated by the approach flow, the turbulent length scale is independent of the Reynolds number in the region dominated by the vortex system. Even though the flow investigated is in non-equilibrium, common a priori estimations and scalings of the Kolmogorov length scale based on macro scales give satisfying results.
Author Schanderl, Wolfgang
Manhart, Michael
Author_xml – sequence: 1
  givenname: Wolfgang
  orcidid: 0000-0001-6151-4476
  surname: Schanderl
  fullname: Schanderl, Wolfgang
  organization: Professorship for Hydromechanics, Technical University of Munich
– sequence: 2
  givenname: Michael
  surname: Manhart
  fullname: Manhart, Michael
  email: michael.manhart@tum.de
  organization: Professorship for Hydromechanics, Technical University of Munich
BookMark eNp9kMtKAzEUhoNUsFUfwF3AdTQnM5PLUmpr1YKbisuQzKQlZczUZAbp2zvtCIKgq3MW_3cu3wSNQhMcQldAb4BScZuA5ionFCRRChiRJ2gMhcgIKClGfZ9JTjjI_AxNUtpSSrmgaowW9z4lvzOtbwJu1njVRdvVLrT42QfX-hLPgoubPfYBGzzd1z5ULuI3U9f4qQvlkZvXzecFOl2bOrnL73qOXuez1XRBli8Pj9O7JSkz4C0xTgFVFXDVHyfY2hWFYpUVtKTGGCvzgkmoLMuEVbaslDUMLHBaFIyrypbZOboe5u5i89G51Opt08XQr9QMoMi4BJb1KTGkytikFN1al749PtlG42sNVB-06UGb7rXpgzYtexJ-kbvo303c_8uwgUl9Nmxc_Lnpb-gLXYyAaA
CitedBy_id crossref_primary_10_1017_jfm_2021_411
crossref_primary_10_1016_j_oceaneng_2024_117749
crossref_primary_10_1016_j_buildenv_2021_107985
crossref_primary_10_1016_j_oceaneng_2022_113104
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125981
crossref_primary_10_1063_5_0012358
crossref_primary_10_1680_jwama_22_00017
Cites_doi 10.1007/s10494-017-9865-3
10.1016/S0045-7930(03)00061-6
10.1063/1.3485774
10.1017/jfm.2015.341
10.1023/a:1009995426001
10.1063/1.858347
10.7551/mitpress/3014.001.0001
10.1016/j.compfluid.2016.01.002
10.1146/annurev-fluid-010814-014637
10.1017/jfm.2017.486
10.1002/fld.1227
10.1103/PhysRevE.93.033115
10.1007/978-3-642-85829-1
10.1098/rspa.1935.0158
10.1017/S0022112090001215
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s10494-018-9912-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1573-1987
EndPage 519
ExternalDocumentID 10_1007_s10494_018_9912_8
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: MA2062/11
  funderid: https://doi.org/10.13039/501100001659
– fundername: Leibniz Rechenzentrum
  grantid: pr84gi
GroupedDBID -Y2
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
2.D
203
29H
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFDZB
AFEXP
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AI.
AIAKS
AIDUJ
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SC5
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c316t-ae9109d16957372fe5592db70c0aaab845281db237b9bcd9ba21b16055269dbc3
IEDL.DBID RSV
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000446583900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-6184
IngestDate Mon Oct 06 16:29:08 EDT 2025
Sat Nov 29 03:45:14 EST 2025
Tue Nov 18 22:36:13 EST 2025
Wed Apr 23 02:04:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Large-Eddy simulation
Non-equilibrium flow
Dissipation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-ae9109d16957372fe5592db70c0aaab845281db237b9bcd9ba21b16055269dbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6151-4476
PQID 2115368123
PQPubID 2043591
PageCount 21
ParticipantIDs proquest_journals_2115368123
crossref_citationtrail_10_1007_s10494_018_9912_8
crossref_primary_10_1007_s10494_018_9912_8
springer_journals_10_1007_s10494_018_9912_8
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal published in association with ERCOFTAC
PublicationTitle Flow, turbulence and combustion
PublicationTitleAbbrev Flow Turbulence Combust
PublicationYear 2018
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References SchanderlWJenssenUStroblCManhartMThe structure and the budget of turbulent kinetic energy in front of a wall-mounted cylinderJ. Fluid Mech.2017827285321369285910.1017/jfm.2017.48606925202
Apsilidis, N., Khosronejad, A., Sotiropoulos, F., Dancey, C., Diplas, P.: Physical and numerical modeling of the turbulent flow field upstream of a bridge pier. In: International Conference on Scour and Erosion 6. Paris (2012)
LumleyJLSome comments on turbulencePhys. Fluids A: Fluid Dyn.19924220321110.1063/1.8583470825.76365
BoseSTMoinPYouDGrid-independent large-eddy simulation using explicit filteringPhys. Fluids20102210105,10310.1063/1.3485774
AdrianRJWesterweelJParticle image velocimetry2011CambridgeCambridge University Press1359.76008
SchanderlWJenssenUManhartMNear-wall stress balance in front of a wall-mounted cylinderFlow Turbul. Combust.201799366568410.1007/s10494-017-9865-3
ManhartMA zonal grid algorithm for DNS of turbulent boundary layersComput. Fluids200433343546110.1016/S0045-7930(03)00061-6
PellerNDucALTremblayFManhartMHigh-order stable interpolations for immersed boundary methodsInt. J. Numer. Methods Fluids2006521175119310.1002/fld.1227
NicoudFDucrosFSubgrid-Scale stress modelling based on the square of the velocity gradient tensorFlow Turbul. Combust.199962318320010.1023/a:10099954260010980.76036
SchlichtingHGerstenKBoundary layer theory2000BerlinSpringer10.1007/978-3-642-85829-1
ApsilidisNDiplasPDanceyCLBouratsisPTime-resolved flow dynamics and reynolds number effects at a wall-cylinder junctionJ. Fluid Mech.201577647551110.1017/jfm.2015.341
DevenportWJSimpsonRLTime-dependent and time-averaged turbulence structure near the nose of a wing-body junctionJ. Fluid Mech.1990210235510.1017/S0022112090001215
PopeSBTurbulent flows2011CambridgeCambridge University Press1308.76134
LeschzinerMStatistical turbulence modelling for fluid dynamics – demystified2016LondonImperial College Press1334.76002
Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM Form No. 320–1951, pp. 195–210 (1967)
NedićJTavoularisSEnergy dissipation scaling in uniformly sheared turbulencePhys. Rev. E201693033,11510.1103/PhysRevE.93.033115
VassilicosJCDissipation in turbulent flowsAnnu. Rev. Fluid Mech.201547195114372716310.1146/annurev-fluid-010814-014637
WernerHGrobstruktursimulation Der Turbulenten Stromung̈ über Eine Querliegende Rippe in Einem Plattenkanal Bei Hoher Reynoldszahl. Ph.D. Thesis1991MünchenTechnische Universität München
TaylorGIStatistical theory of turbulenceProc. R. Soc. Lond. Math. Phys. Eng. Sci.193515187342144410.1098/rspa.1935.015861.0926.02
RichardsonLFWeather prediction by numerical process1922CambridgeCambridge University Press48.0629.07
SchanderlWManhartMReliability of wall shear stress estimations of the flow around a wall-mounted cylinderComput. Fluids2016128162910.1016/j.compfluid.2016.01.002
PellerNNumerische Simulation Turbulenter Stromungen̈ Mit Immersed Boundaries. Ph.D. thesis2010MünchenTechnische Universität München
TennekesHLumleyJLA first course in turbulence1972CambridgeMIT Press0285.76018
GI Taylor (9912_CR3) 1935; 151
M Leschziner (9912_CR10) 2016
J Nedić (9912_CR7) 2016; 93
RJ Adrian (9912_CR1) 2011
H Werner (9912_CR21) 1991
W Schanderl (9912_CR12) 2016; 128
H Schlichting (9912_CR22) 2000
N Peller (9912_CR14) 2010
W Schanderl (9912_CR11) 2017; 99
N Apsilidis (9912_CR19) 2015; 776
H Tennekes (9912_CR2) 1972
M Manhart (9912_CR17) 2004; 33
JC Vassilicos (9912_CR5) 2015; 47
W Schanderl (9912_CR8) 2017; 827
ST Bose (9912_CR18) 2010; 22
9912_CR23
N Peller (9912_CR15) 2006; 52
9912_CR20
LF Richardson (9912_CR4) 1922
SB Pope (9912_CR9) 2011
WJ Devenport (9912_CR13) 1990; 210
JL Lumley (9912_CR6) 1992; 4
F Nicoud (9912_CR16) 1999; 62
References_xml – reference: LumleyJLSome comments on turbulencePhys. Fluids A: Fluid Dyn.19924220321110.1063/1.8583470825.76365
– reference: Apsilidis, N., Khosronejad, A., Sotiropoulos, F., Dancey, C., Diplas, P.: Physical and numerical modeling of the turbulent flow field upstream of a bridge pier. In: International Conference on Scour and Erosion 6. Paris (2012)
– reference: TaylorGIStatistical theory of turbulenceProc. R. Soc. Lond. Math. Phys. Eng. Sci.193515187342144410.1098/rspa.1935.015861.0926.02
– reference: DevenportWJSimpsonRLTime-dependent and time-averaged turbulence structure near the nose of a wing-body junctionJ. Fluid Mech.1990210235510.1017/S0022112090001215
– reference: Lilly, D.K.: The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM Form No. 320–1951, pp. 195–210 (1967)
– reference: LeschzinerMStatistical turbulence modelling for fluid dynamics – demystified2016LondonImperial College Press1334.76002
– reference: SchlichtingHGerstenKBoundary layer theory2000BerlinSpringer10.1007/978-3-642-85829-1
– reference: BoseSTMoinPYouDGrid-independent large-eddy simulation using explicit filteringPhys. Fluids20102210105,10310.1063/1.3485774
– reference: SchanderlWJenssenUManhartMNear-wall stress balance in front of a wall-mounted cylinderFlow Turbul. Combust.201799366568410.1007/s10494-017-9865-3
– reference: NedićJTavoularisSEnergy dissipation scaling in uniformly sheared turbulencePhys. Rev. E201693033,11510.1103/PhysRevE.93.033115
– reference: SchanderlWManhartMReliability of wall shear stress estimations of the flow around a wall-mounted cylinderComput. Fluids2016128162910.1016/j.compfluid.2016.01.002
– reference: PellerNDucALTremblayFManhartMHigh-order stable interpolations for immersed boundary methodsInt. J. Numer. Methods Fluids2006521175119310.1002/fld.1227
– reference: RichardsonLFWeather prediction by numerical process1922CambridgeCambridge University Press48.0629.07
– reference: ManhartMA zonal grid algorithm for DNS of turbulent boundary layersComput. Fluids200433343546110.1016/S0045-7930(03)00061-6
– reference: PopeSBTurbulent flows2011CambridgeCambridge University Press1308.76134
– reference: NicoudFDucrosFSubgrid-Scale stress modelling based on the square of the velocity gradient tensorFlow Turbul. Combust.199962318320010.1023/a:10099954260010980.76036
– reference: PellerNNumerische Simulation Turbulenter Stromungen̈ Mit Immersed Boundaries. Ph.D. thesis2010MünchenTechnische Universität München
– reference: SchanderlWJenssenUStroblCManhartMThe structure and the budget of turbulent kinetic energy in front of a wall-mounted cylinderJ. Fluid Mech.2017827285321369285910.1017/jfm.2017.48606925202
– reference: ApsilidisNDiplasPDanceyCLBouratsisPTime-resolved flow dynamics and reynolds number effects at a wall-cylinder junctionJ. Fluid Mech.201577647551110.1017/jfm.2015.341
– reference: WernerHGrobstruktursimulation Der Turbulenten Stromung̈ über Eine Querliegende Rippe in Einem Plattenkanal Bei Hoher Reynoldszahl. Ph.D. Thesis1991MünchenTechnische Universität München
– reference: AdrianRJWesterweelJParticle image velocimetry2011CambridgeCambridge University Press1359.76008
– reference: TennekesHLumleyJLA first course in turbulence1972CambridgeMIT Press0285.76018
– reference: VassilicosJCDissipation in turbulent flowsAnnu. Rev. Fluid Mech.201547195114372716310.1146/annurev-fluid-010814-014637
– volume: 99
  start-page: 665
  issue: 3
  year: 2017
  ident: 9912_CR11
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-017-9865-3
– volume: 33
  start-page: 435
  issue: 3
  year: 2004
  ident: 9912_CR17
  publication-title: Comput. Fluids
  doi: 10.1016/S0045-7930(03)00061-6
– volume: 22
  start-page: 105,103
  issue: 10
  year: 2010
  ident: 9912_CR18
  publication-title: Phys. Fluids
  doi: 10.1063/1.3485774
– volume: 776
  start-page: 475
  year: 2015
  ident: 9912_CR19
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.341
– volume: 62
  start-page: 183
  issue: 3
  year: 1999
  ident: 9912_CR16
  publication-title: Flow Turbul. Combust.
  doi: 10.1023/a:1009995426001
– volume: 4
  start-page: 203
  issue: 2
  year: 1992
  ident: 9912_CR6
  publication-title: Phys. Fluids A: Fluid Dyn.
  doi: 10.1063/1.858347
– volume-title: Particle image velocimetry
  year: 2011
  ident: 9912_CR1
– volume-title: A first course in turbulence
  year: 1972
  ident: 9912_CR2
  doi: 10.7551/mitpress/3014.001.0001
– ident: 9912_CR23
– volume: 128
  start-page: 16
  year: 2016
  ident: 9912_CR12
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.01.002
– ident: 9912_CR20
– volume: 47
  start-page: 95
  issue: 1
  year: 2015
  ident: 9912_CR5
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010814-014637
– volume: 827
  start-page: 285
  year: 2017
  ident: 9912_CR8
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.486
– volume-title: Statistical turbulence modelling for fluid dynamics – demystified
  year: 2016
  ident: 9912_CR10
– volume: 52
  start-page: 1175
  year: 2006
  ident: 9912_CR15
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1227
– volume: 93
  start-page: 033,115
  year: 2016
  ident: 9912_CR7
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.033115
– volume-title: Boundary layer theory
  year: 2000
  ident: 9912_CR22
  doi: 10.1007/978-3-642-85829-1
– volume-title: Weather prediction by numerical process
  year: 1922
  ident: 9912_CR4
– volume-title: Numerische Simulation Turbulenter Stromungen̈ Mit Immersed Boundaries. Ph.D. thesis
  year: 2010
  ident: 9912_CR14
– volume-title: Grobstruktursimulation Der Turbulenten Stromung̈ über Eine Querliegende Rippe in Einem Plattenkanal Bei Hoher Reynoldszahl. Ph.D. Thesis
  year: 1991
  ident: 9912_CR21
– volume: 151
  start-page: 421
  issue: 873
  year: 1935
  ident: 9912_CR3
  publication-title: Proc. R. Soc. Lond. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1935.0158
– volume-title: Turbulent flows
  year: 2011
  ident: 9912_CR9
– volume: 210
  start-page: 23
  year: 1990
  ident: 9912_CR13
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112090001215
SSID ssj0006709
Score 2.203785
Snippet The subject of this study is the discussion of the dissipation of turbulent kinetic energy and its Reynolds number scaling in front of a wall-mounted cylinder....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 499
SubjectTerms Anisotropy
Automotive Engineering
Computational fluid dynamics
Computational grids
Computer simulation
Cylinders
Energy
Energy dissipation
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Flapping
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
Horseshoe vortices
Kinetic energy
Large eddy simulation
Reynolds number
Scaling
Turbulence
Turbulent flow
Vortices
Title Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow
URI https://link.springer.com/article/10.1007/s10494-018-9912-8
https://www.proquest.com/docview/2115368123
Volume 101
WOSCitedRecordID wos000446583900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1987
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006709
  issn: 1386-6184
  databaseCode: RSV
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90-qAP6qbidEoefPCDQpv0K48yN0RhiE7ZW2nSFAajk30o_vdesnSbooI-N3e0d7ncXXP3O4BTlSmVh0w5lEa548dB5qQyx5xHIyH7CiMK4ZphE1GnE_d6_N72cY_LavfyStKc1EvNbr6GsfXQQLmHZrwKa-jtYm2ND4_P8-NXA5KZLCsOHT3NpLzK_I7FZ2e0iDC_XIoaX9Pe_tdb7sCWDS3J1WwvVGFFFTXYXAIcrEHVmvKYnFm86fNduLlG4dvKajLMSXeKktbOiNwhJTIjLdMgSPoFSUnzfaARFkdE_4Int-gWDV17MHzbg6d2q9u8ceyABUcyL5w4qcJggWdeyAM9rSZXmF7QTESudNM0FbEfUAxnBWWR4EJmXKTUEx4mQHoseSYk24dKMSzUARAVUD-X3Fc5wxgFPz_Upp4xwXnqKlfUwS0lnUiLPq6HYAySBW6yllyCpImWXBLX4WJO8jKD3vhtcaNUX2KtcJxgchswDbDG6nBZqmvx-Edmh39afQQbVOvbFJ41oDIZTdUxrMvXSX88OjGb8wOdL9vp
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8JADG8UTdQHFdSIot6DD35kybbb1z0ahKAgMYqGt2V3uyUkBAwDjf-9vXEDNGqiz7s2W3u9trv2V4BTGUuZeFQatu0nhhO4sRGJBHMehYTsSIwouJkNm_Db7aDbZfe6jzvNq93zK8nspF5odnMUjK2FBsosNONlWHHQYak6vofH59nxqwDJsiwr8Aw1zSS_yvyOxWdnNI8wv1yKZr6mvvWvt9yGTR1akqvpXijCkhyUYGMBcLAERW3KKTnTeNPnO9C4RuHrymoyTEhngpJWzog0kRKZkVrWIEh6AxKR6ntfISyOiPoFT27RLWZ09f7wbRee6rVOtWHoAQuGoJY3NiKJwQKLLY-5alpNIjG9sGPum8KMoogHjmtjOMtt6nPGRcx4ZFvcwgRIjSWPuaB7UBgMB3IfiHRtJxHMkQnFGAU_31OmHlPOWGRKk5fBzCUdCo0-roZg9MM5brKSXIikoZJcGJThYkbyMoXe-G1xJVdfqK0wDTG5dakCWKNluMzVNX_8I7ODP60-gbVG564Vtm7azUNYt5XusyK0ChTGo4k8glXxOu6lo-Nso34A9HzezQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60iuhBbVWsVt2DBx-E5p3sUfqgWikFq_QWsskGCiUtbar4751Jk7aKCuI5O0sys7Mzk935PoBLGUoZ2YZUdN2JFNO1QsUPIqx5CAnZlJhRCDUlm3A6Hbff592M53Sa33bPjyTnPQ2E0hQn1XEYVVca30yCtNXQWbmGLr0OGyZxBlG5_vSy2IoJnCytuFxbIWaT_Fjzuyk-B6ZltvnlgDSNO829f7_xPuxmKSe7m6-RIqzJuAQ7K0CEJShmLj5lVxkO9fUBtOpolOzGNRtFrDdDC1CQYm2UxMlYI20cZIOY-az2PiTkxQmjX_PsAcNlKtccjt4O4bnZ6NVaSka8oASGZieKLzGJ4KFmc4tYbCKJZYceCkcNVN_3hWtaOqa5QjccwUUQcuHrmtCwMCK68lAExhEU4lEsj4FJSzejgJsyMjB3wc-3aQsIDcG5r0pVlEHNte4FGSo5kWMMvSWeMmnOQ1GPNOe5ZbhZiIznkBy_Da7kpvQy75x6WPRaBgGvGWW4zU23fPzjZCd_Gn0BW91603u877RPYVsn06d30ypQSCYzeQabwWsymE7O0zX7AXO257E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissipation+of+Turbulent+Kinetic+Energy+in+a+Cylinder+Wall+Junction+Flow&rft.jtitle=Flow%2C+turbulence+and+combustion&rft.au=Schanderl%2C+Wolfgang&rft.au=Manhart%2C+Michael&rft.date=2018-09-01&rft.pub=Springer+Netherlands&rft.issn=1386-6184&rft.eissn=1573-1987&rft.volume=101&rft.issue=2&rft.spage=499&rft.epage=519&rft_id=info:doi/10.1007%2Fs10494-018-9912-8&rft.externalDocID=10_1007_s10494_018_9912_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-6184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-6184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-6184&client=summon