New Connections Between Functions from Additive and Multiplicative Number Theory

In this paper, we investigate new connections between the seemingly disparate branches of the additive and multiplicative number theory. Two infinite families of identities are proved in this context using an interplay of combinatorial and q -series methods. These general results are illustrated con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics Jg. 15; H. 2; S. 1 - 13
1. Verfasser: Merca, Mircea
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.04.2018
Springer Nature B.V
Schlagworte:
ISSN:1660-5446, 1660-5454
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we investigate new connections between the seemingly disparate branches of the additive and multiplicative number theory. Two infinite families of identities are proved in this context using an interplay of combinatorial and q -series methods. These general results are illustrated considering relationships between the gcd-sum function and integer partitions. Even if there is in the literature a large number of works in which many properties of the gcd-sum function are studied, connections between the gcd-sum function and integer partitions have not been remarked so far. Our general results can be used to provide new connections between the partitions and many classical special arithmetic functions often studied in multiplicative number theory: the Möbius function μ ( n ) , Euler’s totient φ ( n ) , Jordan’s totient J k ( n ) , Liouville’s function λ ( n ) , the von Mangoldt function Λ ( n ) , the divisor function σ x ( n ) , and others.
AbstractList In this paper, we investigate new connections between the seemingly disparate branches of the additive and multiplicative number theory. Two infinite families of identities are proved in this context using an interplay of combinatorial and q-series methods. These general results are illustrated considering relationships between the gcd-sum function and integer partitions. Even if there is in the literature a large number of works in which many properties of the gcd-sum function are studied, connections between the gcd-sum function and integer partitions have not been remarked so far. Our general results can be used to provide new connections between the partitions and many classical special arithmetic functions often studied in multiplicative number theory: the Möbius function μ(n), Euler’s totient φ(n), Jordan’s totient Jk(n), Liouville’s function λ(n), the von Mangoldt function Λ(n), the divisor function σx(n), and others.
In this paper, we investigate new connections between the seemingly disparate branches of the additive and multiplicative number theory. Two infinite families of identities are proved in this context using an interplay of combinatorial and q -series methods. These general results are illustrated considering relationships between the gcd-sum function and integer partitions. Even if there is in the literature a large number of works in which many properties of the gcd-sum function are studied, connections between the gcd-sum function and integer partitions have not been remarked so far. Our general results can be used to provide new connections between the partitions and many classical special arithmetic functions often studied in multiplicative number theory: the Möbius function μ ( n ) , Euler’s totient φ ( n ) , Jordan’s totient J k ( n ) , Liouville’s function λ ( n ) , the von Mangoldt function Λ ( n ) , the divisor function σ x ( n ) , and others.
ArticleNumber 36
Author Merca, Mircea
Author_xml – sequence: 1
  givenname: Mircea
  orcidid: 0000-0002-8411-2928
  surname: Merca
  fullname: Merca, Mircea
  email: mircea.merca@profinfo.edu.ro
  organization: Academy of Romanian Scientists
BookMark eNp9kE1PAyEQhompiW31B3jbxPPqAPt5rI2tJrV6qGfCsqzSbKECa9N_L3UbTUyUC-TNPMzMM0IDbbRE6BLDNQbIbxyEU8aAixhDiWNygoY4yyBOkzQZfL-T7AyNnFsDkBJTMkTPS7mLpkZrKbwy2kW30u-k1NGs08eksWYTTepaefUhI67r6LFrvdq2SvCvaNltKmmj1Zs0dn-OThveOnlxvMfoZXa3mt7Hi6f5w3SyiAXFmY95LkjRUEpLKjkVWVVlJK9TkdBcQBGiioe1aEkE5k2ZVryCCmpSJFmNRdIIOkZX_b9ba9476Txbm87q0JIRgBRjQtI8VOG-SljjnJUN21q14XbPMLCDONaLY0EcO4hjJDD5L0Yozw8uvOWq_ZckPelCF_0q7c9Mf0Of_NmEDA
CitedBy_id crossref_primary_10_1007_s11139_022_00573_5
crossref_primary_10_1007_s00009_020_01663_8
Cites_doi 10.1007/BF01300735
10.1007/s11139-016-9856-3
10.1017/S2040618500034328
10.1007/s00010-007-2923-5
10.1007/BF02420800
10.1016/j.jnt.2016.12.021
10.1007/BF03322122
ContentType Journal Article
Copyright Springer International Publishing AG, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00009-018-1091-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1660-5454
EndPage 13
ExternalDocumentID 10_1007_s00009_018_1091_2
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c316t-a7c28f33393ea3c6bb627d5c437c08ea3ba007392c1af95bab0b0d2846d1c4fc3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000429379300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1660-5446
IngestDate Thu Sep 25 00:23:53 EDT 2025
Sat Nov 29 05:58:40 EST 2025
Tue Nov 18 22:18:56 EST 2025
Fri Feb 21 02:37:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords partitions
11P81
11P84
divisors
05A19
Arithmetic functions
11A25
05A17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a7c28f33393ea3c6bb627d5c437c08ea3ba007392c1af95bab0b0d2846d1c4fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8411-2928
PQID 2005112257
PQPubID 2044134
PageCount 13
ParticipantIDs proquest_journals_2005112257
crossref_primary_10_1007_s00009_018_1091_2
crossref_citationtrail_10_1007_s00009_018_1091_2
springer_journals_10_1007_s00009_018_1091_2
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Mediterranean journal of mathematics
PublicationTitleAbbrev Mediterr. J. Math
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References KiuchiISums of averages of gcd-sum functionsJ. Number Theory2017176449472362213910.1016/j.jnt.2016.12.02106697572
Tóth, L.: On the bi-unitary analogues of Eulers arithmetical function and the gcd-sum function. J. Integer Seq. 12, Article 09.5.2 (2009)
CohenEArithmetical functions of a greatest common divisor, IProc. Am. Math. Soc.1960111641711117130096.02906
TóthLThe unitary analogue of Pillai’s arithmetical functionCollect. Math.198940193010780890712.11010
SivaramakrishnanROn three extensions of Pillai’s arithmetic function β(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (n)$$\end{document}Math. Stud.1971391871903377390261.10006
Merca, M., Schmidt, M.D.: A partition identity related to Stanley’s theorem. Am. Math. Mon (accepted, to appear)
Merca, M., Schmidt, M.D.: The partition function p(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(n)$$\end{document} in terms of the classical Möbius function. Ramanujan J. (accepted, to appear)
SchulteJÜber die Jordansche Verallgemeinerung der Eulerschen FunktionResults Math.199936354364172621410.1007/BF033221220942.11006
Zhang, D., Zhai, W.: Mean values of a gcd-sum function over regular integers modulo n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}. J. Integer Seq. 13, Article 10.4.7 (2010)
PillaiSSOn an arithmetic functionJ. Annamalai Univ.193322432480008.19603
Bordellès, O.: Mean values of generalized gcd-sum and lcm-sum functions. J. Integer Seq. 10, Article 07.9.2 (2007)
CesàroEÉtude moyenne du plus grand commun diviseur de deux nombresAnn. Mat. Pura Appl. (1)18851323525010.1007/BF0242080017.0144.05
Tanigawa, Y., Zhai, W.: On the gcd-sum function. J. Integer Seq. 11, Article 08.2.3 (2008)
Tóth, L.: A survey of gcd-sum functions. J. Integer Seq. 13, Article 10.8.1 (2010)
CohenEArithmetical functions of a greatest common divisor, II. An alternative approachBoll. Un. Mat. Ital.1962173493561500930109.27402
SándorJKrámerA-VÜber eine zahlentheoretische FunktionMath. Morav.1999353620972.11005
TóthLThe unitary analogue of Pillai’s arithmetical function IINotes Number Theory Discrete Math.1996240461418833
Bordellès, O.: A note on the average order of the gcd-sum function. J. Integer Seq. 10, Article 07.3.3 (2007)
Tóth, L.: Weighted gcd-sum functions. J. Integer Seq. 14, 11.7.7 (2011)
Bordellès, O.: The composition of the gcd and certain arithmetic functions. J. Integer Seq. 13, Article 10.7.1 (2010)
Broughan, K.A.: The gcd-sum function. J. Integer Seq. 4, Article 01.2.2 (2001)
AndrewsGEThe Theory of Partitions1976New YorkAddison-Wesley Publishing0371.10001
Tóth, L.: A gcd-sum function over regular integers (mod n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}). J. Integer Seq. 12, Article 09.2.5 (2009)
Broughan, K.A.: The average order of the Dirichlet series of the gcd-sum function. J. Integer Seq. 10, Article 07.4.2 (2007)
MercaMThe Lambert series factorization theoremRamanujan J.2017442417435371542410.1007/s11139-016-9856-306832115
ChidambaraswamyJSitaramachandraraoRAsymptotic results for a class of arithmetical functionsMonatsh. Math.198599192777816710.1007/BF013007350551.10035
DicksonLEHistory of the Theory of Numbers1971New YorkChelsea
HaukkanenPRational arithmetical functions of order (2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,1)$$\end{document} with respect to regular convolutionsPortugal. Math.19995632934317160570939.11003
HaukkanenPOn a gcd-sum functionAequationes Math.200876168178244346810.1007/s00010-007-2923-51243.11004
Cohen, E.: Arithmetical functions of a greatest common divisor, III. Cesàro’s divisor problem. Proc. Glasgow Math. Assoc. 5, 67–75 (1961–1962)
J Sándor (1091_CR20) 1999; 3
SS Pillai (1091_CR19) 1933; 2
J Chidambaraswamy (1091_CR8) 1985; 99
1091_CR17
1091_CR18
M Merca (1091_CR16) 2017; 44
1091_CR30
1091_CR10
P Haukkanen (1091_CR14) 2008; 76
P Haukkanen (1091_CR13) 1999; 56
L Tóth (1091_CR24) 1989; 40
E Cesàro (1091_CR7) 1885; 13
I Kiuchi (1091_CR15) 2017; 176
J Schulte (1091_CR22) 1999; 36
LE Dickson (1091_CR12) 1971
R Sivaramakrishnan (1091_CR21) 1971; 39
L Tóth (1091_CR25) 1996; 2
1091_CR27
1091_CR28
1091_CR29
E Cohen (1091_CR11) 1962; 17
1091_CR23
1091_CR26
1091_CR6
GE Andrews (1091_CR1) 1976
1091_CR5
1091_CR4
1091_CR3
1091_CR2
E Cohen (1091_CR9) 1960; 11
References_xml – reference: Bordellès, O.: Mean values of generalized gcd-sum and lcm-sum functions. J. Integer Seq. 10, Article 07.9.2 (2007)
– reference: Bordellès, O.: The composition of the gcd and certain arithmetic functions. J. Integer Seq. 13, Article 10.7.1 (2010)
– reference: Cohen, E.: Arithmetical functions of a greatest common divisor, III. Cesàro’s divisor problem. Proc. Glasgow Math. Assoc. 5, 67–75 (1961–1962)
– reference: Tanigawa, Y., Zhai, W.: On the gcd-sum function. J. Integer Seq. 11, Article 08.2.3 (2008)
– reference: Tóth, L.: A survey of gcd-sum functions. J. Integer Seq. 13, Article 10.8.1 (2010)
– reference: MercaMThe Lambert series factorization theoremRamanujan J.2017442417435371542410.1007/s11139-016-9856-306832115
– reference: DicksonLEHistory of the Theory of Numbers1971New YorkChelsea
– reference: KiuchiISums of averages of gcd-sum functionsJ. Number Theory2017176449472362213910.1016/j.jnt.2016.12.02106697572
– reference: CohenEArithmetical functions of a greatest common divisor, IProc. Am. Math. Soc.1960111641711117130096.02906
– reference: HaukkanenPRational arithmetical functions of order (2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2,1)$$\end{document} with respect to regular convolutionsPortugal. Math.19995632934317160570939.11003
– reference: SchulteJÜber die Jordansche Verallgemeinerung der Eulerschen FunktionResults Math.199936354364172621410.1007/BF033221220942.11006
– reference: HaukkanenPOn a gcd-sum functionAequationes Math.200876168178244346810.1007/s00010-007-2923-51243.11004
– reference: TóthLThe unitary analogue of Pillai’s arithmetical functionCollect. Math.198940193010780890712.11010
– reference: PillaiSSOn an arithmetic functionJ. Annamalai Univ.193322432480008.19603
– reference: CohenEArithmetical functions of a greatest common divisor, II. An alternative approachBoll. Un. Mat. Ital.1962173493561500930109.27402
– reference: AndrewsGEThe Theory of Partitions1976New YorkAddison-Wesley Publishing0371.10001
– reference: CesàroEÉtude moyenne du plus grand commun diviseur de deux nombresAnn. Mat. Pura Appl. (1)18851323525010.1007/BF0242080017.0144.05
– reference: TóthLThe unitary analogue of Pillai’s arithmetical function IINotes Number Theory Discrete Math.1996240461418833
– reference: SivaramakrishnanROn three extensions of Pillai’s arithmetic function β(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta (n)$$\end{document}Math. Stud.1971391871903377390261.10006
– reference: Broughan, K.A.: The gcd-sum function. J. Integer Seq. 4, Article 01.2.2 (2001)
– reference: Merca, M., Schmidt, M.D.: The partition function p(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(n)$$\end{document} in terms of the classical Möbius function. Ramanujan J. (accepted, to appear)
– reference: Tóth, L.: On the bi-unitary analogues of Eulers arithmetical function and the gcd-sum function. J. Integer Seq. 12, Article 09.5.2 (2009)
– reference: Zhang, D., Zhai, W.: Mean values of a gcd-sum function over regular integers modulo n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}. J. Integer Seq. 13, Article 10.4.7 (2010)
– reference: ChidambaraswamyJSitaramachandraraoRAsymptotic results for a class of arithmetical functionsMonatsh. Math.198599192777816710.1007/BF013007350551.10035
– reference: Bordellès, O.: A note on the average order of the gcd-sum function. J. Integer Seq. 10, Article 07.3.3 (2007)
– reference: Broughan, K.A.: The average order of the Dirichlet series of the gcd-sum function. J. Integer Seq. 10, Article 07.4.2 (2007)
– reference: SándorJKrámerA-VÜber eine zahlentheoretische FunktionMath. Morav.1999353620972.11005
– reference: Tóth, L.: A gcd-sum function over regular integers (mod n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}). J. Integer Seq. 12, Article 09.2.5 (2009)
– reference: Tóth, L.: Weighted gcd-sum functions. J. Integer Seq. 14, 11.7.7 (2011)
– reference: Merca, M., Schmidt, M.D.: A partition identity related to Stanley’s theorem. Am. Math. Mon (accepted, to appear)
– volume: 99
  start-page: 19
  year: 1985
  ident: 1091_CR8
  publication-title: Monatsh. Math.
  doi: 10.1007/BF01300735
– volume: 40
  start-page: 19
  year: 1989
  ident: 1091_CR24
  publication-title: Collect. Math.
– ident: 1091_CR5
– volume: 44
  start-page: 417
  issue: 2
  year: 2017
  ident: 1091_CR16
  publication-title: Ramanujan J.
  doi: 10.1007/s11139-016-9856-3
– ident: 1091_CR29
– volume-title: The Theory of Partitions
  year: 1976
  ident: 1091_CR1
– ident: 1091_CR10
  doi: 10.1017/S2040618500034328
– ident: 1091_CR27
– ident: 1091_CR23
– volume: 39
  start-page: 187
  year: 1971
  ident: 1091_CR21
  publication-title: Math. Stud.
– volume: 56
  start-page: 329
  year: 1999
  ident: 1091_CR13
  publication-title: Portugal. Math.
– volume: 76
  start-page: 168
  year: 2008
  ident: 1091_CR14
  publication-title: Aequationes Math.
  doi: 10.1007/s00010-007-2923-5
– volume: 3
  start-page: 53
  year: 1999
  ident: 1091_CR20
  publication-title: Math. Morav.
– ident: 1091_CR3
– ident: 1091_CR17
– ident: 1091_CR30
– volume: 13
  start-page: 235
  year: 1885
  ident: 1091_CR7
  publication-title: Ann. Mat. Pura Appl. (1)
  doi: 10.1007/BF02420800
– ident: 1091_CR6
– volume: 176
  start-page: 449
  year: 2017
  ident: 1091_CR15
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2016.12.021
– volume: 11
  start-page: 164
  year: 1960
  ident: 1091_CR9
  publication-title: Proc. Am. Math. Soc.
– ident: 1091_CR26
– volume: 17
  start-page: 349
  year: 1962
  ident: 1091_CR11
  publication-title: Boll. Un. Mat. Ital.
– ident: 1091_CR28
– volume-title: History of the Theory of Numbers
  year: 1971
  ident: 1091_CR12
– ident: 1091_CR18
– volume: 36
  start-page: 354
  year: 1999
  ident: 1091_CR22
  publication-title: Results Math.
  doi: 10.1007/BF03322122
– volume: 2
  start-page: 40
  year: 1996
  ident: 1091_CR25
  publication-title: Notes Number Theory Discrete Math.
– volume: 2
  start-page: 243
  year: 1933
  ident: 1091_CR19
  publication-title: J. Annamalai Univ.
– ident: 1091_CR2
– ident: 1091_CR4
SSID ssj0029132
Score 2.1165764
Snippet In this paper, we investigate new connections between the seemingly disparate branches of the additive and multiplicative number theory. Two infinite families...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Combinatorial analysis
Mathematical functions
Mathematics
Mathematics and Statistics
Number theory
Partitions (mathematics)
Title New Connections Between Functions from Additive and Multiplicative Number Theory
URI https://link.springer.com/article/10.1007/s00009-018-1091-2
https://www.proquest.com/docview/2005112257
Volume 15
WOSCitedRecordID wos000429379300039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1660-5454
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029132
  issn: 1660-5446
  databaseCode: RSV
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5k9aAH3-LqKjl4UgJ5tGlzXMXFg7ssPpa9lSRtQZAq2-rvN0kfi6KCXtMklEw6j8433wCciVyxPIglloENUQJmUhxnnGCpDJVZRoj2kP_ZbTSZxPO5nDZ13GWLdm9Tkl5Td8Vu3p2xoa-jI5UUW727aq1d7Po13N3PuihLUt-VjApBcGiDnTaV-d0Wn43R0sP8khT1tma09a-33IbNxrVEw_ou7MBKVuzCxrjjZS33YGp1GvLYFl_OUKLLGqaFRta81SOu3gQN09RjipAqUjSuMYf-554dmvgeIqgu6t-Hx9H1w9UNbnoqYMOpqLCKDItzzrnkmeJGaC1YlIYm4JEhsR3SyifvmKEql6FWmmiSWhsmUmqC3PAD6BUvRXYISMtQ6khHnDPjKA61DcasO8cdIY_mRPaBtIebmIZw3PW9eE46qmR_WIk9LJcIpwnrw3m35LVm2_ht8qCVWNJ8eKXrqulcSKuI-nDRSmj5-MfNjv40-xjWmROxR_AMoFct3rITWDPv1VO5OPX38QMbLde5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5EBfXgW6xWzcGTEshjXzlWsVRsS9FaeluS7C4Iskq3-vtNso-iqKDXbBKWTHYeO998A3AeZJJlXiSw8EyI4jGd4CjlBAupqUhTQpSD_E_64XAYTadiVNVxFzXavU5JOk3dFLs5d8aEvpaOVFBs9O6KZwyWJcy_f5g0UZagrisZDQKCfRPs1KnM77b4bIwWHuaXpKizNd2tf73lNmxWriXqlHdhB5bSfBc2Bg0va7EHI6PTkMO2uHKGAl2VMC3UNeatHLH1JqiTJA5ThGSeoEGJOXQ_98zQ0PUQQWVR_z48dm_G1z1c9VTAmtNgjmWoWZRxzgVPJdeBUgELE197PNQkMkNKuuQd01RmwldSEUUSY8OChGov0_wAlvOXPD0EpIQvVKhCzpm2FIfKBGPGneOWkEdxIlpA6sONdUU4bvtePMcNVbI7rNgclk2E05i14KJZ8lqybfw2uV1LLK4-vMJ21bQupFFELbisJbR4_ONmR3-afQZrvfGgH_dvh3fHsM6suB2apw3L89lbegKr-n3-VMxO3d38AEDE2p0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yiujBt7i6ag6elLB59JXj-iiKu2VBXfZWkrQFQeqyrf5-k_SxKCqI12kSyiTNzHS--QaAMy8TNHMCjrijQxSHqgQFKcOIC0V4mmIsLeR_MvSjKJhO-bjuc1o0aPcmJVnVNBiWprzsz5Ks3xa-WddGh8GGmpQTpO_gZcfg6E24_jBpIy5ObIcy4nkYuTrwadKa3y3x2TAtvM0vCVJrd8LNf7_xFtioXU44qM7INlhK8x2wPmr5WotdMNZ3HbSYF1vmUMDLCr4FQ232KompQ4GDJLFYIyjyBI4qLKL96adFke0tAqti_z3wFN48Xt2iutcCUox4JRK-okHGGOMsFUx5UnrUT1zlMF_hQIuksEk9qojIuCuFxBIn2rZ5CVFOptg-6OSveXoAoOQul770GaPKUB9KHaRpN48Zoh7JMO8C3Cg6VjURuemH8RK3FMpWWbFWlkmQk5h2wXk7ZVaxcPw2uNfsXlx_kIXptmlcS31BdcFFs1uLxz8udvin0adgdXwdxsO76P4IrFGz2xbk0wOdcv6WHoMV9V4-F_MTe0w_AEHe44E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Connections+Between+Functions+from+Additive+and+Multiplicative+Number+Theory&rft.jtitle=Mediterranean+journal+of+mathematics&rft.au=Merca%2C+Mircea&rft.date=2018-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1660-5446&rft.eissn=1660-5454&rft.volume=15&rft.issue=2&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1007%2Fs00009-018-1091-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-5446&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-5446&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-5446&client=summon