On an inverse linear programming problem

A method for solving the following inverse linear programming (LP) problem is proposed. For a given LP problem and one of its feasible vectors, it is required to adjust the objective function vector as little as possible so that the given vector becomes optimal. The closeness of vectors is estimated...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the Steklov Institute of Mathematics Ročník 295; číslo Suppl 1; s. 21 - 27
Hlavní autoři: Amirkhanova, G. A., Golikov, A. I., Evtushenko, Yu. G.
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.12.2016
Springer Nature B.V
Témata:
ISSN:0081-5438, 1531-8605
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A method for solving the following inverse linear programming (LP) problem is proposed. For a given LP problem and one of its feasible vectors, it is required to adjust the objective function vector as little as possible so that the given vector becomes optimal. The closeness of vectors is estimated by means of the Euclidean vector norm. The inverse LP problem is reduced to a problem of unconstrained minimization for a convex piecewise quadratic function. This minimization problem is solved by means of the generalized Newton method.
Bibliografie:ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543816090030