Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method
Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can u...
Uloženo v:
| Vydáno v: | Computational mechanics Ročník 62; číslo 4; s. 783 - 801 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0178-7675, 1432-0924 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner–Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature. |
|---|---|
| AbstractList | Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner–Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature. |
| Author | Barros, Felício B. Malekan, Mohammad |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Malekan fullname: Malekan, Mohammad email: mmalekan1986@gmail.com, malekan@dees.ufmg.br organization: Graduate Program in Structural Engineering (PROPEEs), School of Engineering, Federal University of Minas Gerais (UFMG) – sequence: 2 givenname: Felício B. surname: Barros fullname: Barros, Felício B. organization: Graduate Program in Structural Engineering (PROPEEs), School of Engineering, Federal University of Minas Gerais (UFMG) |
| BookMark | eNp9kN9qFTEQh4O04GntA3gX8Dqe_N3NXkpRKxS90euQ3cyeM3U3qUkOtb6D72wOp1AQ9GoG5vcNM98FOYspAiGvBX8rOO-3hXPddYyLngkje2ZfkI3QSjI-SH1GNm1gWd_15iW5KOWOc2GsMhvy-_NhhYyTX6iPfnksWGiaqaerx0in7KfvFGOF1lRMsdAHrHu64pQTCzDDVMsW4z6taQcRsCIUeigYd7Q-JFbaXqDHSfYL_oKwhZ8VYoBAZ4xYgcICK8RKV6j7FF6R89kvBa6e6iX59uH91-sbdvvl46frd7dsUqKrzEspbFCzNsNkLYwSNIRuGCHwUSkIgwEveFDWCjkOqlez8XrUKgTda65BXZI3p733Of04QKnuLh1y-7842XRqbuxgWqo_pdqzpWSY3YTVHzXU7HFxgruje3dy75pid3TvbCPFX-R9xtXnx_8y8sSUlo07yM83_Rv6AyI4m_0 |
| CitedBy_id | crossref_primary_10_1016_j_ijpvp_2021_104377 crossref_primary_10_1111_ffe_14514 crossref_primary_10_1007_s00366_021_01321_x crossref_primary_10_1016_j_tafmec_2020_102561 crossref_primary_10_1016_j_enganabound_2025_106219 crossref_primary_10_1177_0309324718771124 crossref_primary_10_1016_j_tafmec_2020_102841 crossref_primary_10_1002_nme_70079 crossref_primary_10_1016_j_cma_2020_112888 crossref_primary_10_1016_j_finel_2024_104258 crossref_primary_10_1016_j_tafmec_2020_102647 |
| Cites_doi | 10.1016/j.advengsoft.2014.09.016 10.1016/S0020-7683(00)00194-3 10.1007/s00466-016-1318-7 10.1108/eb023897 10.1016/0013-7944(86)90259-6 10.1007/s10999-011-9159-1 10.1007/s00466-013-0900-5 10.1007/978-1-4020-6095-3-1 10.1016/j.finel.2011.02.002 10.1016/j.commatsci.2014.08.054 10.1016/j.tafmec.2016.04.004 10.1007/s10704-007-9094-1 10.1016/j.tafmec.2013.12.004 10.1016/j.engfracmech.2016.06.009 10.1016/0013-7944(70)90026-3 10.1016/0168-874X(86)90020-X 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1007/s00466-013-0948-2 10.1007/s00466-009-0376-5 10.1016/S0045-7825(97)00039-X 10.1002/nme.2001 10.1002/nme.5157 10.1115/1.3153665 10.1016/S0020-7683(02)00114-2 10.1016/S0045-7949(99)00211-4 10.1016/S0045-7825(01)00188-8 10.1016/j.advengsoft.2013.02.001 10.1007/s00466-013-0952-6 10.1115/1.3601206 10.1002/nme.2690 10.1016/j.cma.2007.08.017 10.1115/1.2936240 10.1002/nme.4373 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1002/nme.2939 10.1016/0013-7944(77)90013-3 10.1115/1.801535 10.1115/1.2897273 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8 10.1016/0167-6636(87)90023-8 10.1016/S0013-7944(03)00097-3 10.1007/BF00301139 10.1108/EC-02-2016-0050 10.1016/0020-7683(93)90072-F 10.1016/0020-7683(95)00255-3 10.1016/0020-7683(87)90029 10.1590/1679-78252832 10.1016/S0045-7825(96)01087-0 10.1016/0029-5493(70)90155-X |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2017 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2017 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s00466-017-1527-8 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1432-0924 |
| EndPage | 801 |
| ExternalDocumentID | 10_1007_s00466_017_1527_8 |
| GrantInformation_xml | – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: http://orcid.org/10.13039/501100002322 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico grantid: 308932/2016-1; 151003/2017-3 funderid: http://orcid.org/10.13039/501100003593 – fundername: Fundação de Amparo á Pesquisa do Estado de Minas Gerais grantid: APQ-02460-16 funderid: http://orcid.org/10.13039/501100004901 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 E.L EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAS LLZTM M4Y M7S MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9P PF0 PT4 PT5 PTHSS QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WK8 XH6 YLTOR Z45 Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8R Z8S Z8T Z8W Z92 ZMTXR _50 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c316t-a2218d3f459c88eb2e4ed69bed0b33ed95ea10d38812b9373f5a4b43dd47404e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443982100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-7675 |
| IngestDate | Wed Nov 26 13:41:02 EST 2025 Tue Nov 18 21:39:54 EST 2025 Sat Nov 29 06:01:21 EST 2025 Fri Feb 21 02:32:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Micro-defects Fracture mechanics Stress intensity factor Generalized/extended FEM Two-scale analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-a2218d3f459c88eb2e4ed69bed0b33ed95ea10d38812b9373f5a4b43dd47404e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2100405895 |
| PQPubID | 2043755 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2100405895 crossref_citationtrail_10_1007_s00466_017_1527_8 crossref_primary_10_1007_s00466_017_1527_8 springer_journals_10_1007_s00466_017_1527_8 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-01 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics |
| PublicationTitle | Computational mechanics |
| PublicationTitleAbbrev | Comput Mech |
| PublicationYear | 2018 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | CamachoGTOrtizMComputational modelling of impact damage in brittle materialsInt J Solids Struct19963320–222899293810.1016/0020-7683(95)00255-30929.74101 JosephPErdoganFBending of a thin reissner plate with a through crackJ Appl Mech199158384284610.1115/1.2897273 MendoncaPTRBarcellosCSTorresDAFAnalysis of anisotropic mindlin plate model by continuous and non-continuous GFEMFinite Elem Anal Des201147698717280093510.1016/j.finel.2011.02.002 YangSWBudarapuPRMahapatraDBordasSPZiGRabczukTA meshless adaptive multiscale method for fractureComput Mater Sci20159638239510.1016/j.commatsci.2014.08.054 O’HaraPDuarteCEasonTA two-scale GFEM for interaction and coalescence of multiple crack surfacesEng Fract Mech201616327430210.1016/j.engfracmech.2016.06.009 MalekanMBarrosFBWell-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanicsComput Mech2016585819831355537610.1007/s00466-016-1318-706653553 RybickiEFKanninenMFA finite element calculation of stress intensity factors by a modified crack closure integralEng Fract Mech1977993193810.1016/0013-7944(77)90013-3 ChanSKTubaISWilsonWKOn the finite element method in linear fracture mechanicsEng Fract Mech197030227231 DolbowJMoësNBelytschkoTModeling fracture in mindlin-reissner plates with the extended finite element methodInt J Solids Struct2000377161718310.1016/S0020-7683(00)00194-30993.74061 Akbari A, Kerfriden P, Rabczuk T, Bordas SP (2012) An adaptive multiscale method for fracture based on concurrent-hierarchical hybrid modelling. In: Proceedings of the 20th UK conference of the association for computational mechanics in engineering, Manchester RiceJA path independent integral and the approximate analysis of strain concentration by notches and cracksTrans ASME J Appl Mech19683537938610.1115/1.3601206 ZengQLiuZXuDWangHZhuangZModeling arbitrary crack propagation in coupled shell/solid structures with x-femInt J Numer Meth Eng201610610181040350512410.1002/nme.51571352.74309 BudarapuPRGracieRYangSWZhuangXRabczukTEfficient coarse graining in multiscale modeling of fractureTheor Appl Fract Mech20146912614310.1016/j.tafmec.2013.12.004 TadaHParisPCIrwinCRThe stress analysis of cracks handbook20003New YorkASME Press10.1115/1.801535 AlvesPDBarrosFBPitangueiraRLSAn object oriented approach to the generalized finite element methodAdv Eng Softw20135911810.1016/j.advengsoft.2013.02.001 KimDJPereiraJPDuarteCAAnalysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshesInt J Numer Meth Eng2010813353651183.74285 IngraffeaARSaoumaVNumerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete1985DordrechtMartinus Nijhoff Publishers171225 Duarte CA, Babuška IM (2005) A global-local approach for the construction of enrichment functions for the generalized fem and its application to propagating three-dimensional cracks. Technical report, ECCOMAS thematic conference on meshless methods, technical report 06 SosaHAEischenJWComputation of stress intensity factors for plate bending via a path-independent integralEng Fract Mech198625445146210.1016/0013-7944(86)90259-6 LoehnertSBelytschkoTA multiscale projection method for macro/microcrack simulationsInt J Numer Methods Geomech20077114661482235234610.1002/nme.20011194.74436 StrouboulisTCoppsKBabuškaIThe generalized finite element method: an example of its implementation and illustration of its performanceInt J Numer Methods Eng20004714011417174648910.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-80955.65080 BazǎntZPInstability, ductility, and size effects in strain-softening concreteJ Eng Mech19761022331344 BudarapuPRGracieRBordasSPRabczukTAn adaptive multiscale method for quasi-static crack growthComput Mech20145361129114810.1007/s00466-013-0952-606327133 KimDDuarteCPereiraJAnalysis of interacting cracks using the generalized finite element method with global-local enrichment functionsJ Appl Mech200875505110710.1115/1.2936240 DolbowJGoszMOn the computation of mixed-mode stress intensity factors in functionally graded materialsInt J Solids Struct2002392557257410.1016/S0020-7683(02)00114-21087.74547 TalebiHSilaniMBordasSPAKerfridenPRabczukTA computational library for multiscale modeling of material failureComput Mech2014531041071318843710.1007/s00466-013-0948-206327129 MelenkJMBabuškaIThe partition of unity finite element method: basic theory and applicationsComput Methods Appl Mech Eng199639289314142601210.1016/S0045-7825(96)01087-00881.65099 de BorstRSluysLJMuhlhausHBPaminJFundamental issues in finite element analyses of localisation of deformationEng Comput19931029912110.1108/eb023897 BarcellosCSMendoncaPTRDuarteCAA Ck continuous generalized finite element formulation applied to laminated kirchhoff plate modelComput Mech200944377393250781710.1007/s00466-009-0376-51166.74044 LasryJPommierJRenardYSalaunMeXtended finite element methods for thin cracked plates with kirchhoff-love theoryInt J Numer Meth Eng20108411151138275765910.1002/nme.29391202.74176 CookRDMalkusDSPleshaMEWittRJConcepts and applications of finite element analysis2002New YorkWiley DuarteCAKimDJAnalysis and applications of a generalized finite element method with global-local enrichment functionsComput Methods Appl Mech Eng2008197487504239603910.1016/j.cma.2007.08.0171169.74597 HollMRoggeTLoehnertSWriggersPRolfesR3d multiscale crack propagation using the xfem applied to a gas turbine bladeComput Mech201453173188314749510.1007/s00466-013-0900-506327077 Duarte CA, Oden JT (1995) Hp clouds - a meshless method to solve boundary-value problem. Tech. rep., TICAM, The University of Texas at Austin, technical Report YauJFWangSSCortenHTA mixed-mode crack analysis of isotropic solids using conservation laws of elasticityTrans ASME J Appl Mech19804733534110.1115/1.31536650463.73103 NoorAKGlobal-local methodologies and their application to nonlinear analysisFinite Elem Anal Des1986233334610.1016/0168-874X(86)90020-X StrouboulisTCoppsKBabuškaIThe generalized finite element methodComput Methods Appl Mech Eng200119040814193183265510.1016/S0045-7825(01)00188-80997.74069 TalebiHSilaniMRabczukTConcurrent multiscale modeling of three dimensional crack and dislocation propagationAdv Eng Softw201580829010.1016/j.advengsoft.2014.09.016 HollMLoehnertSWriggersPAn adaptive multiscale method for crack propagation and crack coalescenceInt J Numer Meth Eng2013932351300628110.1002/nme.43731352.74281 BhardwajGSinghSSinghIMishraBRabczukTFatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGATheor Appl Fract Mech20168529431910.1016/j.tafmec.2016.04.004 MalekanMBarrosFBPitangueiraRLSAlvesPDPennaSSA computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditionsEng Comput2017343988101910.1108/EC-02-2016-0050 SohAYangCNumerical modeling of interactions between a macro-crack and a cluster of micro-defectsEng Fract Mech20047119321710.1016/S0013-7944(03)00097-3 MalekanMBarrosFBPitangueiraRLSAlvesPDAn object-oriented class organization for global-local generalized finite element methodLatin Am J Solids Struct201613132529255110.1590/1679-78252832 MoësNDolbowJBelytschkoTA finite element method for crack growth without remeshingInt J Numer Methods Eng19994613115010.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J0955.74066 HuKXChandraAHuangYMultiple void-crack interactionInt J Solids Struct199330111473148910.1016/0020-7683(93)90072-F0779.73040 Duarte CA, Kim DJ, Babuška I (2007) A global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão V, Alves C, Duarte CA (eds) Advances in meshfree techniques, pp 1–26. https://doi.org/10.1007/978-1-4020-6095-3-1 SinghIMishraBBhattacharyaSXFEM simulation of cracks, holes and inclusions in functionally graded materialsInt J Mech Mater Des2011719921810.1007/s10999-011-9159-1 BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Numer Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S0943.74061 CharalambidesRPMeekingMcFinite element method simulation of crack propagation in a brittle microcracking solidsMech Mater19876718710.1016/0167-6636(87)90023-8 ChudnovskyAKMADolgopolskyAElastic interaction of a crack with a microcrack array-ii. Elastic solution for two crack configurations (piecewise constant and linear approximations)Int J Solids Struct1987232112110.1016/0020-7683(87)90029-10601.73098 Nguyen VP (2005) An object oriented approach to the xfem with applications to fracture mechanics. Master’s thesis, EMMC-Hochiminh University of Technology OdenJTDuarteCAZienkiewiczOCA new cloud-based hp finite element methodComput Methods Appl Mech Eng1998153117126160611710.1016/S0045-7825(97)00039-X0956.74062 SwensonDVIngraffeaARModeling mixed-mode dynamic crack propagation using finite elements: theory and applicationsComput Mech19883538139710.1007/BF003011390663.73074 LoehnertSBelytschkoTCrack shielding and amplification due to multiple microcracks interacting with a macrocrackInt J Fract20071451810.1007/s10704-007-9094-11198.74075 DuarteCABabuškaIOdenJTGeneralized finite element methods for three-dimensional structural mechanics problemsComput Struct2000772215232176854010.1016/S0045-7949(99)00211-4 SzaboBBabuškaIFinite element analysis1991New YorkWiley0792.73003 WatwoodVThe finite element method for prediction of crack behaviourNucl Eng Des19691132333210.1016/0029-5493(70)90155-X KX Hu (1527_CR24) 1993; 30 PD Alves (1527_CR2) 2013; 59 1527_CR1 PTR Mendonca (1527_CR36) 2011; 47 A Soh (1527_CR45) 2004; 71 Q Zeng (1527_CR57) 2016; 106 GT Camacho (1527_CR9) 1996; 33 1527_CR19 M Malekan (1527_CR32) 2016; 58 JM Melenk (1527_CR35) 1996; 39 1527_CR17 CA Duarte (1527_CR20) 2000; 77 M Holl (1527_CR22) 2013; 93 J Lasry (1527_CR29) 2010; 84 CA Duarte (1527_CR18) 2008; 197 R Borst de (1527_CR14) 1993; 10 DJ Kim (1527_CR28) 2010; 81 N Moës (1527_CR37) 1999; 46 JT Oden (1527_CR40) 1998; 153 RP Charalambides (1527_CR11) 1987; 6 M Malekan (1527_CR34) 2017; 34 J Rice (1527_CR42) 1968; 35 PR Budarapu (1527_CR7) 2014; 53 H Talebi (1527_CR53) 2015; 80 CS Barcellos (1527_CR3) 2009; 44 M Malekan (1527_CR33) 2016; 13 HA Sosa (1527_CR46) 1986; 25 H Talebi (1527_CR52) 2014; 53 H Tada (1527_CR51) 2000 S Loehnert (1527_CR31) 2007; 71 T Strouboulis (1527_CR48) 2001; 190 J Dolbow (1527_CR15) 2002; 39 T Strouboulis (1527_CR47) 2000; 47 J Dolbow (1527_CR16) 2000; 37 AR Ingraffea (1527_CR25) 1985 P O’Hara (1527_CR41) 2016; 163 1527_CR38 RD Cook (1527_CR13) 2002 G Bhardwaj (1527_CR6) 2016; 85 B Szabo (1527_CR50) 1991 SK Chan (1527_CR10) 1970; 30 P Joseph (1527_CR26) 1991; 58 AKMA Chudnovsky (1527_CR12) 1987; 23 JF Yau (1527_CR56) 1980; 47 D Kim (1527_CR27) 2008; 75 M Holl (1527_CR23) 2014; 53 AK Noor (1527_CR39) 1986; 2 SW Yang (1527_CR55) 2015; 96 1527_CR21 V Watwood (1527_CR54) 1969; 11 PR Budarapu (1527_CR8) 2014; 69 I Singh (1527_CR44) 2011; 7 EF Rybicki (1527_CR43) 1977; 9 T Belytschko (1527_CR5) 1999; 45 ZP Bazǎnt (1527_CR4) 1976; 102 S Loehnert (1527_CR30) 2007; 145 DV Swenson (1527_CR49) 1988; 3 |
| References_xml | – reference: JosephPErdoganFBending of a thin reissner plate with a through crackJ Appl Mech199158384284610.1115/1.2897273 – reference: SohAYangCNumerical modeling of interactions between a macro-crack and a cluster of micro-defectsEng Fract Mech20047119321710.1016/S0013-7944(03)00097-3 – reference: RiceJA path independent integral and the approximate analysis of strain concentration by notches and cracksTrans ASME J Appl Mech19683537938610.1115/1.3601206 – reference: CharalambidesRPMeekingMcFinite element method simulation of crack propagation in a brittle microcracking solidsMech Mater19876718710.1016/0167-6636(87)90023-8 – reference: YauJFWangSSCortenHTA mixed-mode crack analysis of isotropic solids using conservation laws of elasticityTrans ASME J Appl Mech19804733534110.1115/1.31536650463.73103 – reference: WatwoodVThe finite element method for prediction of crack behaviourNucl Eng Des19691132333210.1016/0029-5493(70)90155-X – reference: HollMLoehnertSWriggersPAn adaptive multiscale method for crack propagation and crack coalescenceInt J Numer Meth Eng2013932351300628110.1002/nme.43731352.74281 – reference: SosaHAEischenJWComputation of stress intensity factors for plate bending via a path-independent integralEng Fract Mech198625445146210.1016/0013-7944(86)90259-6 – reference: Duarte CA, Babuška IM (2005) A global-local approach for the construction of enrichment functions for the generalized fem and its application to propagating three-dimensional cracks. Technical report, ECCOMAS thematic conference on meshless methods, technical report 06 – reference: YangSWBudarapuPRMahapatraDBordasSPZiGRabczukTA meshless adaptive multiscale method for fractureComput Mater Sci20159638239510.1016/j.commatsci.2014.08.054 – reference: ZengQLiuZXuDWangHZhuangZModeling arbitrary crack propagation in coupled shell/solid structures with x-femInt J Numer Meth Eng201610610181040350512410.1002/nme.51571352.74309 – reference: StrouboulisTCoppsKBabuškaIThe generalized finite element methodComput Methods Appl Mech Eng200119040814193183265510.1016/S0045-7825(01)00188-80997.74069 – reference: NoorAKGlobal-local methodologies and their application to nonlinear analysisFinite Elem Anal Des1986233334610.1016/0168-874X(86)90020-X – reference: BudarapuPRGracieRBordasSPRabczukTAn adaptive multiscale method for quasi-static crack growthComput Mech20145361129114810.1007/s00466-013-0952-606327133 – reference: de BorstRSluysLJMuhlhausHBPaminJFundamental issues in finite element analyses of localisation of deformationEng Comput19931029912110.1108/eb023897 – reference: RybickiEFKanninenMFA finite element calculation of stress intensity factors by a modified crack closure integralEng Fract Mech1977993193810.1016/0013-7944(77)90013-3 – reference: BarcellosCSMendoncaPTRDuarteCAA Ck continuous generalized finite element formulation applied to laminated kirchhoff plate modelComput Mech200944377393250781710.1007/s00466-009-0376-51166.74044 – reference: AlvesPDBarrosFBPitangueiraRLSAn object oriented approach to the generalized finite element methodAdv Eng Softw20135911810.1016/j.advengsoft.2013.02.001 – reference: SinghIMishraBBhattacharyaSXFEM simulation of cracks, holes and inclusions in functionally graded materialsInt J Mech Mater Des2011719921810.1007/s10999-011-9159-1 – reference: MelenkJMBabuškaIThe partition of unity finite element method: basic theory and applicationsComput Methods Appl Mech Eng199639289314142601210.1016/S0045-7825(96)01087-00881.65099 – reference: BhardwajGSinghSSinghIMishraBRabczukTFatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGATheor Appl Fract Mech20168529431910.1016/j.tafmec.2016.04.004 – reference: HuKXChandraAHuangYMultiple void-crack interactionInt J Solids Struct199330111473148910.1016/0020-7683(93)90072-F0779.73040 – reference: CamachoGTOrtizMComputational modelling of impact damage in brittle materialsInt J Solids Struct19963320–222899293810.1016/0020-7683(95)00255-30929.74101 – reference: Akbari A, Kerfriden P, Rabczuk T, Bordas SP (2012) An adaptive multiscale method for fracture based on concurrent-hierarchical hybrid modelling. In: Proceedings of the 20th UK conference of the association for computational mechanics in engineering, Manchester – reference: MoësNDolbowJBelytschkoTA finite element method for crack growth without remeshingInt J Numer Methods Eng19994613115010.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J0955.74066 – reference: Duarte CA, Oden JT (1995) Hp clouds - a meshless method to solve boundary-value problem. Tech. rep., TICAM, The University of Texas at Austin, technical Report – reference: BudarapuPRGracieRYangSWZhuangXRabczukTEfficient coarse graining in multiscale modeling of fractureTheor Appl Fract Mech20146912614310.1016/j.tafmec.2013.12.004 – reference: LoehnertSBelytschkoTCrack shielding and amplification due to multiple microcracks interacting with a macrocrackInt J Fract20071451810.1007/s10704-007-9094-11198.74075 – reference: MalekanMBarrosFBPitangueiraRLSAlvesPDPennaSSA computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditionsEng Comput2017343988101910.1108/EC-02-2016-0050 – reference: TadaHParisPCIrwinCRThe stress analysis of cracks handbook20003New YorkASME Press10.1115/1.801535 – reference: ChudnovskyAKMADolgopolskyAElastic interaction of a crack with a microcrack array-ii. Elastic solution for two crack configurations (piecewise constant and linear approximations)Int J Solids Struct1987232112110.1016/0020-7683(87)90029-10601.73098 – reference: LasryJPommierJRenardYSalaunMeXtended finite element methods for thin cracked plates with kirchhoff-love theoryInt J Numer Meth Eng20108411151138275765910.1002/nme.29391202.74176 – reference: HollMRoggeTLoehnertSWriggersPRolfesR3d multiscale crack propagation using the xfem applied to a gas turbine bladeComput Mech201453173188314749510.1007/s00466-013-0900-506327077 – reference: MalekanMBarrosFBPitangueiraRLSAlvesPDAn object-oriented class organization for global-local generalized finite element methodLatin Am J Solids Struct201613132529255110.1590/1679-78252832 – reference: MendoncaPTRBarcellosCSTorresDAFAnalysis of anisotropic mindlin plate model by continuous and non-continuous GFEMFinite Elem Anal Des201147698717280093510.1016/j.finel.2011.02.002 – reference: DolbowJMoësNBelytschkoTModeling fracture in mindlin-reissner plates with the extended finite element methodInt J Solids Struct2000377161718310.1016/S0020-7683(00)00194-30993.74061 – reference: OdenJTDuarteCAZienkiewiczOCA new cloud-based hp finite element methodComput Methods Appl Mech Eng1998153117126160611710.1016/S0045-7825(97)00039-X0956.74062 – reference: SzaboBBabuškaIFinite element analysis1991New YorkWiley0792.73003 – reference: IngraffeaARSaoumaVNumerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete1985DordrechtMartinus Nijhoff Publishers171225 – reference: Nguyen VP (2005) An object oriented approach to the xfem with applications to fracture mechanics. Master’s thesis, EMMC-Hochiminh University of Technology – reference: StrouboulisTCoppsKBabuškaIThe generalized finite element method: an example of its implementation and illustration of its performanceInt J Numer Methods Eng20004714011417174648910.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-80955.65080 – reference: TalebiHSilaniMBordasSPAKerfridenPRabczukTA computational library for multiscale modeling of material failureComput Mech2014531041071318843710.1007/s00466-013-0948-206327129 – reference: O’HaraPDuarteCEasonTA two-scale GFEM for interaction and coalescence of multiple crack surfacesEng Fract Mech201616327430210.1016/j.engfracmech.2016.06.009 – reference: ChanSKTubaISWilsonWKOn the finite element method in linear fracture mechanicsEng Fract Mech197030227231 – reference: KimDDuarteCPereiraJAnalysis of interacting cracks using the generalized finite element method with global-local enrichment functionsJ Appl Mech200875505110710.1115/1.2936240 – reference: BazǎntZPInstability, ductility, and size effects in strain-softening concreteJ Eng Mech19761022331344 – reference: MalekanMBarrosFBWell-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanicsComput Mech2016585819831355537610.1007/s00466-016-1318-706653553 – reference: Duarte CA, Kim DJ, Babuška I (2007) A global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão V, Alves C, Duarte CA (eds) Advances in meshfree techniques, pp 1–26. https://doi.org/10.1007/978-1-4020-6095-3-1 – reference: SwensonDVIngraffeaARModeling mixed-mode dynamic crack propagation using finite elements: theory and applicationsComput Mech19883538139710.1007/BF003011390663.73074 – reference: DuarteCAKimDJAnalysis and applications of a generalized finite element method with global-local enrichment functionsComput Methods Appl Mech Eng2008197487504239603910.1016/j.cma.2007.08.0171169.74597 – reference: DolbowJGoszMOn the computation of mixed-mode stress intensity factors in functionally graded materialsInt J Solids Struct2002392557257410.1016/S0020-7683(02)00114-21087.74547 – reference: BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Numer Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S0943.74061 – reference: CookRDMalkusDSPleshaMEWittRJConcepts and applications of finite element analysis2002New YorkWiley – reference: KimDJPereiraJPDuarteCAAnalysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshesInt J Numer Meth Eng2010813353651183.74285 – reference: LoehnertSBelytschkoTA multiscale projection method for macro/microcrack simulationsInt J Numer Methods Geomech20077114661482235234610.1002/nme.20011194.74436 – reference: DuarteCABabuškaIOdenJTGeneralized finite element methods for three-dimensional structural mechanics problemsComput Struct2000772215232176854010.1016/S0045-7949(99)00211-4 – reference: TalebiHSilaniMRabczukTConcurrent multiscale modeling of three dimensional crack and dislocation propagationAdv Eng Softw201580829010.1016/j.advengsoft.2014.09.016 – volume: 80 start-page: 82 year: 2015 ident: 1527_CR53 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2014.09.016 – ident: 1527_CR1 – volume: 37 start-page: 7161 year: 2000 ident: 1527_CR16 publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(00)00194-3 – volume: 58 start-page: 819 issue: 5 year: 2016 ident: 1527_CR32 publication-title: Comput Mech doi: 10.1007/s00466-016-1318-7 – volume: 10 start-page: 99 issue: 2 year: 1993 ident: 1527_CR14 publication-title: Eng Comput doi: 10.1108/eb023897 – volume: 25 start-page: 451 issue: 4 year: 1986 ident: 1527_CR46 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(86)90259-6 – volume: 7 start-page: 199 year: 2011 ident: 1527_CR44 publication-title: Int J Mech Mater Des doi: 10.1007/s10999-011-9159-1 – volume: 53 start-page: 173 year: 2014 ident: 1527_CR23 publication-title: Comput Mech doi: 10.1007/s00466-013-0900-5 – volume-title: Finite element analysis year: 1991 ident: 1527_CR50 – ident: 1527_CR21 doi: 10.1007/978-1-4020-6095-3-1 – volume: 47 start-page: 698 year: 2011 ident: 1527_CR36 publication-title: Finite Elem Anal Des doi: 10.1016/j.finel.2011.02.002 – volume: 96 start-page: 382 year: 2015 ident: 1527_CR55 publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2014.08.054 – volume: 85 start-page: 294 year: 2016 ident: 1527_CR6 publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2016.04.004 – ident: 1527_CR38 – volume: 145 start-page: 1 year: 2007 ident: 1527_CR30 publication-title: Int J Fract doi: 10.1007/s10704-007-9094-1 – ident: 1527_CR19 – volume: 69 start-page: 126 year: 2014 ident: 1527_CR8 publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2013.12.004 – volume-title: Concepts and applications of finite element analysis year: 2002 ident: 1527_CR13 – volume: 163 start-page: 274 year: 2016 ident: 1527_CR41 publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2016.06.009 – volume: 30 start-page: 227 year: 1970 ident: 1527_CR10 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(70)90026-3 – start-page: 171 volume-title: Numerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete year: 1985 ident: 1527_CR25 – volume: 2 start-page: 333 year: 1986 ident: 1527_CR39 publication-title: Finite Elem Anal Des doi: 10.1016/0168-874X(86)90020-X – volume: 45 start-page: 601 year: 1999 ident: 1527_CR5 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – volume: 53 start-page: 104 year: 2014 ident: 1527_CR52 publication-title: Comput Mech doi: 10.1007/s00466-013-0948-2 – volume: 44 start-page: 377 year: 2009 ident: 1527_CR3 publication-title: Comput Mech doi: 10.1007/s00466-009-0376-5 – volume: 153 start-page: 117 year: 1998 ident: 1527_CR40 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(97)00039-X – volume: 71 start-page: 1466 year: 2007 ident: 1527_CR31 publication-title: Int J Numer Methods Geomech doi: 10.1002/nme.2001 – volume: 106 start-page: 1018 year: 2016 ident: 1527_CR57 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.5157 – volume: 47 start-page: 335 year: 1980 ident: 1527_CR56 publication-title: Trans ASME J Appl Mech doi: 10.1115/1.3153665 – volume: 39 start-page: 2557 year: 2002 ident: 1527_CR15 publication-title: Int J Solids Struct doi: 10.1016/S0020-7683(02)00114-2 – volume: 77 start-page: 215 issue: 2 year: 2000 ident: 1527_CR20 publication-title: Comput Struct doi: 10.1016/S0045-7949(99)00211-4 – volume: 190 start-page: 4081 year: 2001 ident: 1527_CR48 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(01)00188-8 – volume: 59 start-page: 1 year: 2013 ident: 1527_CR2 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.02.001 – volume: 53 start-page: 1129 issue: 6 year: 2014 ident: 1527_CR7 publication-title: Comput Mech doi: 10.1007/s00466-013-0952-6 – volume: 35 start-page: 379 year: 1968 ident: 1527_CR42 publication-title: Trans ASME J Appl Mech doi: 10.1115/1.3601206 – volume: 81 start-page: 335 year: 2010 ident: 1527_CR28 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.2690 – volume: 197 start-page: 487 year: 2008 ident: 1527_CR18 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.08.017 – volume: 75 start-page: 051107 issue: 5 year: 2008 ident: 1527_CR27 publication-title: J Appl Mech doi: 10.1115/1.2936240 – volume: 93 start-page: 23 year: 2013 ident: 1527_CR22 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.4373 – volume: 102 start-page: 331 issue: 2 year: 1976 ident: 1527_CR4 publication-title: J Eng Mech – volume: 46 start-page: 131 year: 1999 ident: 1527_CR37 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – volume: 84 start-page: 1115 year: 2010 ident: 1527_CR29 publication-title: Int J Numer Meth Eng doi: 10.1002/nme.2939 – volume: 9 start-page: 931 year: 1977 ident: 1527_CR43 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(77)90013-3 – volume-title: The stress analysis of cracks handbook year: 2000 ident: 1527_CR51 doi: 10.1115/1.801535 – volume: 58 start-page: 842 issue: 3 year: 1991 ident: 1527_CR26 publication-title: J Appl Mech doi: 10.1115/1.2897273 – volume: 47 start-page: 1401 year: 2000 ident: 1527_CR47 publication-title: Int J Numer Methods Eng doi: 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8 – ident: 1527_CR17 – volume: 6 start-page: 71 year: 1987 ident: 1527_CR11 publication-title: Mech Mater doi: 10.1016/0167-6636(87)90023-8 – volume: 71 start-page: 193 year: 2004 ident: 1527_CR45 publication-title: Eng Fract Mech doi: 10.1016/S0013-7944(03)00097-3 – volume: 3 start-page: 381 issue: 5 year: 1988 ident: 1527_CR49 publication-title: Comput Mech doi: 10.1007/BF00301139 – volume: 34 start-page: 988 issue: 3 year: 2017 ident: 1527_CR34 publication-title: Eng Comput doi: 10.1108/EC-02-2016-0050 – volume: 30 start-page: 1473 issue: 11 year: 1993 ident: 1527_CR24 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(93)90072-F – volume: 33 start-page: 2899 issue: 20–22 year: 1996 ident: 1527_CR9 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(95)00255-3 – volume: 23 start-page: 11 issue: 2 year: 1987 ident: 1527_CR12 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(87)90029 – volume: 13 start-page: 2529 issue: 13 year: 2016 ident: 1527_CR33 publication-title: Latin Am J Solids Struct doi: 10.1590/1679-78252832 – volume: 39 start-page: 289 year: 1996 ident: 1527_CR35 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/S0045-7825(96)01087-0 – volume: 11 start-page: 323 year: 1969 ident: 1527_CR54 publication-title: Nucl Eng Des doi: 10.1016/0029-5493(70)90155-X |
| SSID | ssj0015835 |
| Score | 2.2823853 |
| Snippet | Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 783 |
| SubjectTerms | Classical and Continuum Physics Computational Science and Engineering Computer simulation Defects Engineering Enrichment Finite element analysis Finite element method Fracture mechanics Inhomogeneity Linear elastic fracture mechanics Mathematical models Mindlin plates Nonlinear programming Numerical analysis Original Paper Plane stress Theoretical and Applied Mechanics |
| Title | Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method |
| URI | https://link.springer.com/article/10.1007/s00466-017-1527-8 https://www.proquest.com/docview/2100405895 |
| Volume | 62 |
| WOSCitedRecordID | wos000443982100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Contemporary customDbUrl: eissn: 1432-0924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015835 issn: 0178-7675 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB31g0N7oPQDdWlBc-gJZG2ydjb2EVWsOK2qtqDeIseeLFG7CdpsQeI_8J-x42QXUEFqz3GsyDOO33hm3gM4k5qUFblhgsaCCWPGTEVCM67jSFuHJyi1rdhEOp3Kmxt10fVxN321e5-SbP_Uq2Y3H8r56DdlXoqVyU3Ydqed9HoNl1efV6mDRAZVzdiFR56ppE9lPjTFn4fRGmH-lRRtz5rJ3pO-8gU876Alvg--sA8bVB3AXgczsdvEzQHs_sZBeAg_p_chaXOHuiMowbpAjXNdVmgW2tyi55RYhA6IBv3NLc59HR-z1BaDDMvqSz2vnStSy8-Kvph-hsvvNWvcvISzwG1d_iA77G_dsSg93EUK9esYpKyP4NPkw_X5R9ZpNDDD4_GS6ZHDCJYXIlFGShemkyA7VjnZKOecrErIWd1y6YBE7qAQLxItcsGtFamIBPGXsFXVFR0D5omi2DOuFUKLNNVaWTWyDl450OrMbAYQ9cbKTEdg7nU07rIV9XK7-Jlb_MwvfiYH8Hb1ytfA3vG_wae9B2TdRm6ykWfU89KLyQDe9RZfP_7nZK8eNfoEdhwQCzy78SlsLRf39BqemW_Lslm8af37F8aA9w4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9RAEJ4gmKgPIIjhAHUeeNJsaG-3191HQiAY8WIUCG_NdncKDVxLrock_Af_s7vd9lCjJvrc7aaZne18szP7fQA7UpOyIjdM0EgwYcyIqUhoxnUcaevwBKW2FZtIx2N5fq4-dfe4m77bvS9Jtn_q-WU3n8r57DdlXoqVyUewJFzA8oT5n7-czUsHiQyqmrFLjzxTSV_K_N0UPwejB4T5S1G0jTWHK__1lc9huYOWuBd8YRUWqFqDlQ5mYreJmzV49gMH4Qv4Nr4NRZtr1B1BCdYFapzoskIz1eYKPafENNyAaNCf3OLE9_ExS20zyG5ZXdaT2rkitfys6JvpL3B2V7PGzUt4Ebity3uyu_2pOxalh7tIoX8dg5T1OpweHpzsH7FOo4EZHo9mTA8dRrC8EIkyUro0nQTZkcrJRjnnZFVCbtUtlw5I5A4K8SLRIhfcWpGKSBB_CYtVXdEGYJ4oij3jWiG0SFOtlVVD6-CVA61KRmYAUb9YmekIzL2OxnU2p15ujZ8542fe-JkcwNv5KzeBveNvg7d7D8i6jdxkQ8-o56UXkwG861f84fEfJ9v8p9Fv4MnRycfj7Pj9-MMWPHWgLHDuxtuwOJve0it4bL7Oymb6uvX172J1-fI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VglA5tFBasbTAHDiBrE3WzsY-ImDVCrSqxId6ixx70kbtJtUmBan_of8ZO062gCgS4hxnZNlj-Y1n5j2Al1KTsiI3TNBUMGHMlKlIaMZ1HGnr8ASlthObSOdzeXysjnqd02aodh9SkqGnwbM0Ve34whbjVeObD-t8JJwyL8vK5B24K3wdvQ_XP31dpRESGRQ2YxcqedaSIa35JxO_Xkw3aPO3BGl378y2_nvGD2Gzh5z4JvjII1ijahu2eviJ_eFutuHBT9yEj-F6fhmSOeeoe-ISrAvUuNBlhWapzRl6roll6Ixo0L_o4sLX9zFLXZHIuKxO60XtXJQ63lb0RfYn2H6vWePsEp4Ezuvyiux4eI3HovQwGCnUtWOQuN6BL7P3n98esF67gRkeT1umJw47WF6IRBkpXfhOguxU5WSjnHOyKiHnDZZLBzByB5F4kWiRC26tSEUkiO_CelVX9AQwTxTFnomtEFqkqdbKqol1sMuBWSUjM4Jo2LjM9MTmXl_jPFtRMneLn7nFz_ziZ3IEr1a_XARWj78N3h-8IesPeJNNPNOel2RMRvB62P2bz7cae_pPo1_A_aN3s-zj4fzDHmw4rBaoeON9WG-Xl_QM7plvbdksn3du_wM09ALl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+a+main+crack+interactions+with+micro-defects%2Finhomogeneities+using+two-scale+generalized%2Fextended+finite+element+method&rft.jtitle=Computational+mechanics&rft.au=Malekan%2C+Mohammad&rft.au=Barros%2C+Fel%C3%ADcio+B&rft.date=2018-10-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-7675&rft.eissn=1432-0924&rft.volume=62&rft.issue=4&rft.spage=783&rft.epage=801&rft_id=info:doi/10.1007%2Fs00466-017-1527-8&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon |