Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can u...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mechanics Ročník 62; číslo 4; s. 783 - 801
Hlavní autoři: Malekan, Mohammad, Barros, Felício B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2018
Springer Nature B.V
Témata:
ISSN:0178-7675, 1432-0924
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner–Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.
AbstractList Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner–Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.
Author Barros, Felício B.
Malekan, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Malekan
  fullname: Malekan, Mohammad
  email: mmalekan1986@gmail.com, malekan@dees.ufmg.br
  organization: Graduate Program in Structural Engineering (PROPEEs), School of Engineering, Federal University of Minas Gerais (UFMG)
– sequence: 2
  givenname: Felício B.
  surname: Barros
  fullname: Barros, Felício B.
  organization: Graduate Program in Structural Engineering (PROPEEs), School of Engineering, Federal University of Minas Gerais (UFMG)
BookMark eNp9kN9qFTEQh4O04GntA3gX8Dqe_N3NXkpRKxS90euQ3cyeM3U3qUkOtb6D72wOp1AQ9GoG5vcNM98FOYspAiGvBX8rOO-3hXPddYyLngkje2ZfkI3QSjI-SH1GNm1gWd_15iW5KOWOc2GsMhvy-_NhhYyTX6iPfnksWGiaqaerx0in7KfvFGOF1lRMsdAHrHu64pQTCzDDVMsW4z6taQcRsCIUeigYd7Q-JFbaXqDHSfYL_oKwhZ8VYoBAZ4xYgcICK8RKV6j7FF6R89kvBa6e6iX59uH91-sbdvvl46frd7dsUqKrzEspbFCzNsNkLYwSNIRuGCHwUSkIgwEveFDWCjkOqlez8XrUKgTda65BXZI3p733Of04QKnuLh1y-7842XRqbuxgWqo_pdqzpWSY3YTVHzXU7HFxgruje3dy75pid3TvbCPFX-R9xtXnx_8y8sSUlo07yM83_Rv6AyI4m_0
CitedBy_id crossref_primary_10_1016_j_ijpvp_2021_104377
crossref_primary_10_1111_ffe_14514
crossref_primary_10_1007_s00366_021_01321_x
crossref_primary_10_1016_j_tafmec_2020_102561
crossref_primary_10_1016_j_enganabound_2025_106219
crossref_primary_10_1177_0309324718771124
crossref_primary_10_1016_j_tafmec_2020_102841
crossref_primary_10_1002_nme_70079
crossref_primary_10_1016_j_cma_2020_112888
crossref_primary_10_1016_j_finel_2024_104258
crossref_primary_10_1016_j_tafmec_2020_102647
Cites_doi 10.1016/j.advengsoft.2014.09.016
10.1016/S0020-7683(00)00194-3
10.1007/s00466-016-1318-7
10.1108/eb023897
10.1016/0013-7944(86)90259-6
10.1007/s10999-011-9159-1
10.1007/s00466-013-0900-5
10.1007/978-1-4020-6095-3-1
10.1016/j.finel.2011.02.002
10.1016/j.commatsci.2014.08.054
10.1016/j.tafmec.2016.04.004
10.1007/s10704-007-9094-1
10.1016/j.tafmec.2013.12.004
10.1016/j.engfracmech.2016.06.009
10.1016/0013-7944(70)90026-3
10.1016/0168-874X(86)90020-X
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1007/s00466-013-0948-2
10.1007/s00466-009-0376-5
10.1016/S0045-7825(97)00039-X
10.1002/nme.2001
10.1002/nme.5157
10.1115/1.3153665
10.1016/S0020-7683(02)00114-2
10.1016/S0045-7949(99)00211-4
10.1016/S0045-7825(01)00188-8
10.1016/j.advengsoft.2013.02.001
10.1007/s00466-013-0952-6
10.1115/1.3601206
10.1002/nme.2690
10.1016/j.cma.2007.08.017
10.1115/1.2936240
10.1002/nme.4373
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1002/nme.2939
10.1016/0013-7944(77)90013-3
10.1115/1.801535
10.1115/1.2897273
10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
10.1016/0167-6636(87)90023-8
10.1016/S0013-7944(03)00097-3
10.1007/BF00301139
10.1108/EC-02-2016-0050
10.1016/0020-7683(93)90072-F
10.1016/0020-7683(95)00255-3
10.1016/0020-7683(87)90029
10.1590/1679-78252832
10.1016/S0045-7825(96)01087-0
10.1016/0029-5493(70)90155-X
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00466-017-1527-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1432-0924
EndPage 801
ExternalDocumentID 10_1007_s00466_017_1527_8
GrantInformation_xml – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: http://orcid.org/10.13039/501100002322
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 308932/2016-1; 151003/2017-3
  funderid: http://orcid.org/10.13039/501100003593
– fundername: Fundação de Amparo á Pesquisa do Estado de Minas Gerais
  grantid: APQ-02460-16
  funderid: http://orcid.org/10.13039/501100004901
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E.L
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAS
LLZTM
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9P
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WK8
XH6
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c316t-a2218d3f459c88eb2e4ed69bed0b33ed95ea10d38812b9373f5a4b43dd47404e3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443982100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-7675
IngestDate Wed Nov 26 13:41:02 EST 2025
Tue Nov 18 21:39:54 EST 2025
Sat Nov 29 06:01:21 EST 2025
Fri Feb 21 02:32:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Micro-defects
Fracture mechanics
Stress intensity factor
Generalized/extended FEM
Two-scale analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a2218d3f459c88eb2e4ed69bed0b33ed95ea10d38812b9373f5a4b43dd47404e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2100405895
PQPubID 2043755
PageCount 19
ParticipantIDs proquest_journals_2100405895
crossref_citationtrail_10_1007_s00466_017_1527_8
crossref_primary_10_1007_s00466_017_1527_8
springer_journals_10_1007_s00466_017_1527_8
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Solids, Fluids, Structures, Fluid-Structure Interactions, Biomechanics, Micromechanics, Multiscale Mechanics, Materials, Constitutive Modeling, Nonlinear Mechanics, Aerodynamics
PublicationTitle Computational mechanics
PublicationTitleAbbrev Comput Mech
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CamachoGTOrtizMComputational modelling of impact damage in brittle materialsInt J Solids Struct19963320–222899293810.1016/0020-7683(95)00255-30929.74101
JosephPErdoganFBending of a thin reissner plate with a through crackJ Appl Mech199158384284610.1115/1.2897273
MendoncaPTRBarcellosCSTorresDAFAnalysis of anisotropic mindlin plate model by continuous and non-continuous GFEMFinite Elem Anal Des201147698717280093510.1016/j.finel.2011.02.002
YangSWBudarapuPRMahapatraDBordasSPZiGRabczukTA meshless adaptive multiscale method for fractureComput Mater Sci20159638239510.1016/j.commatsci.2014.08.054
O’HaraPDuarteCEasonTA two-scale GFEM for interaction and coalescence of multiple crack surfacesEng Fract Mech201616327430210.1016/j.engfracmech.2016.06.009
MalekanMBarrosFBWell-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanicsComput Mech2016585819831355537610.1007/s00466-016-1318-706653553
RybickiEFKanninenMFA finite element calculation of stress intensity factors by a modified crack closure integralEng Fract Mech1977993193810.1016/0013-7944(77)90013-3
ChanSKTubaISWilsonWKOn the finite element method in linear fracture mechanicsEng Fract Mech197030227231
DolbowJMoësNBelytschkoTModeling fracture in mindlin-reissner plates with the extended finite element methodInt J Solids Struct2000377161718310.1016/S0020-7683(00)00194-30993.74061
Akbari A, Kerfriden P, Rabczuk T, Bordas SP (2012) An adaptive multiscale method for fracture based on concurrent-hierarchical hybrid modelling. In: Proceedings of the 20th UK conference of the association for computational mechanics in engineering, Manchester
RiceJA path independent integral and the approximate analysis of strain concentration by notches and cracksTrans ASME J Appl Mech19683537938610.1115/1.3601206
ZengQLiuZXuDWangHZhuangZModeling arbitrary crack propagation in coupled shell/solid structures with x-femInt J Numer Meth Eng201610610181040350512410.1002/nme.51571352.74309
BudarapuPRGracieRYangSWZhuangXRabczukTEfficient coarse graining in multiscale modeling of fractureTheor Appl Fract Mech20146912614310.1016/j.tafmec.2013.12.004
TadaHParisPCIrwinCRThe stress analysis of cracks handbook20003New YorkASME Press10.1115/1.801535
AlvesPDBarrosFBPitangueiraRLSAn object oriented approach to the generalized finite element methodAdv Eng Softw20135911810.1016/j.advengsoft.2013.02.001
KimDJPereiraJPDuarteCAAnalysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshesInt J Numer Meth Eng2010813353651183.74285
IngraffeaARSaoumaVNumerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete1985DordrechtMartinus Nijhoff Publishers171225
Duarte CA, Babuška IM (2005) A global-local approach for the construction of enrichment functions for the generalized fem and its application to propagating three-dimensional cracks. Technical report, ECCOMAS thematic conference on meshless methods, technical report 06
SosaHAEischenJWComputation of stress intensity factors for plate bending via a path-independent integralEng Fract Mech198625445146210.1016/0013-7944(86)90259-6
LoehnertSBelytschkoTA multiscale projection method for macro/microcrack simulationsInt J Numer Methods Geomech20077114661482235234610.1002/nme.20011194.74436
StrouboulisTCoppsKBabuškaIThe generalized finite element method: an example of its implementation and illustration of its performanceInt J Numer Methods Eng20004714011417174648910.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-80955.65080
BazǎntZPInstability, ductility, and size effects in strain-softening concreteJ Eng Mech19761022331344
BudarapuPRGracieRBordasSPRabczukTAn adaptive multiscale method for quasi-static crack growthComput Mech20145361129114810.1007/s00466-013-0952-606327133
KimDDuarteCPereiraJAnalysis of interacting cracks using the generalized finite element method with global-local enrichment functionsJ Appl Mech200875505110710.1115/1.2936240
DolbowJGoszMOn the computation of mixed-mode stress intensity factors in functionally graded materialsInt J Solids Struct2002392557257410.1016/S0020-7683(02)00114-21087.74547
TalebiHSilaniMBordasSPAKerfridenPRabczukTA computational library for multiscale modeling of material failureComput Mech2014531041071318843710.1007/s00466-013-0948-206327129
MelenkJMBabuškaIThe partition of unity finite element method: basic theory and applicationsComput Methods Appl Mech Eng199639289314142601210.1016/S0045-7825(96)01087-00881.65099
de BorstRSluysLJMuhlhausHBPaminJFundamental issues in finite element analyses of localisation of deformationEng Comput19931029912110.1108/eb023897
BarcellosCSMendoncaPTRDuarteCAA Ck continuous generalized finite element formulation applied to laminated kirchhoff plate modelComput Mech200944377393250781710.1007/s00466-009-0376-51166.74044
LasryJPommierJRenardYSalaunMeXtended finite element methods for thin cracked plates with kirchhoff-love theoryInt J Numer Meth Eng20108411151138275765910.1002/nme.29391202.74176
CookRDMalkusDSPleshaMEWittRJConcepts and applications of finite element analysis2002New YorkWiley
DuarteCAKimDJAnalysis and applications of a generalized finite element method with global-local enrichment functionsComput Methods Appl Mech Eng2008197487504239603910.1016/j.cma.2007.08.0171169.74597
HollMRoggeTLoehnertSWriggersPRolfesR3d multiscale crack propagation using the xfem applied to a gas turbine bladeComput Mech201453173188314749510.1007/s00466-013-0900-506327077
Duarte CA, Oden JT (1995) Hp clouds - a meshless method to solve boundary-value problem. Tech. rep., TICAM, The University of Texas at Austin, technical Report
YauJFWangSSCortenHTA mixed-mode crack analysis of isotropic solids using conservation laws of elasticityTrans ASME J Appl Mech19804733534110.1115/1.31536650463.73103
NoorAKGlobal-local methodologies and their application to nonlinear analysisFinite Elem Anal Des1986233334610.1016/0168-874X(86)90020-X
StrouboulisTCoppsKBabuškaIThe generalized finite element methodComput Methods Appl Mech Eng200119040814193183265510.1016/S0045-7825(01)00188-80997.74069
TalebiHSilaniMRabczukTConcurrent multiscale modeling of three dimensional crack and dislocation propagationAdv Eng Softw201580829010.1016/j.advengsoft.2014.09.016
HollMLoehnertSWriggersPAn adaptive multiscale method for crack propagation and crack coalescenceInt J Numer Meth Eng2013932351300628110.1002/nme.43731352.74281
BhardwajGSinghSSinghIMishraBRabczukTFatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGATheor Appl Fract Mech20168529431910.1016/j.tafmec.2016.04.004
MalekanMBarrosFBPitangueiraRLSAlvesPDPennaSSA computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditionsEng Comput2017343988101910.1108/EC-02-2016-0050
SohAYangCNumerical modeling of interactions between a macro-crack and a cluster of micro-defectsEng Fract Mech20047119321710.1016/S0013-7944(03)00097-3
MalekanMBarrosFBPitangueiraRLSAlvesPDAn object-oriented class organization for global-local generalized finite element methodLatin Am J Solids Struct201613132529255110.1590/1679-78252832
MoësNDolbowJBelytschkoTA finite element method for crack growth without remeshingInt J Numer Methods Eng19994613115010.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J0955.74066
HuKXChandraAHuangYMultiple void-crack interactionInt J Solids Struct199330111473148910.1016/0020-7683(93)90072-F0779.73040
Duarte CA, Kim DJ, Babuška I (2007) A global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão V, Alves C, Duarte CA (eds) Advances in meshfree techniques, pp 1–26. https://doi.org/10.1007/978-1-4020-6095-3-1
SinghIMishraBBhattacharyaSXFEM simulation of cracks, holes and inclusions in functionally graded materialsInt J Mech Mater Des2011719921810.1007/s10999-011-9159-1
BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Numer Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S0943.74061
CharalambidesRPMeekingMcFinite element method simulation of crack propagation in a brittle microcracking solidsMech Mater19876718710.1016/0167-6636(87)90023-8
ChudnovskyAKMADolgopolskyAElastic interaction of a crack with a microcrack array-ii. Elastic solution for two crack configurations (piecewise constant and linear approximations)Int J Solids Struct1987232112110.1016/0020-7683(87)90029-10601.73098
Nguyen VP (2005) An object oriented approach to the xfem with applications to fracture mechanics. Master’s thesis, EMMC-Hochiminh University of Technology
OdenJTDuarteCAZienkiewiczOCA new cloud-based hp finite element methodComput Methods Appl Mech Eng1998153117126160611710.1016/S0045-7825(97)00039-X0956.74062
SwensonDVIngraffeaARModeling mixed-mode dynamic crack propagation using finite elements: theory and applicationsComput Mech19883538139710.1007/BF003011390663.73074
LoehnertSBelytschkoTCrack shielding and amplification due to multiple microcracks interacting with a macrocrackInt J Fract20071451810.1007/s10704-007-9094-11198.74075
DuarteCABabuškaIOdenJTGeneralized finite element methods for three-dimensional structural mechanics problemsComput Struct2000772215232176854010.1016/S0045-7949(99)00211-4
SzaboBBabuškaIFinite element analysis1991New YorkWiley0792.73003
WatwoodVThe finite element method for prediction of crack behaviourNucl Eng Des19691132333210.1016/0029-5493(70)90155-X
KX Hu (1527_CR24) 1993; 30
PD Alves (1527_CR2) 2013; 59
1527_CR1
PTR Mendonca (1527_CR36) 2011; 47
A Soh (1527_CR45) 2004; 71
Q Zeng (1527_CR57) 2016; 106
GT Camacho (1527_CR9) 1996; 33
1527_CR19
M Malekan (1527_CR32) 2016; 58
JM Melenk (1527_CR35) 1996; 39
1527_CR17
CA Duarte (1527_CR20) 2000; 77
M Holl (1527_CR22) 2013; 93
J Lasry (1527_CR29) 2010; 84
CA Duarte (1527_CR18) 2008; 197
R Borst de (1527_CR14) 1993; 10
DJ Kim (1527_CR28) 2010; 81
N Moës (1527_CR37) 1999; 46
JT Oden (1527_CR40) 1998; 153
RP Charalambides (1527_CR11) 1987; 6
M Malekan (1527_CR34) 2017; 34
J Rice (1527_CR42) 1968; 35
PR Budarapu (1527_CR7) 2014; 53
H Talebi (1527_CR53) 2015; 80
CS Barcellos (1527_CR3) 2009; 44
M Malekan (1527_CR33) 2016; 13
HA Sosa (1527_CR46) 1986; 25
H Talebi (1527_CR52) 2014; 53
H Tada (1527_CR51) 2000
S Loehnert (1527_CR31) 2007; 71
T Strouboulis (1527_CR48) 2001; 190
J Dolbow (1527_CR15) 2002; 39
T Strouboulis (1527_CR47) 2000; 47
J Dolbow (1527_CR16) 2000; 37
AR Ingraffea (1527_CR25) 1985
P O’Hara (1527_CR41) 2016; 163
1527_CR38
RD Cook (1527_CR13) 2002
G Bhardwaj (1527_CR6) 2016; 85
B Szabo (1527_CR50) 1991
SK Chan (1527_CR10) 1970; 30
P Joseph (1527_CR26) 1991; 58
AKMA Chudnovsky (1527_CR12) 1987; 23
JF Yau (1527_CR56) 1980; 47
D Kim (1527_CR27) 2008; 75
M Holl (1527_CR23) 2014; 53
AK Noor (1527_CR39) 1986; 2
SW Yang (1527_CR55) 2015; 96
1527_CR21
V Watwood (1527_CR54) 1969; 11
PR Budarapu (1527_CR8) 2014; 69
I Singh (1527_CR44) 2011; 7
EF Rybicki (1527_CR43) 1977; 9
T Belytschko (1527_CR5) 1999; 45
ZP Bazǎnt (1527_CR4) 1976; 102
S Loehnert (1527_CR30) 2007; 145
DV Swenson (1527_CR49) 1988; 3
References_xml – reference: JosephPErdoganFBending of a thin reissner plate with a through crackJ Appl Mech199158384284610.1115/1.2897273
– reference: SohAYangCNumerical modeling of interactions between a macro-crack and a cluster of micro-defectsEng Fract Mech20047119321710.1016/S0013-7944(03)00097-3
– reference: RiceJA path independent integral and the approximate analysis of strain concentration by notches and cracksTrans ASME J Appl Mech19683537938610.1115/1.3601206
– reference: CharalambidesRPMeekingMcFinite element method simulation of crack propagation in a brittle microcracking solidsMech Mater19876718710.1016/0167-6636(87)90023-8
– reference: YauJFWangSSCortenHTA mixed-mode crack analysis of isotropic solids using conservation laws of elasticityTrans ASME J Appl Mech19804733534110.1115/1.31536650463.73103
– reference: WatwoodVThe finite element method for prediction of crack behaviourNucl Eng Des19691132333210.1016/0029-5493(70)90155-X
– reference: HollMLoehnertSWriggersPAn adaptive multiscale method for crack propagation and crack coalescenceInt J Numer Meth Eng2013932351300628110.1002/nme.43731352.74281
– reference: SosaHAEischenJWComputation of stress intensity factors for plate bending via a path-independent integralEng Fract Mech198625445146210.1016/0013-7944(86)90259-6
– reference: Duarte CA, Babuška IM (2005) A global-local approach for the construction of enrichment functions for the generalized fem and its application to propagating three-dimensional cracks. Technical report, ECCOMAS thematic conference on meshless methods, technical report 06
– reference: YangSWBudarapuPRMahapatraDBordasSPZiGRabczukTA meshless adaptive multiscale method for fractureComput Mater Sci20159638239510.1016/j.commatsci.2014.08.054
– reference: ZengQLiuZXuDWangHZhuangZModeling arbitrary crack propagation in coupled shell/solid structures with x-femInt J Numer Meth Eng201610610181040350512410.1002/nme.51571352.74309
– reference: StrouboulisTCoppsKBabuškaIThe generalized finite element methodComput Methods Appl Mech Eng200119040814193183265510.1016/S0045-7825(01)00188-80997.74069
– reference: NoorAKGlobal-local methodologies and their application to nonlinear analysisFinite Elem Anal Des1986233334610.1016/0168-874X(86)90020-X
– reference: BudarapuPRGracieRBordasSPRabczukTAn adaptive multiscale method for quasi-static crack growthComput Mech20145361129114810.1007/s00466-013-0952-606327133
– reference: de BorstRSluysLJMuhlhausHBPaminJFundamental issues in finite element analyses of localisation of deformationEng Comput19931029912110.1108/eb023897
– reference: RybickiEFKanninenMFA finite element calculation of stress intensity factors by a modified crack closure integralEng Fract Mech1977993193810.1016/0013-7944(77)90013-3
– reference: BarcellosCSMendoncaPTRDuarteCAA Ck continuous generalized finite element formulation applied to laminated kirchhoff plate modelComput Mech200944377393250781710.1007/s00466-009-0376-51166.74044
– reference: AlvesPDBarrosFBPitangueiraRLSAn object oriented approach to the generalized finite element methodAdv Eng Softw20135911810.1016/j.advengsoft.2013.02.001
– reference: SinghIMishraBBhattacharyaSXFEM simulation of cracks, holes and inclusions in functionally graded materialsInt J Mech Mater Des2011719921810.1007/s10999-011-9159-1
– reference: MelenkJMBabuškaIThe partition of unity finite element method: basic theory and applicationsComput Methods Appl Mech Eng199639289314142601210.1016/S0045-7825(96)01087-00881.65099
– reference: BhardwajGSinghSSinghIMishraBRabczukTFatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGATheor Appl Fract Mech20168529431910.1016/j.tafmec.2016.04.004
– reference: HuKXChandraAHuangYMultiple void-crack interactionInt J Solids Struct199330111473148910.1016/0020-7683(93)90072-F0779.73040
– reference: CamachoGTOrtizMComputational modelling of impact damage in brittle materialsInt J Solids Struct19963320–222899293810.1016/0020-7683(95)00255-30929.74101
– reference: Akbari A, Kerfriden P, Rabczuk T, Bordas SP (2012) An adaptive multiscale method for fracture based on concurrent-hierarchical hybrid modelling. In: Proceedings of the 20th UK conference of the association for computational mechanics in engineering, Manchester
– reference: MoësNDolbowJBelytschkoTA finite element method for crack growth without remeshingInt J Numer Methods Eng19994613115010.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J0955.74066
– reference: Duarte CA, Oden JT (1995) Hp clouds - a meshless method to solve boundary-value problem. Tech. rep., TICAM, The University of Texas at Austin, technical Report
– reference: BudarapuPRGracieRYangSWZhuangXRabczukTEfficient coarse graining in multiscale modeling of fractureTheor Appl Fract Mech20146912614310.1016/j.tafmec.2013.12.004
– reference: LoehnertSBelytschkoTCrack shielding and amplification due to multiple microcracks interacting with a macrocrackInt J Fract20071451810.1007/s10704-007-9094-11198.74075
– reference: MalekanMBarrosFBPitangueiraRLSAlvesPDPennaSSA computational framework for a two-scale generalized/extended finite element method: generic imposition of boundary conditionsEng Comput2017343988101910.1108/EC-02-2016-0050
– reference: TadaHParisPCIrwinCRThe stress analysis of cracks handbook20003New YorkASME Press10.1115/1.801535
– reference: ChudnovskyAKMADolgopolskyAElastic interaction of a crack with a microcrack array-ii. Elastic solution for two crack configurations (piecewise constant and linear approximations)Int J Solids Struct1987232112110.1016/0020-7683(87)90029-10601.73098
– reference: LasryJPommierJRenardYSalaunMeXtended finite element methods for thin cracked plates with kirchhoff-love theoryInt J Numer Meth Eng20108411151138275765910.1002/nme.29391202.74176
– reference: HollMRoggeTLoehnertSWriggersPRolfesR3d multiscale crack propagation using the xfem applied to a gas turbine bladeComput Mech201453173188314749510.1007/s00466-013-0900-506327077
– reference: MalekanMBarrosFBPitangueiraRLSAlvesPDAn object-oriented class organization for global-local generalized finite element methodLatin Am J Solids Struct201613132529255110.1590/1679-78252832
– reference: MendoncaPTRBarcellosCSTorresDAFAnalysis of anisotropic mindlin plate model by continuous and non-continuous GFEMFinite Elem Anal Des201147698717280093510.1016/j.finel.2011.02.002
– reference: DolbowJMoësNBelytschkoTModeling fracture in mindlin-reissner plates with the extended finite element methodInt J Solids Struct2000377161718310.1016/S0020-7683(00)00194-30993.74061
– reference: OdenJTDuarteCAZienkiewiczOCA new cloud-based hp finite element methodComput Methods Appl Mech Eng1998153117126160611710.1016/S0045-7825(97)00039-X0956.74062
– reference: SzaboBBabuškaIFinite element analysis1991New YorkWiley0792.73003
– reference: IngraffeaARSaoumaVNumerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete1985DordrechtMartinus Nijhoff Publishers171225
– reference: Nguyen VP (2005) An object oriented approach to the xfem with applications to fracture mechanics. Master’s thesis, EMMC-Hochiminh University of Technology
– reference: StrouboulisTCoppsKBabuškaIThe generalized finite element method: an example of its implementation and illustration of its performanceInt J Numer Methods Eng20004714011417174648910.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-80955.65080
– reference: TalebiHSilaniMBordasSPAKerfridenPRabczukTA computational library for multiscale modeling of material failureComput Mech2014531041071318843710.1007/s00466-013-0948-206327129
– reference: O’HaraPDuarteCEasonTA two-scale GFEM for interaction and coalescence of multiple crack surfacesEng Fract Mech201616327430210.1016/j.engfracmech.2016.06.009
– reference: ChanSKTubaISWilsonWKOn the finite element method in linear fracture mechanicsEng Fract Mech197030227231
– reference: KimDDuarteCPereiraJAnalysis of interacting cracks using the generalized finite element method with global-local enrichment functionsJ Appl Mech200875505110710.1115/1.2936240
– reference: BazǎntZPInstability, ductility, and size effects in strain-softening concreteJ Eng Mech19761022331344
– reference: MalekanMBarrosFBWell-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanicsComput Mech2016585819831355537610.1007/s00466-016-1318-706653553
– reference: Duarte CA, Kim DJ, Babuška I (2007) A global-local approach for the construction of enrichment functions for the generalized fem and its application to three-dimensional cracks. In: Leitão V, Alves C, Duarte CA (eds) Advances in meshfree techniques, pp 1–26. https://doi.org/10.1007/978-1-4020-6095-3-1
– reference: SwensonDVIngraffeaARModeling mixed-mode dynamic crack propagation using finite elements: theory and applicationsComput Mech19883538139710.1007/BF003011390663.73074
– reference: DuarteCAKimDJAnalysis and applications of a generalized finite element method with global-local enrichment functionsComput Methods Appl Mech Eng2008197487504239603910.1016/j.cma.2007.08.0171169.74597
– reference: DolbowJGoszMOn the computation of mixed-mode stress intensity factors in functionally graded materialsInt J Solids Struct2002392557257410.1016/S0020-7683(02)00114-21087.74547
– reference: BelytschkoTBlackTElastic crack growth in finite elements with minimal remeshingInt J Numer Methods Eng19994560162010.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S0943.74061
– reference: CookRDMalkusDSPleshaMEWittRJConcepts and applications of finite element analysis2002New YorkWiley
– reference: KimDJPereiraJPDuarteCAAnalysis of three-dimensional fracture mechanics problems: a two-scale approach using coarse-generalized fem meshesInt J Numer Meth Eng2010813353651183.74285
– reference: LoehnertSBelytschkoTA multiscale projection method for macro/microcrack simulationsInt J Numer Methods Geomech20077114661482235234610.1002/nme.20011194.74436
– reference: DuarteCABabuškaIOdenJTGeneralized finite element methods for three-dimensional structural mechanics problemsComput Struct2000772215232176854010.1016/S0045-7949(99)00211-4
– reference: TalebiHSilaniMRabczukTConcurrent multiscale modeling of three dimensional crack and dislocation propagationAdv Eng Softw201580829010.1016/j.advengsoft.2014.09.016
– volume: 80
  start-page: 82
  year: 2015
  ident: 1527_CR53
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2014.09.016
– ident: 1527_CR1
– volume: 37
  start-page: 7161
  year: 2000
  ident: 1527_CR16
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(00)00194-3
– volume: 58
  start-page: 819
  issue: 5
  year: 2016
  ident: 1527_CR32
  publication-title: Comput Mech
  doi: 10.1007/s00466-016-1318-7
– volume: 10
  start-page: 99
  issue: 2
  year: 1993
  ident: 1527_CR14
  publication-title: Eng Comput
  doi: 10.1108/eb023897
– volume: 25
  start-page: 451
  issue: 4
  year: 1986
  ident: 1527_CR46
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(86)90259-6
– volume: 7
  start-page: 199
  year: 2011
  ident: 1527_CR44
  publication-title: Int J Mech Mater Des
  doi: 10.1007/s10999-011-9159-1
– volume: 53
  start-page: 173
  year: 2014
  ident: 1527_CR23
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0900-5
– volume-title: Finite element analysis
  year: 1991
  ident: 1527_CR50
– ident: 1527_CR21
  doi: 10.1007/978-1-4020-6095-3-1
– volume: 47
  start-page: 698
  year: 2011
  ident: 1527_CR36
  publication-title: Finite Elem Anal Des
  doi: 10.1016/j.finel.2011.02.002
– volume: 96
  start-page: 382
  year: 2015
  ident: 1527_CR55
  publication-title: Comput Mater Sci
  doi: 10.1016/j.commatsci.2014.08.054
– volume: 85
  start-page: 294
  year: 2016
  ident: 1527_CR6
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2016.04.004
– ident: 1527_CR38
– volume: 145
  start-page: 1
  year: 2007
  ident: 1527_CR30
  publication-title: Int J Fract
  doi: 10.1007/s10704-007-9094-1
– ident: 1527_CR19
– volume: 69
  start-page: 126
  year: 2014
  ident: 1527_CR8
  publication-title: Theor Appl Fract Mech
  doi: 10.1016/j.tafmec.2013.12.004
– volume-title: Concepts and applications of finite element analysis
  year: 2002
  ident: 1527_CR13
– volume: 163
  start-page: 274
  year: 2016
  ident: 1527_CR41
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2016.06.009
– volume: 30
  start-page: 227
  year: 1970
  ident: 1527_CR10
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(70)90026-3
– start-page: 171
  volume-title: Numerical modelling of discrete crack propagation in reinforced and plain concrete. Fracture mechanics of concrete
  year: 1985
  ident: 1527_CR25
– volume: 2
  start-page: 333
  year: 1986
  ident: 1527_CR39
  publication-title: Finite Elem Anal Des
  doi: 10.1016/0168-874X(86)90020-X
– volume: 45
  start-page: 601
  year: 1999
  ident: 1527_CR5
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– volume: 53
  start-page: 104
  year: 2014
  ident: 1527_CR52
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0948-2
– volume: 44
  start-page: 377
  year: 2009
  ident: 1527_CR3
  publication-title: Comput Mech
  doi: 10.1007/s00466-009-0376-5
– volume: 153
  start-page: 117
  year: 1998
  ident: 1527_CR40
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(97)00039-X
– volume: 71
  start-page: 1466
  year: 2007
  ident: 1527_CR31
  publication-title: Int J Numer Methods Geomech
  doi: 10.1002/nme.2001
– volume: 106
  start-page: 1018
  year: 2016
  ident: 1527_CR57
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.5157
– volume: 47
  start-page: 335
  year: 1980
  ident: 1527_CR56
  publication-title: Trans ASME J Appl Mech
  doi: 10.1115/1.3153665
– volume: 39
  start-page: 2557
  year: 2002
  ident: 1527_CR15
  publication-title: Int J Solids Struct
  doi: 10.1016/S0020-7683(02)00114-2
– volume: 77
  start-page: 215
  issue: 2
  year: 2000
  ident: 1527_CR20
  publication-title: Comput Struct
  doi: 10.1016/S0045-7949(99)00211-4
– volume: 190
  start-page: 4081
  year: 2001
  ident: 1527_CR48
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(01)00188-8
– volume: 59
  start-page: 1
  year: 2013
  ident: 1527_CR2
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.02.001
– volume: 53
  start-page: 1129
  issue: 6
  year: 2014
  ident: 1527_CR7
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0952-6
– volume: 35
  start-page: 379
  year: 1968
  ident: 1527_CR42
  publication-title: Trans ASME J Appl Mech
  doi: 10.1115/1.3601206
– volume: 81
  start-page: 335
  year: 2010
  ident: 1527_CR28
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.2690
– volume: 197
  start-page: 487
  year: 2008
  ident: 1527_CR18
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.08.017
– volume: 75
  start-page: 051107
  issue: 5
  year: 2008
  ident: 1527_CR27
  publication-title: J Appl Mech
  doi: 10.1115/1.2936240
– volume: 93
  start-page: 23
  year: 2013
  ident: 1527_CR22
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.4373
– volume: 102
  start-page: 331
  issue: 2
  year: 1976
  ident: 1527_CR4
  publication-title: J Eng Mech
– volume: 46
  start-page: 131
  year: 1999
  ident: 1527_CR37
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– volume: 84
  start-page: 1115
  year: 2010
  ident: 1527_CR29
  publication-title: Int J Numer Meth Eng
  doi: 10.1002/nme.2939
– volume: 9
  start-page: 931
  year: 1977
  ident: 1527_CR43
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(77)90013-3
– volume-title: The stress analysis of cracks handbook
  year: 2000
  ident: 1527_CR51
  doi: 10.1115/1.801535
– volume: 58
  start-page: 842
  issue: 3
  year: 1991
  ident: 1527_CR26
  publication-title: J Appl Mech
  doi: 10.1115/1.2897273
– volume: 47
  start-page: 1401
  year: 2000
  ident: 1527_CR47
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
– ident: 1527_CR17
– volume: 6
  start-page: 71
  year: 1987
  ident: 1527_CR11
  publication-title: Mech Mater
  doi: 10.1016/0167-6636(87)90023-8
– volume: 71
  start-page: 193
  year: 2004
  ident: 1527_CR45
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(03)00097-3
– volume: 3
  start-page: 381
  issue: 5
  year: 1988
  ident: 1527_CR49
  publication-title: Comput Mech
  doi: 10.1007/BF00301139
– volume: 34
  start-page: 988
  issue: 3
  year: 2017
  ident: 1527_CR34
  publication-title: Eng Comput
  doi: 10.1108/EC-02-2016-0050
– volume: 30
  start-page: 1473
  issue: 11
  year: 1993
  ident: 1527_CR24
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(93)90072-F
– volume: 33
  start-page: 2899
  issue: 20–22
  year: 1996
  ident: 1527_CR9
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(95)00255-3
– volume: 23
  start-page: 11
  issue: 2
  year: 1987
  ident: 1527_CR12
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(87)90029
– volume: 13
  start-page: 2529
  issue: 13
  year: 2016
  ident: 1527_CR33
  publication-title: Latin Am J Solids Struct
  doi: 10.1590/1679-78252832
– volume: 39
  start-page: 289
  year: 1996
  ident: 1527_CR35
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01087-0
– volume: 11
  start-page: 323
  year: 1969
  ident: 1527_CR54
  publication-title: Nucl Eng Des
  doi: 10.1016/0029-5493(70)90155-X
SSID ssj0015835
Score 2.282482
Snippet Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 783
SubjectTerms Classical and Continuum Physics
Computational Science and Engineering
Computer simulation
Defects
Engineering
Enrichment
Finite element analysis
Finite element method
Fracture mechanics
Inhomogeneity
Linear elastic fracture mechanics
Mathematical models
Mindlin plates
Nonlinear programming
Numerical analysis
Original Paper
Plane stress
Theoretical and Applied Mechanics
Title Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method
URI https://link.springer.com/article/10.1007/s00466-017-1527-8
https://www.proquest.com/docview/2100405895
Volume 62
WOSCitedRecordID wos000443982100011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0924
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015835
  issn: 0178-7675
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5R6KEceLWI5aU5cGplsYmdxHtECMRphYBW3CI_JjTqboI2Syv1P_Q_Y8fJAlWL1J7jWJY9tr_xzHwfwJHVaUoJ10xFgpjQqWU6LpzPY2OeKSUySUUrNpGNx_L2dnTZ1XE3fbZ7H5JsT-pFsZt35bz3mzEvxcrkG1hxt530eg1X118WoYNEBlXNyLlHnqmkD2X-qYuXl9ETwvwtKNreNefr_zXKDVjroCWeBFvYhCWqtmC9g5nYbeJmC1afcRC-h1_jhxC0maDqCEqwLlDhVJUVmpky39BzSsxCBUSD_uUWpz6Pj1lqk0GOy-prPa2dKVLLz4o-mf4O5z9q1rh-Ce8Ct3X5k-xx_-qORenhLlLIX8cgZf0BPp-f3ZxesE6jgRkepXOmYocRLC9EMjJSOjedBNl0pMkONedkRwmpaGi5dEBCOyjEi0QJLbi1IhNDQXwblqu6oh1AZydJRg7hpakWysTuZOEyM6QLbUyk4gEM-8XKTUdg7nU0JvmCermd_NxNfu4nP5cD-Lj45T6wd7zWeL-3gLzbyE0ee0Y9L72YDOBTv-JPn__a2e4_td6Ddw6IBZ7daB-W57MHOoC35vu8bGaHrX0_Amlc-Cw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEJ4IkqAPoqDhFHEefII03G67u71HYyQY4WIEDW-b_pg9NnK75PbQxP_B_9l2u3sgERJ83m7TtNP2m87M9wG8tTpNKeGaqUgQEzq1TMeF83lszDOlRCapaMUmsvFYnp6OPnd13E2f7d6HJNuTelHs5l057_1mzEuxMrkED4W7sDxh_pfjb4vQQSKDqmbk3CPPVNKHMv_Vxd-X0RXCvBEUbe-a_bX_GuVTeNJBS3wXbOEZPKBqHdY6mIndJm7W4fE1DsIN-D2-DEGbc1QdQQnWBSqcqrJCM1PmO3pOiVmogGjQv9zi1OfxMUttMsheWZ3V09qZIrX8rOiT6Sc4_1mzxvVLOAnc1uUvsnv9qzsWpYe7SCF_HYOU9XP4uv_h5P0B6zQamOFROmcqdhjB8kIkIyOlc9NJkE1HmuxQc052lJCKhpZLByS0g0K8SJTQglsrMjEUxF_AclVXtAno7CTJyCG8NNVCmdidLFxmhnShjYlUPIBhv1i56QjMvY7Geb6gXm4nP3eTn_vJz-UAdha_XAT2jrsab_UWkHcbucljz6jnpReTAez2K371-dbOXt6r9RtYPTg5OswPP44_vYJHDpQFzt1oC5bns0t6DSvmx7xsZtutrf8BErn7EA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VghAcWihFLC0wB04gazexk3iPVemqFWhViQ_1Fvlj0kbtJtUmBYn_wH_GjpMtVBQJcY4ziuxx_MYz8x7Aa6vTlBKumYoEMaFTy3RcuJjHxjxTSmSSik5sIpvP5cnJ9LjXOW2GavchJRl6GjxLU9WOL20xXjW--bDOR8IZ87KsTN6Bu8LX0ftw_eOXVRohkUFhM3KhkmctGdKafzLx-8F0jTZvJEi7c2e2-d9f_Ag2esiJe8FHHsMaVVuw2cNP7Dd3swUPf-EmfAI_5lchmXOBqicuwbpAhQtVVmiWypyj55pYhs6IBv2NLi58fR-z1BWJjMvqrF7UzkWp421FX2R_iu23mjXOLuFp4Lwuv5MdD7fxWJQeBiOFunYMEtfb8Hl28Gn_kPXaDczwKG2Zih12sLwQydRI6cJ3EmTTqSY70ZyTnSakoonl0gEM7SASLxIltODWikxMBPGnsF7VFT0DdP6TZOSQX5pqoUzs_jhcZoZ0oY2JVDyCybBwuemJzb2-xkW-omTuJj93k5_7yc_lCN6sXrkMrB5_G7w7eEPeb_Amjz3TnpdkTEbwdlj968e3Gnv-T6Nfwf3jd7P8w9H8_Q48cFgtUPFGu7DeLq_oBdwzX9uyWb7s3P4n6XsEAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+a+main+crack+interactions+with+micro-defects%2Finhomogeneities+using+two-scale+generalized%2Fextended+finite+element+method&rft.jtitle=Computational+mechanics&rft.au=Malekan%2C+Mohammad&rft.au=Barros%2C+Fel%C3%ADcio+B.&rft.date=2018-10-01&rft.issn=0178-7675&rft.eissn=1432-0924&rft.volume=62&rft.issue=4&rft.spage=783&rft.epage=801&rft_id=info:doi/10.1007%2Fs00466-017-1527-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00466_017_1527_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-7675&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-7675&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-7675&client=summon