Inverse Problem of Finding the Coefficient of the Lowest Term in Two-Dimensional Heat Equation with Ionkin-Type Boundary Condition
We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with...
Uloženo v:
| Vydáno v: | Computational mathematics and mathematical physics Ročník 59; číslo 5; s. 791 - 808 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Moscow
Pleiades Publishing
01.05.2019
Springer Nature B.V |
| Témata: | |
| ISSN: | 0965-5425, 1555-6662 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with the unique solvability of the second kind Volterra integral equation. For obtaining a numerical solution of the inverse problem, we propose the discretization method from a new combination. On the one hand, it is known the traditional method of uniform finite difference combined with numerical integration on a uniform grid (trapezoidal and Simpson’s), on the other hand, we give the method of non-uniform finite difference is combined by a numerical integration on a non-uniform grid (with Gauss–Lobatto nodes). Numerical examples illustrate how to implement the method. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0965-5425 1555-6662 |
| DOI: | 10.1134/S0965542519050087 |