Inverse Problem of Finding the Coefficient of the Lowest Term in Two-Dimensional Heat Equation with Ionkin-Type Boundary Condition

We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational mathematics and mathematical physics Ročník 59; číslo 5; s. 791 - 808
Hlavní autoři: Ismailov, M. I., Erkovan, S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.05.2019
Springer Nature B.V
Témata:
ISSN:0965-5425, 1555-6662
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with the unique solvability of the second kind Volterra integral equation. For obtaining a numerical solution of the inverse problem, we propose the discretization method from a new combination. On the one hand, it is known the traditional method of uniform finite difference combined with numerical integration on a uniform grid (trapezoidal and Simpson’s), on the other hand, we give the method of non-uniform finite difference is combined by a numerical integration on a non-uniform grid (with Gauss–Lobatto nodes). Numerical examples illustrate how to implement the method.
AbstractList We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total energy integral overdetermination condition. The global well-posedness of the problem is obtained by generalized Fourier method combined with the unique solvability of the second kind Volterra integral equation. For obtaining a numerical solution of the inverse problem, we propose the discretization method from a new combination. On the one hand, it is known the traditional method of uniform finite difference combined with numerical integration on a uniform grid (trapezoidal and Simpson’s), on the other hand, we give the method of non-uniform finite difference is combined by a numerical integration on a non-uniform grid (with Gauss–Lobatto nodes). Numerical examples illustrate how to implement the method.
Author Erkovan, S.
Ismailov, M. I.
Author_xml – sequence: 1
  givenname: M. I.
  surname: Ismailov
  fullname: Ismailov, M. I.
  email: mismailov@gtu.edu.tr
  organization: Gebze Technical University, Department of Mathematics, Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan
– sequence: 2
  givenname: S.
  surname: Erkovan
  fullname: Erkovan, S.
  email: serkovan@gtu.edu.tr
  organization: Gebze Technical University, Department of Mathematics
BookMark eNp9kE1LAzEQhoMoWD9-gLeA59Vk87G7R61WCwUF63nJbmZtapvUJLV49ZebtYKg6ClM3veZeWcO0K51FhA6oeSMUsbPH0glheC5oBURhJTFDhpQIUQmpcx30aCXs17fRwchzAmhsirZAL2P7Sv4APjeu2YBS-w6PDJWG_uE4wzw0EHXmdaAjb3Uf03cBkLEU_BLbCyeblx2ZZZgg3FWLfAtqIivX9YqphpvTJzhsbPPxmbTtxXgS7e2Wvm31DlN6T1HaK9TiwDHX-8hehxdT4e32eTuZjy8mGQtozJmijas0LSUDVAoNYFOgOStLAAUYxXh0GqtupYQzlulCWWNBt0Q2nBd8BLYITrd9l1597JOK9Rzt_YpcqjznDNRVqzKk4tuXa13IXjo6pU3yxS4pqTuT13_OnViih9Ma-Ln_tErs_iXzLdkSFPsE_jvTH9DH-HklT0
CitedBy_id crossref_primary_10_1007_s13226_025_00858_7
crossref_primary_10_1016_j_cnsns_2023_107519
crossref_primary_10_1134_S1995080221030203
Cites_doi 10.1515/1569394042248193
10.1016/j.cpc.2017.01.002
10.1137/1.9780898717570
10.1134/S0001434613070201
10.1134/S1064562414020161
10.1080/00207160108805077
10.1023/A:1012570031242
10.1007/978-1-4899-0030-2
10.1134/S0012266115050043
10.1098/rspa.2004.1430
10.1134/S0965542515070052
10.1088/0266-5611/10/5/009
10.1002/mma.1396
10.1515/jiip.2002.10.6.611
10.1017/S0334270000006962
10.1023/A:1011961822115
10.1515/9783110205794
10.1088/0266-5611/4/1/006
10.1007/BF02754498
10.1093/imamat/hxv005
10.1515/156939403770888246
10.1134/S0001434615030062
10.1134/S1064562406040272
10.1088/0266-5611/4/3/005
10.1088/0266-5611/10/2/004
10.1007/BF00971406
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Pleiades Publishing, Ltd. 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1134/S0965542519050087
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1555-6662
EndPage 808
ExternalDocumentID 10_1134_S0965542519050087
GroupedDBID --K
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
1B1
1N0
29F
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
408
40D
40E
5GY
5VS
6J9
6NX
7WY
88I
8FE
8FG
8FH
8FL
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
H13
HCIFZ
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KOV
L6V
LK5
LLZTM
M0C
M0N
M2P
M41
M4Y
M7R
M7S
MA-
MK~
N2Q
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9J
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPZ
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TUC
TUS
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
XPP
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7U5
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-a1b37d186be1e8d0ef5e64c67eea33904ecddafc0044cad013bdedb01b4d748e3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472151500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0965-5425
IngestDate Tue Oct 07 13:11:40 EDT 2025
Sat Nov 29 05:16:07 EST 2025
Tue Nov 18 21:29:26 EST 2025
Fri Feb 21 02:29:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords generalized Fourier method
non-uniform finite difference method
Ionkin-type boundary condition
numerical integration
2D heat equation
uniform finite difference method
Volterra integral equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a1b37d186be1e8d0ef5e64c67eea33904ecddafc0044cad013bdedb01b4d748e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2243589392
PQPubID 60276
PageCount 18
ParticipantIDs proquest_journals_2243589392
crossref_primary_10_1134_S0965542519050087
crossref_citationtrail_10_1134_S0965542519050087
springer_journals_10_1134_S0965542519050087
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Computational mathematics and mathematical physics
PublicationTitleAbbrev Comput. Math. and Math. Phys
PublicationYear 2019
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References PrilepkoA. I.KostinA. B.On inverse problems of determining a coefficient in a parabolic equation IISib. Mat. Zh.199334147162125546710.1007/BF009714060807.35164
KamyninV. L.The inverse problem of determining the lower-order coefficient in parabolic equations with integral observationMathematical Notes201394205213320608210.1134/S00014346130702011276.35145
AlifanovO. M.Inverse Heat Transfer Problems2011
S. S. Dragomir, Some Gronwall Type Inequalities and Applications (RGMIA Monographs, Victoria Univ., Australia, 2002).
CannonJ. R.LinY.XuS.Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equationsInverse Probl.199410227243126900610.1088/0266-5611/10/2/0040805.65133
KamyninV. L.The inverse problem of the simultaneous determination of the right-hand side and the lowest coefficient in parabolic equations with many space variablesMath. Notes201597349361337052510.1134/S00014346150300621325.35281
IonkinN. I.MorozovaV. A.The two-dimensional heat equation with nonlocal boundary conditionsDiffer. Equations200036982987181959110.1007/BF027544980979.35059
GulinA. V.IonkinN. I.MorozovaV. A.Stability of a nonlocal two-dimensional finite-difference problemDiffer. Equations200137970978188726910.1023/A:10119618221151004.65091
CannonJ. R.LinY. P.WangS.Determination of a control parameter in a parabolic partial differential equationJ. Austral. Math. Soc. Ser. B199133149163112498610.1017/S03342700000069620767.93047
BukharovaT. I.KamyninV. L.Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficientsComput. Math. Math. Phys.20155511641176337263810.1134/S09655425150700521323.35208
DehghanM.Numerical methods for two-dimensional parabolic inverse problem with energy overspecificationInt. J. Comput. Math.200077441455189899810.1080/002071601088050770986.65085
M. K. Bowen and R. Smith, “Derivative formulas and errors for non-uniformly spaced points,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 461 (2059), 1975–1997 (2005).
TarantolaA.Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation1987AmsterdamElsevier0875.65001
VogelC. R.Computational Methods for Inverse Problems2002Philadelphia, PASoc. Ind. Appl. Math10.1137/1.97808987175701008.65103
BazanF. S. V.BedinL.BorgesL. S.Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problemComput. Phys. Commun.20172141830361411910.1016/j.cpc.2017.01.0021380.65297
VabishchevichP. N.Vasil’evV. I.Numerical identification of the lowest coefficient of a parabolic equationDokl. Math.201489179181324138910.1134/S10645624140201611301.65103
IsakovV.Inverse Problems for Partial Differential Equations1998BerlinSpringer10.1007/978-1-4899-0030-20908.35134
BicadzeA. V.SamarskiiA. A.Some elementary generalizations of linear elliptic boundary value problemsDokl. Akad. Nauk SSSR1969185739740247271
KozhanovA. I.Parabolic equations with an unknown absorption coefficientDokl. Math.20067457357610.1134/S10645624060402721152.35112
PrilepkoA. I.OrlovskyD. G.VasinI. A.Methods for Solving Inverse Problems in Mathematical Physics2000New YorkMarcel Dekker0947.35173
CannonJ. R.LinY.Determination of parameter p(t) in Hölder classes for some semilinear parabolic equationsInverse Probl.1988459560610.1088/0266-5611/4/3/0050688.35104
BedinL.BazanF. S. V.On the 2D bioheat equation with convective boundary conditions and its numerical realization via a highly accurate approachAppl. Math. Comput.201423642243631977391334.65165
PyatkovS. G.“Solvability of some inverse problems for parabolic equations,” J. InvIll-Posed Problems200412397412208538210.1515/15693940422481931081.35148
Il’inV. A.On the absolute and uniform convergence of the expansions in eigen- and associated functions of a non-self-adjoint elliptic operatorDokl. Akad. Nauk SSSR19842741922730157
KozhanovA. I.“On solvability of an inverse problem with an unknown coefficient and right-hand side for a parabolic equation,” J. InvIll-Posed Problems20021061162719674421028.35168
PrilepkoA. I.Solov’evV. V.On the solvability of inverse boundary value problems for the determination of the coefficient preceding the lower derivative in a parabolic equationDiffer. Uravn.198723136143884788
DaoudD. S.SubasiD.A splitting up algorithm for the determination of the control parameter in multi-dimensional parabolic problemAppl. Math. Comput.200516658459521504911078.65082
IsmailovM. I.KancaF.An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditionsMath. Methods Appl. Sci.201134692702281471710.1002/mma.13961213.35402
M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986).
IvanchovM. I.Pabyrivs’kaN. V.Simultaneous determination of two coefficients of a parabolic equation in the case of nonlocal and integral conditionsUkr. Math. J.200153674684185454910.1023/A:10125700312420991.35102
KerimovN. B.IsmailovM. I.Direct and inverse problems for the heat equation with a dynamic-type boundary conditionIMA J. Appl. Math.20158015191533340398910.1093/imamat/hxv0051327.35369
IonkinN. I.Solution of a boundary-value problem in heat conduction with a non-classical boundary conditionDiffer. Equations197713294304603291
AbramowitzM.StegunA.Handbook of Mathematical Functions1965Mineola, NYDover0171.38503
KostinA. B.Inverse problem of finding the coefficient of u in a parabolic equation on the basis of a nonlocal observation conditionDiffer. Equations201551605619337483610.1134/S00122661150500431332.35395
ChoulliM.An inverse problem for a semilinear parabolic equationInverse Probl.19941011231132129636310.1088/0266-5611/10/5/0090807.35154
KozhanovA. I.“An inverse problem with an unknown coefficient and right-hand side for a parabolic equation II,” J. InvIll-Posed Probl.200311505522201867510.1515/1569394037708882461142.35626
SamarskiiA. A.VabishchevichP. N.Numerical Methods for Solving Inverse Problems of Mathematical Physics2007BerlinDe Gruyter10.1515/97831102057941136.65105
CannonJ. R.LinY.Determination of a parameter p(t) in some quasi-linear parabolic differential equationsInverse Probl.19884354510.1088/0266-5611/4/1/0060697.35162
KozhanovA. I.Nonlinear loaded equations and inverse problemsComput. Math. Math. Phys. Fiz.20044465767820692121114.35148
N. I. Ionkin (1168_CR29) 1977; 13
A. I. Kozhanov (1168_CR13) 2006; 74
A. V. Bicadze (1168_CR19) 1969; 185
M. Abramowitz (1168_CR37) 1965
P. N. Vabishchevich (1168_CR26) 2014; 89
M. I. Ivanchov (1168_CR32) 2001; 53
A. I. Kozhanov (1168_CR14) 2002; 10
A. I. Kozhanov (1168_CR16) 2004; 44
J. R. Cannon (1168_CR31) 1991; 33
V. Isakov (1168_CR1) 1998
V. A. Il’in (1168_CR36) 1984; 274
N. B. Kerimov (1168_CR38) 2015; 80
F. S. V. Bazan (1168_CR27) 2017; 214
A. Tarantola (1168_CR22) 1987
M. Choulli (1168_CR9) 1994; 10
J. R. Cannon (1168_CR5) 1988; 4
A. I. Kozhanov (1168_CR12) 2003; 11
V. L. Kamynin (1168_CR8) 2015; 97
V. L. Kamynin (1168_CR10) 2013; 94
C. R. Vogel (1168_CR23) 2002
1168_CR33
A. I. Prilepko (1168_CR17) 1993; 34
A. A. Samarskii (1168_CR21) 2007
cr-split#-1168_CR2.2
M. Dehghan (1168_CR25) 2000; 77
A. I. Prilepko (1168_CR3) 2000
A. B. Kostin (1168_CR11) 2015; 51
J. R. Cannon (1168_CR7) 1994; 10
T. I. Bukharova (1168_CR4) 2015; 55
M. I. Ismailov (1168_CR35) 2011; 34
N. I. Ionkin (1168_CR30) 2000; 36
J. R. Cannon (1168_CR6) 1988; 4
O. M. Alifanov (1168_CR20) 2011
L. Bedin (1168_CR28) 2014; 236
A. V. Gulin (1168_CR34) 2001; 37
D. S. Daoud (1168_CR24) 2005; 166
A. I. Prilepko (1168_CR15) 1987; 23
cr-split#-1168_CR2.1
S. G. Pyatkov (1168_CR18) 2004; 12
1168_CR39
References_xml – reference: BukharovaT. I.KamyninV. L.Inverse problem of determining the absorption coefficient in the multidimensional heat equation with unlimited minor coefficientsComput. Math. Math. Phys.20155511641176337263810.1134/S09655425150700521323.35208
– reference: IonkinN. I.MorozovaV. A.The two-dimensional heat equation with nonlocal boundary conditionsDiffer. Equations200036982987181959110.1007/BF027544980979.35059
– reference: BazanF. S. V.BedinL.BorgesL. S.Space-dependent perfusion coefficient estimation in a 2D bioheat transfer problemComput. Phys. Commun.20172141830361411910.1016/j.cpc.2017.01.0021380.65297
– reference: DaoudD. S.SubasiD.A splitting up algorithm for the determination of the control parameter in multi-dimensional parabolic problemAppl. Math. Comput.200516658459521504911078.65082
– reference: BedinL.BazanF. S. V.On the 2D bioheat equation with convective boundary conditions and its numerical realization via a highly accurate approachAppl. Math. Comput.201423642243631977391334.65165
– reference: VogelC. R.Computational Methods for Inverse Problems2002Philadelphia, PASoc. Ind. Appl. Math10.1137/1.97808987175701008.65103
– reference: IsakovV.Inverse Problems for Partial Differential Equations1998BerlinSpringer10.1007/978-1-4899-0030-20908.35134
– reference: KostinA. B.Inverse problem of finding the coefficient of u in a parabolic equation on the basis of a nonlocal observation conditionDiffer. Equations201551605619337483610.1134/S00122661150500431332.35395
– reference: DehghanM.Numerical methods for two-dimensional parabolic inverse problem with energy overspecificationInt. J. Comput. Math.200077441455189899810.1080/002071601088050770986.65085
– reference: M. M. Lavrent’ev, V. G. Romanov, and S. P. Shishatskii, Ill-Posed Problems of Mathematical Physics and Analysis (Nauka, Moscow, 1980; Am. Math. Soc., Providence, R.I., 1986).
– reference: IonkinN. I.Solution of a boundary-value problem in heat conduction with a non-classical boundary conditionDiffer. Equations197713294304603291
– reference: KozhanovA. I.Parabolic equations with an unknown absorption coefficientDokl. Math.20067457357610.1134/S10645624060402721152.35112
– reference: BicadzeA. V.SamarskiiA. A.Some elementary generalizations of linear elliptic boundary value problemsDokl. Akad. Nauk SSSR1969185739740247271
– reference: SamarskiiA. A.VabishchevichP. N.Numerical Methods for Solving Inverse Problems of Mathematical Physics2007BerlinDe Gruyter10.1515/97831102057941136.65105
– reference: CannonJ. R.LinY.Determination of parameter p(t) in Hölder classes for some semilinear parabolic equationsInverse Probl.1988459560610.1088/0266-5611/4/3/0050688.35104
– reference: KamyninV. L.The inverse problem of the simultaneous determination of the right-hand side and the lowest coefficient in parabolic equations with many space variablesMath. Notes201597349361337052510.1134/S00014346150300621325.35281
– reference: Il’inV. A.On the absolute and uniform convergence of the expansions in eigen- and associated functions of a non-self-adjoint elliptic operatorDokl. Akad. Nauk SSSR19842741922730157
– reference: KozhanovA. I.“An inverse problem with an unknown coefficient and right-hand side for a parabolic equation II,” J. InvIll-Posed Probl.200311505522201867510.1515/1569394037708882461142.35626
– reference: KozhanovA. I.Nonlinear loaded equations and inverse problemsComput. Math. Math. Phys. Fiz.20044465767820692121114.35148
– reference: AlifanovO. M.Inverse Heat Transfer Problems2011
– reference: M. K. Bowen and R. Smith, “Derivative formulas and errors for non-uniformly spaced points,” Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 461 (2059), 1975–1997 (2005).
– reference: GulinA. V.IonkinN. I.MorozovaV. A.Stability of a nonlocal two-dimensional finite-difference problemDiffer. Equations200137970978188726910.1023/A:10119618221151004.65091
– reference: IvanchovM. I.Pabyrivs’kaN. V.Simultaneous determination of two coefficients of a parabolic equation in the case of nonlocal and integral conditionsUkr. Math. J.200153674684185454910.1023/A:10125700312420991.35102
– reference: CannonJ. R.LinY. P.WangS.Determination of a control parameter in a parabolic partial differential equationJ. Austral. Math. Soc. Ser. B199133149163112498610.1017/S03342700000069620767.93047
– reference: KerimovN. B.IsmailovM. I.Direct and inverse problems for the heat equation with a dynamic-type boundary conditionIMA J. Appl. Math.20158015191533340398910.1093/imamat/hxv0051327.35369
– reference: CannonJ. R.LinY.Determination of a parameter p(t) in some quasi-linear parabolic differential equationsInverse Probl.19884354510.1088/0266-5611/4/1/0060697.35162
– reference: PrilepkoA. I.KostinA. B.On inverse problems of determining a coefficient in a parabolic equation IISib. Mat. Zh.199334147162125546710.1007/BF009714060807.35164
– reference: KamyninV. L.The inverse problem of determining the lower-order coefficient in parabolic equations with integral observationMathematical Notes201394205213320608210.1134/S00014346130702011276.35145
– reference: ChoulliM.An inverse problem for a semilinear parabolic equationInverse Probl.19941011231132129636310.1088/0266-5611/10/5/0090807.35154
– reference: VabishchevichP. N.Vasil’evV. I.Numerical identification of the lowest coefficient of a parabolic equationDokl. Math.201489179181324138910.1134/S10645624140201611301.65103
– reference: S. S. Dragomir, Some Gronwall Type Inequalities and Applications (RGMIA Monographs, Victoria Univ., Australia, 2002).
– reference: CannonJ. R.LinY.XuS.Numerical procedures for the determination of an unknown coefficient in semi-linear parabolic differential equationsInverse Probl.199410227243126900610.1088/0266-5611/10/2/0040805.65133
– reference: KozhanovA. I.“On solvability of an inverse problem with an unknown coefficient and right-hand side for a parabolic equation,” J. InvIll-Posed Problems20021061162719674421028.35168
– reference: AbramowitzM.StegunA.Handbook of Mathematical Functions1965Mineola, NYDover0171.38503
– reference: IsmailovM. I.KancaF.An inverse coefficient problem for a parabolic equation in the case of nonlocal boundary and overdetermination conditionsMath. Methods Appl. Sci.201134692702281471710.1002/mma.13961213.35402
– reference: TarantolaA.Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation1987AmsterdamElsevier0875.65001
– reference: PrilepkoA. I.OrlovskyD. G.VasinI. A.Methods for Solving Inverse Problems in Mathematical Physics2000New YorkMarcel Dekker0947.35173
– reference: PrilepkoA. I.Solov’evV. V.On the solvability of inverse boundary value problems for the determination of the coefficient preceding the lower derivative in a parabolic equationDiffer. Uravn.198723136143884788
– reference: PyatkovS. G.“Solvability of some inverse problems for parabolic equations,” J. InvIll-Posed Problems200412397412208538210.1515/15693940422481931081.35148
– volume: 166
  start-page: 584
  year: 2005
  ident: 1168_CR24
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 397
  year: 2004
  ident: 1168_CR18
  publication-title: Ill-Posed Problems
  doi: 10.1515/1569394042248193
– volume: 214
  start-page: 18
  year: 2017
  ident: 1168_CR27
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.01.002
– volume-title: Computational Methods for Inverse Problems
  year: 2002
  ident: 1168_CR23
  doi: 10.1137/1.9780898717570
– volume-title: Handbook of Mathematical Functions
  year: 1965
  ident: 1168_CR37
– volume: 94
  start-page: 205
  year: 2013
  ident: 1168_CR10
  publication-title: Mathematical Notes
  doi: 10.1134/S0001434613070201
– ident: 1168_CR39
– volume: 89
  start-page: 179
  year: 2014
  ident: 1168_CR26
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562414020161
– volume: 77
  start-page: 441
  year: 2000
  ident: 1168_CR25
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160108805077
– ident: #cr-split#-1168_CR2.2
– volume-title: Methods for Solving Inverse Problems in Mathematical Physics
  year: 2000
  ident: 1168_CR3
– volume: 53
  start-page: 674
  year: 2001
  ident: 1168_CR32
  publication-title: Ukr. Math. J.
  doi: 10.1023/A:1012570031242
– volume-title: Inverse Problems for Partial Differential Equations
  year: 1998
  ident: 1168_CR1
  doi: 10.1007/978-1-4899-0030-2
– volume: 51
  start-page: 605
  year: 2015
  ident: 1168_CR11
  publication-title: Differ. Equations
  doi: 10.1134/S0012266115050043
– ident: 1168_CR33
  doi: 10.1098/rspa.2004.1430
– volume: 55
  start-page: 1164
  year: 2015
  ident: 1168_CR4
  publication-title: Comput. Math. Math. Phys.
  doi: 10.1134/S0965542515070052
– volume: 10
  start-page: 1123
  year: 1994
  ident: 1168_CR9
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/10/5/009
– volume: 34
  start-page: 692
  year: 2011
  ident: 1168_CR35
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.1396
– volume: 274
  start-page: 19
  year: 1984
  ident: 1168_CR36
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 10
  start-page: 611
  year: 2002
  ident: 1168_CR14
  publication-title: Ill-Posed Problems
  doi: 10.1515/jiip.2002.10.6.611
– volume: 185
  start-page: 739
  year: 1969
  ident: 1168_CR19
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 23
  start-page: 136
  year: 1987
  ident: 1168_CR15
  publication-title: Differ. Uravn.
– volume: 33
  start-page: 149
  year: 1991
  ident: 1168_CR31
  publication-title: J. Austral. Math. Soc. Ser. B
  doi: 10.1017/S0334270000006962
– volume: 13
  start-page: 294
  year: 1977
  ident: 1168_CR29
  publication-title: Differ. Equations
– volume-title: Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation
  year: 1987
  ident: 1168_CR22
– ident: #cr-split#-1168_CR2.1
– volume: 37
  start-page: 970
  year: 2001
  ident: 1168_CR34
  publication-title: Differ. Equations
  doi: 10.1023/A:1011961822115
– volume-title: Numerical Methods for Solving Inverse Problems of Mathematical Physics
  year: 2007
  ident: 1168_CR21
  doi: 10.1515/9783110205794
– volume: 4
  start-page: 35
  year: 1988
  ident: 1168_CR6
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/4/1/006
– volume: 36
  start-page: 982
  year: 2000
  ident: 1168_CR30
  publication-title: Differ. Equations
  doi: 10.1007/BF02754498
– volume: 80
  start-page: 1519
  year: 2015
  ident: 1168_CR38
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxv005
– volume: 11
  start-page: 505
  year: 2003
  ident: 1168_CR12
  publication-title: Ill-Posed Probl.
  doi: 10.1515/156939403770888246
– volume: 97
  start-page: 349
  year: 2015
  ident: 1168_CR8
  publication-title: Math. Notes
  doi: 10.1134/S0001434615030062
– volume: 236
  start-page: 422
  year: 2014
  ident: 1168_CR28
  publication-title: Appl. Math. Comput.
– volume: 74
  start-page: 573
  year: 2006
  ident: 1168_CR13
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562406040272
– volume: 4
  start-page: 595
  year: 1988
  ident: 1168_CR5
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/4/3/005
– volume: 44
  start-page: 657
  year: 2004
  ident: 1168_CR16
  publication-title: Comput. Math. Math. Phys. Fiz.
– volume: 10
  start-page: 227
  year: 1994
  ident: 1168_CR7
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/10/2/004
– volume: 34
  start-page: 147
  year: 1993
  ident: 1168_CR17
  publication-title: Sib. Mat. Zh.
  doi: 10.1007/BF00971406
– volume-title: Inverse Heat Transfer Problems
  year: 2011
  ident: 1168_CR20
SSID ssj0016983
Score 2.167409
Snippet We consider an inverse problem of determining the time-dependent lowest order coefficient of two-dimensional (2D) heat equation with Ionkin boundary and total...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 791
SubjectTerms Boundary conditions
Computational Mathematics and Numerical Analysis
Economic models
Finite difference method
Inverse problems
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical integration
Thermodynamics
Time dependence
Volterra integral equations
Well posed problems
Title Inverse Problem of Finding the Coefficient of the Lowest Term in Two-Dimensional Heat Equation with Ionkin-Type Boundary Condition
URI https://link.springer.com/article/10.1134/S0965542519050087
https://www.proquest.com/docview/2243589392
Volume 59
WOSCitedRecordID wos000472151500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1555-6662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016983
  issn: 0965-5425
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1xdJQdPSrA12bY56uqioCK6irfSJlNYkK1uV8Wrv9xJ0674BL02k1CazMyXTvJ9AFsJgYbE-JKjr0MuRehzFaaaByI1tOGIVOLY9U_D8_Po9lZdVPe4i_q0e12SLCO10x2Ru1eWp6Ql7U1Lr2WZ1MZhkrJdZL3x8upmVDoIlOPeJGtuzatS5rdDfExG7wjzU1G0zDWduX-95TzMVtCS7bu1sABj2F-EuQpmssqJi0WYORtRtRZL8GqZNgYFsgsnLcPyjHV65V0XRmasnWPJMkHJyTbZR6e55VdgXQrqrNdn3eecH1qRAEfwwY4pvLOjB8chzuyPXnaSW4UGbje97KAUchq80Mi2XE42y3DdOeq2j3klzMC18IMhT_xUhMaPghR9jIyHWQsDqYMQMRFCeRK1MUmmbbVYJ4ZQZmrQpJ6fShPKCMUKTPTzPq4CC7WJFEaYEW6UyZ5KRSYNoVQk2KRVoBvg1TMU64q13Ipn3MXl7kXI-MsXb8D2qMu9o-z4zbhZT3tceW8RE6wRLQJyaq8BO_U0vzf_ONjan6zXYZrQl3KnJ5swMRw84gZM6adhrxhslov6Dc9A76Y
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4NhgQ8rOPHRDdgfuAJZJFgN4kfN6Aqoq0qWhBvUWJfpEpTA003tNf95TvHSRE_JXiNz6cotu8-5-zvA9hLCDQkxpccfR1yKUKfqzDVPBCpoQ1HpBLHrt8N-_3o-loNqnvcRX3avS5JlpHa6Y7Iw6HlKWlJe9PSa1kmtQX4KClh2XN8F8OreekgUI57k6y5Na9Kmc-6eJiM7hHmo6JomWvajXe95Wf4VEFL9sPNhTX4gJN1aFQwk1WLuFiH1d6cqrXYgH-WaWNaIBs4aRmWZ6w9Lu-6MDJjxzmWLBOUnGyTfdTNLb8CG1FQZ-MJG93l_MSKBDiCD9ah8M5Obx2HOLM_etlZbhUauN30sp-lkNP0L3m25XKy2YTL9unouMMrYQauhR_MeOKnIjR-FKToY2Q8zFoYSB2EiIkQypOojUkybavFOjGEMlODJvX8VJpQRii-wOIkn-AWsFCbSGGEGeFGmRypVGTSEEpFgk1aBboJXj1Csa5Yy614xq-43L0IGT_54k3Yn3e5cZQdrxlv18MeV6u3iAnWiBYBOXXUhIN6mO-bX3T29U3W32G5M-p14-5Z__wbrBASU-4k5TYszqa_cQeW9J_ZuJjulhP8PxJb8oo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED7xY0LsATY2RAcDP-xpyCKp3SR-3FoqEF1ViQ7xFiX2Rao0JdAUEK_7y-eLnaL9lCZe48vJis_2dzn7-wA-ZBY0ZCaUHEMdcynikKs41zwSubEJR6Iyx64_isfj5PpaTbzOad2edm9Lku5OA7E0lYuTG1N4DRJ5ckmcJT1Jty6DHrGqrcK6JM0gStcvr5ZlhEg5Hk5rzcnclzX_6OLnjekJbf5SIG32neH2s3v8CrY85GSfXIy8hhUsd2Dbw0_mJ3e9Ay-_LClc6zfwnRg45jWyiZOcYVXBhrPmDgyzZqxfYcM-YbtATfRoVBHvApvaxZ7NSjZ9qPiAxAMc8Qc7s8s-O7113OKMfgCz84qUGzglw-xzI_A0f7SeqYxubd7C1-HptH_GvWAD1yKMFjwLcxGbMIlyDDExARY9jKSOYsRMCBVI1MZkhaYqss6MRZ-5QZMHYS5NLBMUu7BWViXuAYu1SRQmWFg8KbOuykUhjUWvaOGUVpHuQNCOVqo9mzmJanxLm6xGyPS3L96Bj8tXbhyVx7-MD9oQSP2srlMLd0TPAjzV7cBxO-RPzX919u6_rI9gYzIYpqPz8cU-bFqAptwBywNYW8zv8D280PeLWT0_bGL9B3YE-24
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+Problem+of+Finding+the+Coefficient+of+the+Lowest+Term+in+Two-Dimensional+Heat+Equation+with+Ionkin-Type+Boundary+Condition&rft.jtitle=Computational+mathematics+and+mathematical+physics&rft.au=Ismailov%2C+M.+I.&rft.au=Erkovan%2C+S.&rft.date=2019-05-01&rft.pub=Pleiades+Publishing&rft.issn=0965-5425&rft.eissn=1555-6662&rft.volume=59&rft.issue=5&rft.spage=791&rft.epage=808&rft_id=info:doi/10.1134%2FS0965542519050087&rft.externalDocID=10_1134_S0965542519050087
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0965-5425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0965-5425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0965-5425&client=summon