Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions

Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the introduction of image space analysis has shown that the image space associated with the given problem provides a natural environment for the Lagran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications Jg. 177; H. 3; S. 609 - 636
Hauptverfasser: Li, Shengjie, Xu, Yangdong, You, Manxue, Zhu, Shengkun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2018
Springer Nature B.V
Schlagworte:
ISSN:0022-3239, 1573-2878
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the introduction of image space analysis has shown that the image space associated with the given problem provides a natural environment for the Lagrange theory of multipliers and that separation arguments turn out to be a fundamental mathematical tool for explaining, developing and improving such a theory. This work, with its 3 parts, aims at contributing to describe the state-of-the-art of image space analysis for constrained optimization and to stress that it allows us to unify and generalize the several topics of optimization. In this 1st part, after a short introduction of such an analysis, necessary and sufficient optimality conditions are treated. Duality and penalization are the contents of the 2nd part. The 3rd part deals with generalized systems, in particular, variational inequalities and Ky Fan inequalities. Some further developments are discussed in all the parts.
AbstractList Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the introduction of image space analysis has shown that the image space associated with the given problem provides a natural environment for the Lagrange theory of multipliers and that separation arguments turn out to be a fundamental mathematical tool for explaining, developing and improving such a theory. This work, with its 3 parts, aims at contributing to describe the state-of-the-art of image space analysis for constrained optimization and to stress that it allows us to unify and generalize the several topics of optimization. In this 1st part, after a short introduction of such an analysis, necessary and sufficient optimality conditions are treated. Duality and penalization are the contents of the 2nd part. The 3rd part deals with generalized systems, in particular, variational inequalities and Ky Fan inequalities. Some further developments are discussed in all the parts.
Author You, Manxue
Zhu, Shengkun
Xu, Yangdong
Li, Shengjie
Author_xml – sequence: 1
  givenname: Shengjie
  surname: Li
  fullname: Li, Shengjie
  email: lisj@cqu.edu.cn
  organization: College of Mathematics and Statistics, Chongqing University
– sequence: 2
  givenname: Yangdong
  surname: Xu
  fullname: Xu, Yangdong
  organization: College of Science, Chongqing University of Posts and Telecommunications
– sequence: 3
  givenname: Manxue
  surname: You
  fullname: You, Manxue
  organization: College of Mathematics and Statistics, Chongqing University
– sequence: 4
  givenname: Shengkun
  surname: Zhu
  fullname: Zhu, Shengkun
  organization: Department of Economics and Mathematics, Southwestern University of Finance and Economics
BookMark eNp9kMtKAzEUhoNUsK0-gLuA69GTZDqZcVdK1UKhBS_bkMmcKVPmUpMUbFe-g2_ok5hSQRB0c7I533_-fAPSa7sWCblkcM0A5I1jkI1kBCyNGI9ltD8hfTaSIuKpTHukD8B5JLjIzsjAuTUAZKmM--Rl0rXOW121WNDpm7fYbBu6tF1eY-Oobgs6a_QK6eNGG6TjVtc7V7nP94-ltp7Obuli46tG15Xf0ZBVVL4KiefktNS1w4vvd0ie76ZPk4dovrifTcbzyAiW-EgDR1PkpsQcw8w1lIiYxYUstEgEZnnCeRKbWBYcY5SiNHoEaVJyAyYfxWJIro65G9u9btF5te62NpR0igMkWSqklGGLHbeM7ZyzWKqNDZ3tTjFQB33qqE8FfeqgT-0DI38xpvL68LmDrfpfkh9JF660K7Q_nf6GvgD4nInj
CitedBy_id crossref_primary_10_1007_s10898_023_01327_3
crossref_primary_10_1007_s10957_020_01709_7
crossref_primary_10_1080_02331934_2021_1873989
crossref_primary_10_1080_02331934_2023_2187660
crossref_primary_10_1080_02331934_2019_1625352
crossref_primary_10_1007_s00186_021_00761_x
crossref_primary_10_1080_00036811_2022_2063850
crossref_primary_10_1080_00036811_2022_2040993
crossref_primary_10_1080_02331934_2020_1751155
crossref_primary_10_1080_02331934_2025_2499818
crossref_primary_10_1080_00036811_2022_2147065
crossref_primary_10_1080_02331934_2020_1836636
crossref_primary_10_1007_s10957_019_01609_5
crossref_primary_10_1080_02331934_2020_1728268
crossref_primary_10_1007_s10957_021_01939_3
crossref_primary_10_1080_01630563_2023_2208867
Cites_doi 10.1007/s11425-011-4287-5
10.1007/s11590-013-0644-3
10.1023/A:1022698811948
10.1007/s10957-016-1027-6
10.1007/s11117-016-0450-0
10.1080/02331931003610781
10.1007/BFb0076702
10.1007/s10957-013-0358-9
10.1007/BF00940770
10.1007/s10898-007-9187-4
10.1007/s10957-009-9625-1
10.1080/02331934.2014.972954
10.11650/twjm/1500405393
10.1090/conm/514/10105
10.1023/A:1017566406216
10.1007/s10957-012-0242-z
10.1007/s10957-018-1216-6
10.1007/BF00940028
10.1007/s10957-016-1029-4
10.1007/BF00939083
10.1007/0-387-28020-0
10.1007/s10957-007-9213-1
10.1007/s11117-015-0343-7
10.1007/978-1-4613-0299-5_11
10.1007/BF00938802
10.1007/BF00940005
10.1007/978-3-642-21114-0_6
10.1023/B:JOGO.0000026452.32070.99
10.1007/s10957-009-9598-0
10.1007/s10957-009-9518-3
10.1007/s10898-013-0073-y
10.1007/s10957-016-0880-7
10.1007/BF02196591
10.1007/s10957-013-0467-5
10.1007/BF00940478
10.1023/A:1004641726264
10.1023/A:1021738714110
10.1007/978-1-4757-2878-1_14
10.1007/s11590-015-0879-2
10.1007/s10898-013-0093-7
10.1007/s10957-010-9691-4
10.1007/s10898-011-9674-5
10.1007/s11590-017-1109-x
10.1007/s10957-009-9521-8
10.1007/s10957-014-0634-3
10.1007/s10957-015-0736-6
10.1007/BF00935321
10.1007/s10957-016-1041-8
10.1287/moor.4.1.79
10.1007/s10957-013-0468-4
10.1007/s10957-012-0027-4
10.1007/s10957-013-0276-x
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10957-018-1247-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library (Alumni Edition)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Research Library
Science Database (subscription)
Engineering Database (subscription)
Research Library (Corporate)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2878
EndPage 636
ExternalDocumentID 10_1007_s10957_018_1247_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11571055; 11526165
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: China Scholarship Council
  grantid: 11601437
  funderid: http://dx.doi.org/10.13039/501100004543
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PKN
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
VOH
W23
W48
WH7
WK8
YLTOR
YQT
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZCG
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TB
7XB
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-a02ecdbcfebebcfba0feee94d7da363e9b62264c47d2e4e73fca5086f2c0cb543
IEDL.DBID RSV
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435528500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-3239
IngestDate Tue Nov 04 21:58:07 EST 2025
Sat Nov 29 06:02:29 EST 2025
Tue Nov 18 21:26:11 EST 2025
Fri Feb 21 02:34:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Optimality condition
90C29
Constrained extremum problem
Image space analysis
49K05
Regularity condition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a02ecdbcfebebcfba0feee94d7da363e9b62264c47d2e4e73fca5086f2c0cb543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2006983777
PQPubID 48247
PageCount 28
ParticipantIDs proquest_journals_2006983777
crossref_primary_10_1007_s10957_018_1247_z
crossref_citationtrail_10_1007_s10957_018_1247_z
springer_journals_10_1007_s10957_018_1247_z
PublicationCentury 2000
PublicationDate 20180600
2018-6-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of optimization theory and applications
PublicationTitleAbbrev J Optim Theory Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References AntoniCGiannessiFDemyanovVFSome remarks on bi-level vector extremum problemsConstructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications2014New YorkSpringer137157
MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and necessary conditionsJ. Optimiz. Theory Appl.20071353753234265210.1007/s10957-007-9213-11126.49005
GuuSMLiJVector quasi-equilibrium problems: separation, saddle points and error bounds for the solution setJ. Glob. Optim.201458751767317640210.1007/s10898-013-0073-y1317.90295
ZhuSKLiSJUnified duality theory for constrained extremum problems. Part II: special duality schemesJ. Optim. Theory Appl.2014161763782321021610.1007/s10957-013-0467-51316.90060
LiJMastroeniGVector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functionsJ. Optim. Theory Appl.2010145355372263008310.1007/s10957-009-9625-11205.90279
LiSJXuYDZhuSKNonlinear separation approach to constrained extremum problemsJ. Optim. Theory Appl.2012154842856295701910.1007/s10957-012-0027-41267.90140
MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and saddle pointJ. Glob. Optim.200840197208237355210.1007/s10898-007-9187-41149.49023
MastroeniGPellegriniLImage space analysis and separation for G-semidifferentiable vector problemsOptimization20156497112329354310.1080/02331934.2014.9729541343.90087
MastroeniGRapcsákTOn convex generalized systemsJ. Optim. Theory Appl.2000104605627176074110.1023/A:10046417262641034.90015
BellmanRDynamic Programming1957PrincetonPrinceton University Press0077.13605
XuYDNonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalitiesOptim. Lett.201610527542346351310.1007/s11590-015-0879-21349.90772
MastroeniGAnsariQHYaoJ-COptimality conditions and image space analysis for vector optimization problemsRecent Developments in Vector Optimization, Vector Optimization2012DordrechtSpringer16922010.1007/978-3-642-21114-0_6
TardellaFOn the image of a constrained extremum problem and some applications to the existence of a minimumJ. Optim. Theory Appl.1989609310498194810.1007/BF009388020631.90066
LuoHZMastroeniGWuHXSeparation approach for augmented Lagrangians in constrained nonconvex optimizationJ. Optim. Theory Appl.2010144275290258110710.1007/s10957-009-9598-01190.90143
MastroeniGPellegriniLConic separation for vector optimization problemsOptimization201160129142277214010.1080/023319310036107811237.90224
Hiriart-UrrutyJBTangent cone, generalized gradients and mathematical programming in Banach spacesMath. Oper. Res.19794799754361110.1287/moor.4.1.790409.90086
HestenesMROptimization Theory: The Finite Dimensional Case1975New YorkWiley0327.90015
Zhu, S.K.: Constrained extremum problems, regularity conditions and image space analysis. Part I: the scalar finite dimensional case. In the Special Issue, vol. 177, No. 3, June 2018 (2017)
GiannessiFConstrained Optimization and Image Space Analysis2005New YorkSpringer1082.49001
GerthCWeidnerPNonconvex separation theorems and some applications in vector optimizationJ. Optim. Theory Appl.199067297320108013810.1007/BF009404780692.90063
BigiGPappalardoMRegularity conditions for the linear separation of setsJ. Optim. Theory Appl.199899533540165704910.1023/A:10217387141100911.90297
YouMXLiSJNonlinear separation concerning E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}-optimal solution of constrained multi-objective optimization problemsOptim. Lett.201812114374295810.1007/s11590-017-1109-x06836735
WuHXLuoHZYangJFNonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programmingJ. Glob. Optim.201459695727322682810.1007/s10898-013-0093-71330.90071
RubinovAMUderzoAOn global optimality conditions via separation functionsJ. Optim. Theory Appl.2001109345370183418010.1023/A:10175664062160983.90049
GiannessiFMastroeniGUderzoAOn necessary conditions for infinite-dimensional extremum problemsJ. Glob. Optim.200428319337207479110.1023/B:JOGO.0000026452.32070.991089.49025
LiJYangLSet-valued systems with infinite-dimensional image and applicationsJ. Optim. Theory Appl.2016
PappalardoMImage space approach to penalty methodsJ. Optim. Theory Appl.199064141152103542710.1007/BF009400280667.90084
MastroeniGPanicucciBPassacantandoMYaoJCA separation approach to vector quasi-equilibrium problems: saddle point and gap functionTaiwan. J. Math.200913657673251082810.11650/twjm/15004053931213.90223
CambiniAContiRDe GiorgiEGiannessiFNonlinear separation theorems, duality, and optimality conditionsOptimization and Related Fields1986BerlinSpringer579310.1007/BFb0076702
XuYDLiSJOptimality conditions for generalized Ky Fan quasi-inequalities with applicationsJ. Optim. Theory Appl.2013157663684304702410.1007/s10957-012-0242-z1282.90185
MastroeniGDi PilloGGiannessiFSeparation methods for vector variational inequalities. saddle point and gap functionNonlinear Optimization and Applications2000DordrechtKluwer Academic207217
GiannessiFCottleRWGiannessiFLionsJ-LTheorems of alternative, quadratic programs, and complementarity problemsVariational Inequalities and Complementarity Problems. Theory and Applications1980New YorkWiley151186
GiannessiFSpedicatoEGeneral optimality conditions via a separation schemeAlgorithms for Continuous Optimization1994DordrechtKluwer123
LiJHuangNJImage space analysis for variational inequalities with cone constraints and applications to traffic equilibriaSci. China Math.201255851868290346710.1007/s11425-011-4287-51266.90182
GiannessiFMastroeniGPellegriniLGiannessiFOn the theory of vector optimization and variational inequalities. Image space analysis and separationVector Variational Inequalities and Vector Equilibria2000DordrechtKluwer Academic15321510.1007/978-1-4613-0299-5_11
LiJMastroeniGImage convexity of generalized systems with infinite dimensional image and applicationsJ. Optim. Theory Appl.201616991115348979810.1007/s10957-016-0880-71379.90035
ZhuSKLiSJUnified duality theory for constrained extremum problems. Part I: image space analysisJ. Optim. Theory Appl.2014161738762321021510.1007/s10957-013-0468-41307.90198
Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the 9th International Mathematical Programming Symposium, Budapest. Survey of Mathematical Programming, pp. 423–439. North-Holland, Amsterdam (1979)
GiannessiFTheorems of the alternative for multifunctions with applications to optimization: general resultsJ. Optim. Theory Appl.19875523325691639010.1007/BF009390830622.90084
ChinaieMZafaraniJNonlinear separation in the image space with applications to constrained optimizationPositivity20172110311047368894510.1007/s11117-016-0450-006816284
GiannessiFMastroeniGUderzoAA multifunction approach to extremum problems having infinite-dimensional images: necessary conditions for unilateral constraintsCybern. Syst. Anal.20023395120080261176.90650
ChenJWLiSJWanZPYaoJCVector variational-like inequalities with constraints: separation and alternativeJ. Optim. Theory Appl.2015166460479337138410.1007/s10957-015-0736-61322.49010
XuYDLiSJNonlinear separation functions and constrained extremum problemsOptim. Lett.2014811491160317059310.1007/s11590-013-0644-31321.90133
GiannessiFSemidifferentiable functions and necessary optimality conditionsJ. Optim. Theory Appl.19896019121498498210.1007/BF009400050632.90061
ChinaieMZafaraniJA new approach to constrained optimization via image space analysisPositivity20162099114346204110.1007/s11117-015-0343-71333.90100
DienPHMastroeniGPappalardoMQuangPHRegularity conditions for constrained extremum problems via image spaceJ. Optim. Theory Appl.1994801937125613510.1007/BF021965910797.90089
MarteinLRegularity conditions for constrained extremum problemsJ. Optim. Theory Appl.19854721723381012910.1007/BF009407700549.49016
LiJFengSQZhangZA unified approach for constrained extremum problems: image space analysisJ. Optim. Theory Appl.20131596992310328710.1007/s10957-013-0276-x1288.90092
MastroeniGPappalardoMGiannessiFKomlósiSRapcsákeTSeparation and regularity in the image spaceNew Trends in Mathematical Programming1998BostonKluwer Academic Publications18119010.1007/978-1-4757-2878-1_14
MastroeniGOn the image space analysis for vector quasi-equilibrium problems with a variable ordering relationJ. Glob. Optim.201253203214291721710.1007/s10898-011-9674-51274.90434
Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Chelsea, New York (1982). Translation of the Volume Variationsrechnung und Partielle Differential Gleichungen Erster Ordnung. B.G. Teubner, Berlin (1935)
CastellaniMMastroeniGPappalardoMSeparation of sets, Lagrange multipliers, and totally regular extremum problemsJ. Optim. Theory Appl.199792249261143001310.1023/A:10226988119480886.90127
ZhuSKImage space analysis to lagrange-type duality for constrained vector optimization problems with applicationsJ. Optim. Theory Appl.2016
GiannessiFMoldovanAPellegriniLMetric regular maps and regularity for constrained extremum problemsContemp. Math.2010154143154266825910.1090/conm/514/101051207.65080
GiannessiFTheorems of the alternative and optimality conditionsJ. Optim. Theory Appl.19844233136573783410.1007/BF009353210504.49012
LuoHZWuHXLiuJZSome results on augmented Lagrangians in constrained global optimization via image space analysisJ. Optim. Theory Appl.2013159360385311827310.1007/s10957-013-0358-91282.90142
LuoHZWuHXLiuJZOn saddle points in semidefinite optimization via separation schemeJ. Optim. Theory Appl.2015165113150332741810.1007/s10957-014-0634-31330.90070
YouMXLiSJSeparation functions and optimality conditions in vector optimizationJ. Optim. Theory Appl.2017175527544371734
SJ Li (1247_CR18) 2012; 154
F Tardella (1247_CR8) 1989; 60
F Giannessi (1247_CR9) 1980
C Gerth (1247_CR13) 1990; 67
F Giannessi (1247_CR6) 1987; 55
MR Hestenes (1247_CR3) 1975
SK Zhu (1247_CR11) 2014; 161
HZ Luo (1247_CR21) 2010; 144
PH Dien (1247_CR25) 1994; 80
R Bellman (1247_CR2) 1957
F Giannessi (1247_CR54) 2010; 154
G Mastroeni (1247_CR60) 2000; 104
G Mastroeni (1247_CR44) 2009; 13
G Mastroeni (1247_CR51) 2011; 60
F Giannessi (1247_CR16) 1989; 60
MX You (1247_CR52) 2018; 12
J Li (1247_CR61) 2010; 145
SM Guu (1247_CR35) 2014; 58
M Pappalardo (1247_CR40) 1990; 64
G Bigi (1247_CR31) 1998; 99
K Madani (1247_CR58) 2007; 135
A Cambini (1247_CR7) 1986
JW Chen (1247_CR49) 2015; 166
J Li (1247_CR46) 2012; 55
M Chinaie (1247_CR41) 2016; 20
MX You (1247_CR19) 2017; 175
JB Hiriart-Urruty (1247_CR14) 1979; 4
HZ Luo (1247_CR22) 2015; 165
YD Xu (1247_CR50) 2014; 8
SK Zhu (1247_CR10) 2014; 161
G Mastroeni (1247_CR15) 2015; 64
AM Rubinov (1247_CR39) 2001; 109
1247_CR1
1247_CR12
G Mastroeni (1247_CR43) 2012
1247_CR4
J Li (1247_CR32) 2016
F Giannessi (1247_CR56) 2002; 3
HZ Luo (1247_CR23) 2013; 159
F Giannessi (1247_CR17) 1994
K Madani (1247_CR59) 2008; 40
HX Wu (1247_CR24) 2014; 59
SK Zhu (1247_CR38) 2016
J Li (1247_CR20) 2013; 159
A Moldovan (1247_CR27) 2009; 142
F Giannessi (1247_CR37) 2005
C Antoni (1247_CR55) 2014
J Li (1247_CR45) 2010; 145
L Martein (1247_CR28) 1985; 47
G Mastroeni (1247_CR34) 2012; 53
A Moldovan (1247_CR26) 2009; 142
G Mastroeni (1247_CR53) 2000
J Li (1247_CR33) 2016; 169
F Giannessi (1247_CR5) 1984; 42
M Castellani (1247_CR29) 1997; 92
F Giannessi (1247_CR57) 2004; 28
F Giannessi (1247_CR36) 2000
YD Xu (1247_CR47) 2013; 157
M Chinaie (1247_CR42) 2017; 21
G Mastroeni (1247_CR30) 1998
YD Xu (1247_CR48) 2016; 10
References_xml – reference: GiannessiFTheorems of the alternative for multifunctions with applications to optimization: general resultsJ. Optim. Theory Appl.19875523325691639010.1007/BF009390830622.90084
– reference: LiSJXuYDZhuSKNonlinear separation approach to constrained extremum problemsJ. Optim. Theory Appl.2012154842856295701910.1007/s10957-012-0027-41267.90140
– reference: YouMXLiSJSeparation functions and optimality conditions in vector optimizationJ. Optim. Theory Appl.2017175527544371734310.1007/s10957-016-1029-406819197
– reference: LuoHZMastroeniGWuHXSeparation approach for augmented Lagrangians in constrained nonconvex optimizationJ. Optim. Theory Appl.2010144275290258110710.1007/s10957-009-9598-01190.90143
– reference: GiannessiFMoldovanAPellegriniLMetric regular maps and regularity for constrained extremum problemsContemp. Math.2010154143154266825910.1090/conm/514/101051207.65080
– reference: Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the 9th International Mathematical Programming Symposium, Budapest. Survey of Mathematical Programming, pp. 423–439. North-Holland, Amsterdam (1979)
– reference: YouMXLiSJNonlinear separation concerning E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}-optimal solution of constrained multi-objective optimization problemsOptim. Lett.201812114374295810.1007/s11590-017-1109-x06836735
– reference: XuYDNonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalitiesOptim. Lett.201610527542346351310.1007/s11590-015-0879-21349.90772
– reference: GiannessiFSemidifferentiable functions and necessary optimality conditionsJ. Optim. Theory Appl.19896019121498498210.1007/BF009400050632.90061
– reference: MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and saddle pointJ. Glob. Optim.200840197208237355210.1007/s10898-007-9187-41149.49023
– reference: GiannessiFSpedicatoEGeneral optimality conditions via a separation schemeAlgorithms for Continuous Optimization1994DordrechtKluwer123
– reference: GiannessiFMastroeniGPellegriniLGiannessiFOn the theory of vector optimization and variational inequalities. Image space analysis and separationVector Variational Inequalities and Vector Equilibria2000DordrechtKluwer Academic15321510.1007/978-1-4613-0299-5_11
– reference: LiJMastroeniGImage convexity of generalized systems with infinite dimensional image and applicationsJ. Optim. Theory Appl.201616991115348979810.1007/s10957-016-0880-71379.90035
– reference: GuuSMLiJVector quasi-equilibrium problems: separation, saddle points and error bounds for the solution setJ. Glob. Optim.201458751767317640210.1007/s10898-013-0073-y1317.90295
– reference: ChinaieMZafaraniJA new approach to constrained optimization via image space analysisPositivity20162099114346204110.1007/s11117-015-0343-71333.90100
– reference: LiJFengSQZhangZA unified approach for constrained extremum problems: image space analysisJ. Optim. Theory Appl.20131596992310328710.1007/s10957-013-0276-x1288.90092
– reference: HestenesMROptimization Theory: The Finite Dimensional Case1975New YorkWiley0327.90015
– reference: XuYDLiSJNonlinear separation functions and constrained extremum problemsOptim. Lett.2014811491160317059310.1007/s11590-013-0644-31321.90133
– reference: MastroeniGPappalardoMGiannessiFKomlósiSRapcsákeTSeparation and regularity in the image spaceNew Trends in Mathematical Programming1998BostonKluwer Academic Publications18119010.1007/978-1-4757-2878-1_14
– reference: ChenJWLiSJWanZPYaoJCVector variational-like inequalities with constraints: separation and alternativeJ. Optim. Theory Appl.2015166460479337138410.1007/s10957-015-0736-61322.49010
– reference: GiannessiFCottleRWGiannessiFLionsJ-LTheorems of alternative, quadratic programs, and complementarity problemsVariational Inequalities and Complementarity Problems. Theory and Applications1980New YorkWiley151186
– reference: CastellaniMMastroeniGPappalardoMSeparation of sets, Lagrange multipliers, and totally regular extremum problemsJ. Optim. Theory Appl.199792249261143001310.1023/A:10226988119480886.90127
– reference: MastroeniGOn the image space analysis for vector quasi-equilibrium problems with a variable ordering relationJ. Glob. Optim.201253203214291721710.1007/s10898-011-9674-51274.90434
– reference: BellmanRDynamic Programming1957PrincetonPrinceton University Press0077.13605
– reference: Hiriart-UrrutyJBTangent cone, generalized gradients and mathematical programming in Banach spacesMath. Oper. Res.19794799754361110.1287/moor.4.1.790409.90086
– reference: LiJHuangNJImage space analysis for variational inequalities with cone constraints and applications to traffic equilibriaSci. China Math.201255851868290346710.1007/s11425-011-4287-51266.90182
– reference: ZhuSKLiSJUnified duality theory for constrained extremum problems. Part II: special duality schemesJ. Optim. Theory Appl.2014161763782321021610.1007/s10957-013-0467-51316.90060
– reference: RubinovAMUderzoAOn global optimality conditions via separation functionsJ. Optim. Theory Appl.2001109345370183418010.1023/A:10175664062160983.90049
– reference: GiannessiFConstrained Optimization and Image Space Analysis2005New YorkSpringer1082.49001
– reference: Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Chelsea, New York (1982). Translation of the Volume Variationsrechnung und Partielle Differential Gleichungen Erster Ordnung. B.G. Teubner, Berlin (1935)
– reference: MoldovanAPellergriniLOn regularity for constrained extremum problems. Part I: sufficient optimality conditionsJ. Optim. Theory Appl.2009142147163252036410.1007/s10957-009-9518-31198.90391
– reference: DienPHMastroeniGPappalardoMQuangPHRegularity conditions for constrained extremum problems via image spaceJ. Optim. Theory Appl.1994801937125613510.1007/BF021965910797.90089
– reference: GiannessiFMastroeniGUderzoAOn necessary conditions for infinite-dimensional extremum problemsJ. Glob. Optim.200428319337207479110.1023/B:JOGO.0000026452.32070.991089.49025
– reference: MastroeniGPellegriniLConic separation for vector optimization problemsOptimization201160129142277214010.1080/023319310036107811237.90224
– reference: LuoHZWuHXLiuJZSome results on augmented Lagrangians in constrained global optimization via image space analysisJ. Optim. Theory Appl.2013159360385311827310.1007/s10957-013-0358-91282.90142
– reference: LiJMastroeniGVector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functionsJ. Optim. Theory Appl.2010145355372263008310.1007/s10957-009-9625-11205.90279
– reference: ZhuSKLiSJUnified duality theory for constrained extremum problems. Part I: image space analysisJ. Optim. Theory Appl.2014161738762321021510.1007/s10957-013-0468-41307.90198
– reference: WuHXLuoHZYangJFNonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programmingJ. Glob. Optim.201459695727322682810.1007/s10898-013-0093-71330.90071
– reference: GerthCWeidnerPNonconvex separation theorems and some applications in vector optimizationJ. Optim. Theory Appl.199067297320108013810.1007/BF009404780692.90063
– reference: MastroeniGAnsariQHYaoJ-COptimality conditions and image space analysis for vector optimization problemsRecent Developments in Vector Optimization, Vector Optimization2012DordrechtSpringer16922010.1007/978-3-642-21114-0_6
– reference: MastroeniGPanicucciBPassacantandoMYaoJCA separation approach to vector quasi-equilibrium problems: saddle point and gap functionTaiwan. J. Math.200913657673251082810.11650/twjm/15004053931213.90223
– reference: AntoniCGiannessiFDemyanovVFSome remarks on bi-level vector extremum problemsConstructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications2014New YorkSpringer137157
– reference: TardellaFOn the image of a constrained extremum problem and some applications to the existence of a minimumJ. Optim. Theory Appl.1989609310498194810.1007/BF009388020631.90066
– reference: MastroeniGRapcsákTOn convex generalized systemsJ. Optim. Theory Appl.2000104605627176074110.1023/A:10046417262641034.90015
– reference: LiJHuangNJImage space analysis for vector variational inequalities with matrix inequality constraints and applicationsJ. Optim. Theory Appl.2010145459477264579710.1007/s10957-010-9691-41213.90243
– reference: XuYDLiSJOptimality conditions for generalized Ky Fan quasi-inequalities with applicationsJ. Optim. Theory Appl.2013157663684304702410.1007/s10957-012-0242-z1282.90185
– reference: LuoHZWuHXLiuJZOn saddle points in semidefinite optimization via separation schemeJ. Optim. Theory Appl.2015165113150332741810.1007/s10957-014-0634-31330.90070
– reference: GiannessiFMastroeniGUderzoAA multifunction approach to extremum problems having infinite-dimensional images: necessary conditions for unilateral constraintsCybern. Syst. Anal.20023395120080261176.90650
– reference: MarteinLRegularity conditions for constrained extremum problemsJ. Optim. Theory Appl.19854721723381012910.1007/BF009407700549.49016
– reference: MastroeniGDi PilloGGiannessiFSeparation methods for vector variational inequalities. saddle point and gap functionNonlinear Optimization and Applications2000DordrechtKluwer Academic207217
– reference: GiannessiFTheorems of the alternative and optimality conditionsJ. Optim. Theory Appl.19844233136573783410.1007/BF009353210504.49012
– reference: MoldovanAPellegriniLOn regularity for constrained extremum problems. II: necessary optimality conditionsJ. Optim. Theory Appl.2009142165183252036510.1007/s10957-009-9521-81205.90294
– reference: ZhuSKImage space analysis to lagrange-type duality for constrained vector optimization problems with applicationsJ. Optim. Theory Appl.2016
– reference: BigiGPappalardoMRegularity conditions for the linear separation of setsJ. Optim. Theory Appl.199899533540165704910.1023/A:10217387141100911.90297
– reference: PappalardoMImage space approach to penalty methodsJ. Optim. Theory Appl.199064141152103542710.1007/BF009400280667.90084
– reference: CambiniAContiRDe GiorgiEGiannessiFNonlinear separation theorems, duality, and optimality conditionsOptimization and Related Fields1986BerlinSpringer579310.1007/BFb0076702
– reference: LiJYangLSet-valued systems with infinite-dimensional image and applicationsJ. Optim. Theory Appl.2016
– reference: MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and necessary conditionsJ. Optimiz. Theory Appl.20071353753234265210.1007/s10957-007-9213-11126.49005
– reference: ChinaieMZafaraniJNonlinear separation in the image space with applications to constrained optimizationPositivity20172110311047368894510.1007/s11117-016-0450-006816284
– reference: Zhu, S.K.: Constrained extremum problems, regularity conditions and image space analysis. Part I: the scalar finite dimensional case. In the Special Issue, vol. 177, No. 3, June 2018 (2017)
– reference: MastroeniGPellegriniLImage space analysis and separation for G-semidifferentiable vector problemsOptimization20156497112329354310.1080/02331934.2014.9729541343.90087
– volume: 55
  start-page: 851
  year: 2012
  ident: 1247_CR46
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-011-4287-5
– volume: 8
  start-page: 1149
  year: 2014
  ident: 1247_CR50
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-013-0644-3
– ident: 1247_CR1
– volume-title: Dynamic Programming
  year: 1957
  ident: 1247_CR2
– volume: 92
  start-page: 249
  year: 1997
  ident: 1247_CR29
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022698811948
– year: 2016
  ident: 1247_CR38
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-1027-6
– volume: 21
  start-page: 1031
  year: 2017
  ident: 1247_CR42
  publication-title: Positivity
  doi: 10.1007/s11117-016-0450-0
– start-page: 207
  volume-title: Nonlinear Optimization and Applications
  year: 2000
  ident: 1247_CR53
– volume-title: Optimization Theory: The Finite Dimensional Case
  year: 1975
  ident: 1247_CR3
– volume: 60
  start-page: 129
  year: 2011
  ident: 1247_CR51
  publication-title: Optimization
  doi: 10.1080/02331931003610781
– start-page: 57
  volume-title: Optimization and Related Fields
  year: 1986
  ident: 1247_CR7
  doi: 10.1007/BFb0076702
– volume: 159
  start-page: 360
  year: 2013
  ident: 1247_CR23
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0358-9
– volume: 47
  start-page: 217
  year: 1985
  ident: 1247_CR28
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940770
– volume: 40
  start-page: 197
  year: 2008
  ident: 1247_CR59
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9187-4
– volume: 145
  start-page: 355
  year: 2010
  ident: 1247_CR61
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9625-1
– volume: 64
  start-page: 97
  year: 2015
  ident: 1247_CR15
  publication-title: Optimization
  doi: 10.1080/02331934.2014.972954
– volume: 13
  start-page: 657
  year: 2009
  ident: 1247_CR44
  publication-title: Taiwan. J. Math.
  doi: 10.11650/twjm/1500405393
– volume: 154
  start-page: 143
  year: 2010
  ident: 1247_CR54
  publication-title: Contemp. Math.
  doi: 10.1090/conm/514/10105
– volume: 109
  start-page: 345
  year: 2001
  ident: 1247_CR39
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1017566406216
– volume: 157
  start-page: 663
  year: 2013
  ident: 1247_CR47
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0242-z
– ident: 1247_CR12
  doi: 10.1007/s10957-018-1216-6
– volume: 64
  start-page: 141
  year: 1990
  ident: 1247_CR40
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940028
– volume: 175
  start-page: 527
  year: 2017
  ident: 1247_CR19
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-1029-4
– volume: 55
  start-page: 233
  year: 1987
  ident: 1247_CR6
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939083
– volume-title: Constrained Optimization and Image Space Analysis
  year: 2005
  ident: 1247_CR37
  doi: 10.1007/0-387-28020-0
– volume: 135
  start-page: 37
  year: 2007
  ident: 1247_CR58
  publication-title: J. Optimiz. Theory Appl.
  doi: 10.1007/s10957-007-9213-1
– ident: 1247_CR4
– volume: 20
  start-page: 99
  year: 2016
  ident: 1247_CR41
  publication-title: Positivity
  doi: 10.1007/s11117-015-0343-7
– start-page: 153
  volume-title: Vector Variational Inequalities and Vector Equilibria
  year: 2000
  ident: 1247_CR36
  doi: 10.1007/978-1-4613-0299-5_11
– volume: 3
  start-page: 39
  year: 2002
  ident: 1247_CR56
  publication-title: Cybern. Syst. Anal.
– volume: 60
  start-page: 93
  year: 1989
  ident: 1247_CR8
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00938802
– volume: 60
  start-page: 191
  year: 1989
  ident: 1247_CR16
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940005
– start-page: 137
  volume-title: Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications
  year: 2014
  ident: 1247_CR55
– start-page: 1
  volume-title: Algorithms for Continuous Optimization
  year: 1994
  ident: 1247_CR17
– start-page: 169
  volume-title: Recent Developments in Vector Optimization, Vector Optimization
  year: 2012
  ident: 1247_CR43
  doi: 10.1007/978-3-642-21114-0_6
– volume: 28
  start-page: 319
  year: 2004
  ident: 1247_CR57
  publication-title: J. Glob. Optim.
  doi: 10.1023/B:JOGO.0000026452.32070.99
– volume: 144
  start-page: 275
  year: 2010
  ident: 1247_CR21
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9598-0
– volume: 142
  start-page: 147
  year: 2009
  ident: 1247_CR26
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9518-3
– volume: 58
  start-page: 751
  year: 2014
  ident: 1247_CR35
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0073-y
– volume: 169
  start-page: 91
  year: 2016
  ident: 1247_CR33
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-0880-7
– volume: 80
  start-page: 19
  year: 1994
  ident: 1247_CR25
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02196591
– volume: 161
  start-page: 763
  year: 2014
  ident: 1247_CR11
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0467-5
– volume: 67
  start-page: 297
  year: 1990
  ident: 1247_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940478
– volume: 104
  start-page: 605
  year: 2000
  ident: 1247_CR60
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1004641726264
– volume: 99
  start-page: 533
  year: 1998
  ident: 1247_CR31
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021738714110
– start-page: 181
  volume-title: New Trends in Mathematical Programming
  year: 1998
  ident: 1247_CR30
  doi: 10.1007/978-1-4757-2878-1_14
– volume: 10
  start-page: 527
  year: 2016
  ident: 1247_CR48
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-015-0879-2
– volume: 59
  start-page: 695
  year: 2014
  ident: 1247_CR24
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-013-0093-7
– volume: 145
  start-page: 459
  year: 2010
  ident: 1247_CR45
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9691-4
– volume: 53
  start-page: 203
  year: 2012
  ident: 1247_CR34
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-011-9674-5
– volume: 12
  start-page: 1
  year: 2018
  ident: 1247_CR52
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-017-1109-x
– volume: 142
  start-page: 165
  year: 2009
  ident: 1247_CR27
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9521-8
– volume: 165
  start-page: 113
  year: 2015
  ident: 1247_CR22
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-014-0634-3
– volume: 166
  start-page: 460
  year: 2015
  ident: 1247_CR49
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0736-6
– volume: 42
  start-page: 331
  year: 1984
  ident: 1247_CR5
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00935321
– year: 2016
  ident: 1247_CR32
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-016-1041-8
– volume: 4
  start-page: 79
  year: 1979
  ident: 1247_CR14
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.4.1.79
– volume: 161
  start-page: 738
  year: 2014
  ident: 1247_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0468-4
– start-page: 151
  volume-title: Variational Inequalities and Complementarity Problems. Theory and Applications
  year: 1980
  ident: 1247_CR9
– volume: 154
  start-page: 842
  year: 2012
  ident: 1247_CR18
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0027-4
– volume: 159
  start-page: 69
  year: 2013
  ident: 1247_CR20
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0276-x
SSID ssj0009874
Score 2.292388
Snippet Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 609
SubjectTerms Applications of Mathematics
Calculus of Variations and Optimal Control; Optimization
Engineering
Inequalities
Mathematical analysis
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
SummonAdditionalLinks – databaseName: Science Database (subscription)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20utCFb7FaZRaulMFkJk0ybkSkxS5aAz7oLmQeAcG0tWlFuvIf_EO_xDt5NCroxk0gZDIkOTd37p25cw5Cx67kErIATgRjLnF8LsAP-oLYwo0gYKCacpGJTXi9nt_v86CYcEuLssrSJ2aOWg2lmSM_M6kvh2zK8y5Gz8SoRpnV1UJCYxEtQWRjm5KuLg0q0l2_ZGGmhFHGy1XNfOscb5qiS8ihqOOR2fdxqQo2f6yPZsNOe_2_D7yB1oqAE1_mFrKJFvRgC61-oSGEs-6cuzXdRg9GwzNTjtAKt14nY51MExzkwjMpjgYKdxLwQvgW0m2NS1aTj7f3AMwQd87xDbihJIvvMfSl8qKwHXTfbt1dXZNCfYFIZrsTEllUSyVkDDDDUURWrLXmjvJUxFymuXDNJlzpeIpqR3ssNuoKvhtTaUnRdNguqg2GA72HsIpEM2IKgjM7huZKMCGkBZGSlr5vS1FHVvntQ1lQk5v3fAorUmUDVwhwhQaucFZHJ_NbRjkvx1-NGyVEYfGLpmGFTx2dliBXl3_tbP_vzg7QCjVWlU3UNFBtMp7qQ7QsXyaP6fgos89PPmnuWA
  priority: 102
  providerName: ProQuest
Title Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions
URI https://link.springer.com/article/10.1007/s10957-018-1247-z
https://www.proquest.com/docview/2006983777
Volume 177
WOSCitedRecordID wos000435528500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature Link Journals
  customDbUrl:
  eissn: 1573-2878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009874
  issn: 0022-3239
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HfTgW1wfSw6elEA36TaNN5UVRVyL6_tSmkdBcFfZriKe_A_-Q3-Jk27rqqigl4HQaWhn0slMk3wfwFqgpcYqQFLFeUD9UCqMg6GiNRUkmDAwy6TKySZEsxleXMioOMedlbvdyyXJPFJ_OOwm626bJFY9zBf0aRhGcbYLHV_DcetsgLQbltDLjHLGZbmU-V0XnyejQYb5ZVE0n2t2p_71lNMwWaSWZKs_FmZgyHZmYeID4CC2Dt9RWrM5OHNsnTlHhDWk8djr2vZ9m0R9ipmMJB1D9tsYb0gLC2tLSvyS1-eXCAcc2d8kRxhw2nkmT7Av09_-NQ-nu42TnT1a8CxQzWtBjyYes9oonaJDUarES6210jfCJDzgVqrAHbfVvjDM-lbw1PEohEHKtKdV3ecLMNK57dhFICZR9YQbTMNqKaobxZXSHuZEVodhTasKeKXBY12AkLv3vIkH8MnOgDEaMHYGjJ8qsP5-y10fgeM35ZXSi3HxMWaOaTOQWIgLUYGN0muDyz92tvQn7WUYZ87t-R-aFRjpde_tKozph9511q3CsDi_rMLodqMZHWPrQFCUh96Ok-wol5GTooUyql9V81H9Binv7Ls
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtswFD4CNgm4YBsMrcDAF-yGyVpip0mMNE2Igahou0rrUO9C_BNp0lq6psDGFe-w99hD7Ul2nNSEIa13veAmUhTHiuPPx-fYx98HsBsqoTAKEFRyHtIgFhLtYCypL8MUHQZmmJCF2ETUbse9nujMwW93FsamVTqbWBhqfaHsGvk7G_oKjKai6MPwO7WqUXZ31UlolLA4NT-vMWTL3zc-Yv--Yez4qHt4QieqAlRxPxzT1GNGaaky_Hy8ytTLjDEi0JFOeciNkKE9XKqCSDMTmIhnVjUgDjOmPCXrAcd65-FJYJnFbKog61Qkv7FjfWaUMy7cLmp5VE_UbZInxmwsiOjNv_Ng5dw-2I8tprnjZ4_tBz2HlYlDTQ7KEfAC5sxgFZbv0SziXeuOmzZfgzOrUVooYxhNjn6MR6Z_2SedUlgnJ-lAk0YfrSz5PEyVIY615c_trw4OM9LYJ5_QzPaL-IVgXbpMensJX2bSzHVYGFwMzCsgOpX1lGt0Pv0Mi2vJpVQeeoJGxbGvZA0819eJmlCv23Z-SyrSaAuPBOGRWHgkNzXYu3tlWPKOTCu85SCRTExQnlR4qMFbB6rq8X8r25he2Q4snnRbzaTZaJ9uwhKziC4WpbZgYTy6NK_hqboaf81H28XYIHA-a6z9BVnGUQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RqKpygEJbdctPfaAXkEXWziZxJYQqYMUK2EaiRYhLiH8iVeouy2YplBPvwNvwODxJx0lMChLcOPQSKYozkuPPkxl7_H0AS4ESCrMAQSXnAfUjIdEPRpI2ZZBiwMAME7IQmwi73ejwUMRjcOPOwtiySucTC0etT5RdI1-1qa_AbCoMV7OqLCLebK8PTqlVkLI7rU5Oo4TIjvlzjulbvtbZxLH-zFh76_vGNq0UBqjizWBEU48ZpaXKsCt4lamXGWOEr0Od8oAbIQN70FT5oWbGNyHPrIJAFGRMeUq2fI52X8BEiDmmLSeMW0c14W_kGKAZ5YwLt6NaHtsTLVvwifkb80N6ef-fWAe6D_Zmi19ee_p__lhvYKoKtMnXcmbMwJjpz8LkP_SLeLd3x1mbv4UDq11aKGYYTbYuRkPTO-uRuBTcyUna16TTQ-9L9gepMsSxudxeXcc4_UjnC_mG7rdX5DUEbemyGO4d_HiWbr6H8f5J33wAolPZSrnGoLSZYXMtuZTKwwjRqChqKtkAz417oipKdtvPX0lNJm2hkiBUEguV5LIBy3evDEo-kqcazzt4JJVrypMaGw1YcQCrHz9q7OPTxj7BK4RYstvp7szBa2bBXaxVzcP4aHhmFuCl-j36mQ8Xi2lC4Pi5ofYXBENZ8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Extremum+Problems+and+Image+Space+Analysis%E2%80%93Part+I%3A+Optimality+Conditions&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Li%2C+Shengjie&rft.au=Xu%2C+Yangdong&rft.au=You%2C+Manxue&rft.au=Zhu%2C+Shengkun&rft.date=2018-06-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=177&rft.issue=3&rft.spage=609&rft.epage=636&rft_id=info:doi/10.1007%2Fs10957-018-1247-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_018_1247_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon