Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions
Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the introduction of image space analysis has shown that the image space associated with the given problem provides a natural environment for the Lagran...
Uloženo v:
| Vydáno v: | Journal of optimization theory and applications Ročník 177; číslo 3; s. 609 - 636 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.06.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the introduction of image space analysis has shown that the image space associated with the given problem provides a natural environment for the Lagrange theory of multipliers and that separation arguments turn out to be a fundamental mathematical tool for explaining, developing and improving such a theory. This work, with its 3 parts, aims at contributing to describe the state-of-the-art of image space analysis for constrained optimization and to stress that it allows us to unify and generalize the several topics of optimization. In this 1st part, after a short introduction of such an analysis, necessary and sufficient optimality conditions are treated. Duality and penalization are the contents of the 2nd part. The 3rd part deals with generalized systems, in particular, variational inequalities and Ky Fan inequalities. Some further developments are discussed in all the parts. |
|---|---|
| AbstractList | Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the introduction of image space analysis has shown that the image space associated with the given problem provides a natural environment for the Lagrange theory of multipliers and that separation arguments turn out to be a fundamental mathematical tool for explaining, developing and improving such a theory. This work, with its 3 parts, aims at contributing to describe the state-of-the-art of image space analysis for constrained optimization and to stress that it allows us to unify and generalize the several topics of optimization. In this 1st part, after a short introduction of such an analysis, necessary and sufficient optimality conditions are treated. Duality and penalization are the contents of the 2nd part. The 3rd part deals with generalized systems, in particular, variational inequalities and Ky Fan inequalities. Some further developments are discussed in all the parts. |
| Author | You, Manxue Zhu, Shengkun Xu, Yangdong Li, Shengjie |
| Author_xml | – sequence: 1 givenname: Shengjie surname: Li fullname: Li, Shengjie email: lisj@cqu.edu.cn organization: College of Mathematics and Statistics, Chongqing University – sequence: 2 givenname: Yangdong surname: Xu fullname: Xu, Yangdong organization: College of Science, Chongqing University of Posts and Telecommunications – sequence: 3 givenname: Manxue surname: You fullname: You, Manxue organization: College of Mathematics and Statistics, Chongqing University – sequence: 4 givenname: Shengkun surname: Zhu fullname: Zhu, Shengkun organization: Department of Economics and Mathematics, Southwestern University of Finance and Economics |
| BookMark | eNp9kMtKAzEUhoNUsK0-gLuA69GTZDqZcVdK1UKhBS_bkMmcKVPmUpMUbFe-g2_ok5hSQRB0c7I533_-fAPSa7sWCblkcM0A5I1jkI1kBCyNGI9ltD8hfTaSIuKpTHukD8B5JLjIzsjAuTUAZKmM--Rl0rXOW121WNDpm7fYbBu6tF1eY-Oobgs6a_QK6eNGG6TjVtc7V7nP94-ltp7Obuli46tG15Xf0ZBVVL4KiefktNS1w4vvd0ie76ZPk4dovrifTcbzyAiW-EgDR1PkpsQcw8w1lIiYxYUstEgEZnnCeRKbWBYcY5SiNHoEaVJyAyYfxWJIro65G9u9btF5te62NpR0igMkWSqklGGLHbeM7ZyzWKqNDZ3tTjFQB33qqE8FfeqgT-0DI38xpvL68LmDrfpfkh9JF660K7Q_nf6GvgD4nInj |
| CitedBy_id | crossref_primary_10_1007_s10898_023_01327_3 crossref_primary_10_1007_s10957_020_01709_7 crossref_primary_10_1080_02331934_2021_1873989 crossref_primary_10_1080_02331934_2023_2187660 crossref_primary_10_1080_02331934_2019_1625352 crossref_primary_10_1007_s00186_021_00761_x crossref_primary_10_1080_00036811_2022_2063850 crossref_primary_10_1080_00036811_2022_2040993 crossref_primary_10_1080_02331934_2020_1751155 crossref_primary_10_1080_02331934_2025_2499818 crossref_primary_10_1080_00036811_2022_2147065 crossref_primary_10_1080_02331934_2020_1836636 crossref_primary_10_1007_s10957_019_01609_5 crossref_primary_10_1080_02331934_2020_1728268 crossref_primary_10_1007_s10957_021_01939_3 crossref_primary_10_1080_01630563_2023_2208867 |
| Cites_doi | 10.1007/s11425-011-4287-5 10.1007/s11590-013-0644-3 10.1023/A:1022698811948 10.1007/s10957-016-1027-6 10.1007/s11117-016-0450-0 10.1080/02331931003610781 10.1007/BFb0076702 10.1007/s10957-013-0358-9 10.1007/BF00940770 10.1007/s10898-007-9187-4 10.1007/s10957-009-9625-1 10.1080/02331934.2014.972954 10.11650/twjm/1500405393 10.1090/conm/514/10105 10.1023/A:1017566406216 10.1007/s10957-012-0242-z 10.1007/s10957-018-1216-6 10.1007/BF00940028 10.1007/s10957-016-1029-4 10.1007/BF00939083 10.1007/0-387-28020-0 10.1007/s10957-007-9213-1 10.1007/s11117-015-0343-7 10.1007/978-1-4613-0299-5_11 10.1007/BF00938802 10.1007/BF00940005 10.1007/978-3-642-21114-0_6 10.1023/B:JOGO.0000026452.32070.99 10.1007/s10957-009-9598-0 10.1007/s10957-009-9518-3 10.1007/s10898-013-0073-y 10.1007/s10957-016-0880-7 10.1007/BF02196591 10.1007/s10957-013-0467-5 10.1007/BF00940478 10.1023/A:1004641726264 10.1023/A:1021738714110 10.1007/978-1-4757-2878-1_14 10.1007/s11590-015-0879-2 10.1007/s10898-013-0093-7 10.1007/s10957-010-9691-4 10.1007/s10898-011-9674-5 10.1007/s11590-017-1109-x 10.1007/s10957-009-9521-8 10.1007/s10957-014-0634-3 10.1007/s10957-015-0736-6 10.1007/BF00935321 10.1007/s10957-016-1041-8 10.1287/moor.4.1.79 10.1007/s10957-013-0468-4 10.1007/s10957-012-0027-4 10.1007/s10957-013-0276-x |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s10957-018-1247-z |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Research Library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1573-2878 |
| EndPage | 636 |
| ExternalDocumentID | 10_1007_s10957_018_1247_z |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11571055; 11526165 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: China Scholarship Council grantid: 11601437 funderid: http://dx.doi.org/10.13039/501100004543 |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2O M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PKN PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 YLTOR YQT Z45 Z7R Z7S Z7U Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZCG ZMTXR ZWQNP ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7TB 7XB 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-c316t-a02ecdbcfebebcfba0feee94d7da363e9b62264c47d2e4e73fca5086f2c0cb543 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435528500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-3239 |
| IngestDate | Tue Nov 04 21:58:07 EST 2025 Sat Nov 29 06:02:29 EST 2025 Tue Nov 18 21:26:11 EST 2025 Fri Feb 21 02:34:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Optimality condition 90C29 Constrained extremum problem Image space analysis 49K05 Regularity condition |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-a02ecdbcfebebcfba0feee94d7da363e9b62264c47d2e4e73fca5086f2c0cb543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2006983777 |
| PQPubID | 48247 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_2006983777 crossref_primary_10_1007_s10957_018_1247_z crossref_citationtrail_10_1007_s10957_018_1247_z springer_journals_10_1007_s10957_018_1247_z |
| PublicationCentury | 2000 |
| PublicationDate | 20180600 2018-6-00 20180601 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 6 year: 2018 text: 20180600 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of optimization theory and applications |
| PublicationTitleAbbrev | J Optim Theory Appl |
| PublicationYear | 2018 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | AntoniCGiannessiFDemyanovVFSome remarks on bi-level vector extremum problemsConstructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications2014New YorkSpringer137157 MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and necessary conditionsJ. Optimiz. Theory Appl.20071353753234265210.1007/s10957-007-9213-11126.49005 GuuSMLiJVector quasi-equilibrium problems: separation, saddle points and error bounds for the solution setJ. Glob. Optim.201458751767317640210.1007/s10898-013-0073-y1317.90295 ZhuSKLiSJUnified duality theory for constrained extremum problems. Part II: special duality schemesJ. Optim. Theory Appl.2014161763782321021610.1007/s10957-013-0467-51316.90060 LiJMastroeniGVector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functionsJ. Optim. Theory Appl.2010145355372263008310.1007/s10957-009-9625-11205.90279 LiSJXuYDZhuSKNonlinear separation approach to constrained extremum problemsJ. Optim. Theory Appl.2012154842856295701910.1007/s10957-012-0027-41267.90140 MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and saddle pointJ. Glob. Optim.200840197208237355210.1007/s10898-007-9187-41149.49023 MastroeniGPellegriniLImage space analysis and separation for G-semidifferentiable vector problemsOptimization20156497112329354310.1080/02331934.2014.9729541343.90087 MastroeniGRapcsákTOn convex generalized systemsJ. Optim. Theory Appl.2000104605627176074110.1023/A:10046417262641034.90015 BellmanRDynamic Programming1957PrincetonPrinceton University Press0077.13605 XuYDNonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalitiesOptim. Lett.201610527542346351310.1007/s11590-015-0879-21349.90772 MastroeniGAnsariQHYaoJ-COptimality conditions and image space analysis for vector optimization problemsRecent Developments in Vector Optimization, Vector Optimization2012DordrechtSpringer16922010.1007/978-3-642-21114-0_6 TardellaFOn the image of a constrained extremum problem and some applications to the existence of a minimumJ. Optim. Theory Appl.1989609310498194810.1007/BF009388020631.90066 LuoHZMastroeniGWuHXSeparation approach for augmented Lagrangians in constrained nonconvex optimizationJ. Optim. Theory Appl.2010144275290258110710.1007/s10957-009-9598-01190.90143 MastroeniGPellegriniLConic separation for vector optimization problemsOptimization201160129142277214010.1080/023319310036107811237.90224 Hiriart-UrrutyJBTangent cone, generalized gradients and mathematical programming in Banach spacesMath. Oper. Res.19794799754361110.1287/moor.4.1.790409.90086 HestenesMROptimization Theory: The Finite Dimensional Case1975New YorkWiley0327.90015 Zhu, S.K.: Constrained extremum problems, regularity conditions and image space analysis. Part I: the scalar finite dimensional case. In the Special Issue, vol. 177, No. 3, June 2018 (2017) GiannessiFConstrained Optimization and Image Space Analysis2005New YorkSpringer1082.49001 GerthCWeidnerPNonconvex separation theorems and some applications in vector optimizationJ. Optim. Theory Appl.199067297320108013810.1007/BF009404780692.90063 BigiGPappalardoMRegularity conditions for the linear separation of setsJ. Optim. Theory Appl.199899533540165704910.1023/A:10217387141100911.90297 YouMXLiSJNonlinear separation concerning E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}-optimal solution of constrained multi-objective optimization problemsOptim. Lett.201812114374295810.1007/s11590-017-1109-x06836735 WuHXLuoHZYangJFNonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programmingJ. Glob. Optim.201459695727322682810.1007/s10898-013-0093-71330.90071 RubinovAMUderzoAOn global optimality conditions via separation functionsJ. Optim. Theory Appl.2001109345370183418010.1023/A:10175664062160983.90049 GiannessiFMastroeniGUderzoAOn necessary conditions for infinite-dimensional extremum problemsJ. Glob. Optim.200428319337207479110.1023/B:JOGO.0000026452.32070.991089.49025 LiJYangLSet-valued systems with infinite-dimensional image and applicationsJ. Optim. Theory Appl.2016 PappalardoMImage space approach to penalty methodsJ. Optim. Theory Appl.199064141152103542710.1007/BF009400280667.90084 MastroeniGPanicucciBPassacantandoMYaoJCA separation approach to vector quasi-equilibrium problems: saddle point and gap functionTaiwan. J. Math.200913657673251082810.11650/twjm/15004053931213.90223 CambiniAContiRDe GiorgiEGiannessiFNonlinear separation theorems, duality, and optimality conditionsOptimization and Related Fields1986BerlinSpringer579310.1007/BFb0076702 XuYDLiSJOptimality conditions for generalized Ky Fan quasi-inequalities with applicationsJ. Optim. Theory Appl.2013157663684304702410.1007/s10957-012-0242-z1282.90185 MastroeniGDi PilloGGiannessiFSeparation methods for vector variational inequalities. saddle point and gap functionNonlinear Optimization and Applications2000DordrechtKluwer Academic207217 GiannessiFCottleRWGiannessiFLionsJ-LTheorems of alternative, quadratic programs, and complementarity problemsVariational Inequalities and Complementarity Problems. Theory and Applications1980New YorkWiley151186 GiannessiFSpedicatoEGeneral optimality conditions via a separation schemeAlgorithms for Continuous Optimization1994DordrechtKluwer123 LiJHuangNJImage space analysis for variational inequalities with cone constraints and applications to traffic equilibriaSci. China Math.201255851868290346710.1007/s11425-011-4287-51266.90182 GiannessiFMastroeniGPellegriniLGiannessiFOn the theory of vector optimization and variational inequalities. Image space analysis and separationVector Variational Inequalities and Vector Equilibria2000DordrechtKluwer Academic15321510.1007/978-1-4613-0299-5_11 LiJMastroeniGImage convexity of generalized systems with infinite dimensional image and applicationsJ. Optim. Theory Appl.201616991115348979810.1007/s10957-016-0880-71379.90035 ZhuSKLiSJUnified duality theory for constrained extremum problems. Part I: image space analysisJ. Optim. Theory Appl.2014161738762321021510.1007/s10957-013-0468-41307.90198 Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the 9th International Mathematical Programming Symposium, Budapest. Survey of Mathematical Programming, pp. 423–439. North-Holland, Amsterdam (1979) GiannessiFTheorems of the alternative for multifunctions with applications to optimization: general resultsJ. Optim. Theory Appl.19875523325691639010.1007/BF009390830622.90084 ChinaieMZafaraniJNonlinear separation in the image space with applications to constrained optimizationPositivity20172110311047368894510.1007/s11117-016-0450-006816284 GiannessiFMastroeniGUderzoAA multifunction approach to extremum problems having infinite-dimensional images: necessary conditions for unilateral constraintsCybern. Syst. Anal.20023395120080261176.90650 ChenJWLiSJWanZPYaoJCVector variational-like inequalities with constraints: separation and alternativeJ. Optim. Theory Appl.2015166460479337138410.1007/s10957-015-0736-61322.49010 XuYDLiSJNonlinear separation functions and constrained extremum problemsOptim. Lett.2014811491160317059310.1007/s11590-013-0644-31321.90133 GiannessiFSemidifferentiable functions and necessary optimality conditionsJ. Optim. Theory Appl.19896019121498498210.1007/BF009400050632.90061 ChinaieMZafaraniJA new approach to constrained optimization via image space analysisPositivity20162099114346204110.1007/s11117-015-0343-71333.90100 DienPHMastroeniGPappalardoMQuangPHRegularity conditions for constrained extremum problems via image spaceJ. Optim. Theory Appl.1994801937125613510.1007/BF021965910797.90089 MarteinLRegularity conditions for constrained extremum problemsJ. Optim. Theory Appl.19854721723381012910.1007/BF009407700549.49016 LiJFengSQZhangZA unified approach for constrained extremum problems: image space analysisJ. Optim. Theory Appl.20131596992310328710.1007/s10957-013-0276-x1288.90092 MastroeniGPappalardoMGiannessiFKomlósiSRapcsákeTSeparation and regularity in the image spaceNew Trends in Mathematical Programming1998BostonKluwer Academic Publications18119010.1007/978-1-4757-2878-1_14 MastroeniGOn the image space analysis for vector quasi-equilibrium problems with a variable ordering relationJ. Glob. Optim.201253203214291721710.1007/s10898-011-9674-51274.90434 Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Chelsea, New York (1982). Translation of the Volume Variationsrechnung und Partielle Differential Gleichungen Erster Ordnung. B.G. Teubner, Berlin (1935) CastellaniMMastroeniGPappalardoMSeparation of sets, Lagrange multipliers, and totally regular extremum problemsJ. Optim. Theory Appl.199792249261143001310.1023/A:10226988119480886.90127 ZhuSKImage space analysis to lagrange-type duality for constrained vector optimization problems with applicationsJ. Optim. Theory Appl.2016 GiannessiFMoldovanAPellegriniLMetric regular maps and regularity for constrained extremum problemsContemp. Math.2010154143154266825910.1090/conm/514/101051207.65080 GiannessiFTheorems of the alternative and optimality conditionsJ. Optim. Theory Appl.19844233136573783410.1007/BF009353210504.49012 LuoHZWuHXLiuJZSome results on augmented Lagrangians in constrained global optimization via image space analysisJ. Optim. Theory Appl.2013159360385311827310.1007/s10957-013-0358-91282.90142 LuoHZWuHXLiuJZOn saddle points in semidefinite optimization via separation schemeJ. Optim. Theory Appl.2015165113150332741810.1007/s10957-014-0634-31330.90070 YouMXLiSJSeparation functions and optimality conditions in vector optimizationJ. Optim. Theory Appl.2017175527544371734 SJ Li (1247_CR18) 2012; 154 F Tardella (1247_CR8) 1989; 60 F Giannessi (1247_CR9) 1980 C Gerth (1247_CR13) 1990; 67 F Giannessi (1247_CR6) 1987; 55 MR Hestenes (1247_CR3) 1975 SK Zhu (1247_CR11) 2014; 161 HZ Luo (1247_CR21) 2010; 144 PH Dien (1247_CR25) 1994; 80 R Bellman (1247_CR2) 1957 F Giannessi (1247_CR54) 2010; 154 G Mastroeni (1247_CR60) 2000; 104 G Mastroeni (1247_CR44) 2009; 13 G Mastroeni (1247_CR51) 2011; 60 F Giannessi (1247_CR16) 1989; 60 MX You (1247_CR52) 2018; 12 J Li (1247_CR61) 2010; 145 SM Guu (1247_CR35) 2014; 58 M Pappalardo (1247_CR40) 1990; 64 G Bigi (1247_CR31) 1998; 99 K Madani (1247_CR58) 2007; 135 A Cambini (1247_CR7) 1986 JW Chen (1247_CR49) 2015; 166 J Li (1247_CR46) 2012; 55 M Chinaie (1247_CR41) 2016; 20 MX You (1247_CR19) 2017; 175 JB Hiriart-Urruty (1247_CR14) 1979; 4 HZ Luo (1247_CR22) 2015; 165 YD Xu (1247_CR50) 2014; 8 SK Zhu (1247_CR10) 2014; 161 G Mastroeni (1247_CR15) 2015; 64 AM Rubinov (1247_CR39) 2001; 109 1247_CR1 1247_CR12 G Mastroeni (1247_CR43) 2012 1247_CR4 J Li (1247_CR32) 2016 F Giannessi (1247_CR56) 2002; 3 HZ Luo (1247_CR23) 2013; 159 F Giannessi (1247_CR17) 1994 K Madani (1247_CR59) 2008; 40 HX Wu (1247_CR24) 2014; 59 SK Zhu (1247_CR38) 2016 J Li (1247_CR20) 2013; 159 A Moldovan (1247_CR27) 2009; 142 F Giannessi (1247_CR37) 2005 C Antoni (1247_CR55) 2014 J Li (1247_CR45) 2010; 145 L Martein (1247_CR28) 1985; 47 G Mastroeni (1247_CR34) 2012; 53 A Moldovan (1247_CR26) 2009; 142 G Mastroeni (1247_CR53) 2000 J Li (1247_CR33) 2016; 169 F Giannessi (1247_CR5) 1984; 42 M Castellani (1247_CR29) 1997; 92 F Giannessi (1247_CR57) 2004; 28 F Giannessi (1247_CR36) 2000 YD Xu (1247_CR47) 2013; 157 M Chinaie (1247_CR42) 2017; 21 G Mastroeni (1247_CR30) 1998 YD Xu (1247_CR48) 2016; 10 |
| References_xml | – reference: GiannessiFTheorems of the alternative for multifunctions with applications to optimization: general resultsJ. Optim. Theory Appl.19875523325691639010.1007/BF009390830622.90084 – reference: LiSJXuYDZhuSKNonlinear separation approach to constrained extremum problemsJ. Optim. Theory Appl.2012154842856295701910.1007/s10957-012-0027-41267.90140 – reference: YouMXLiSJSeparation functions and optimality conditions in vector optimizationJ. Optim. Theory Appl.2017175527544371734310.1007/s10957-016-1029-406819197 – reference: LuoHZMastroeniGWuHXSeparation approach for augmented Lagrangians in constrained nonconvex optimizationJ. Optim. Theory Appl.2010144275290258110710.1007/s10957-009-9598-01190.90143 – reference: GiannessiFMoldovanAPellegriniLMetric regular maps and regularity for constrained extremum problemsContemp. Math.2010154143154266825910.1090/conm/514/101051207.65080 – reference: Castellani, G., Giannessi, F.: Decomposition of mathematical programs by means of theorems of alternative for linear and nonlinear systems. In: Proceedings of the 9th International Mathematical Programming Symposium, Budapest. Survey of Mathematical Programming, pp. 423–439. North-Holland, Amsterdam (1979) – reference: YouMXLiSJNonlinear separation concerning E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}-optimal solution of constrained multi-objective optimization problemsOptim. Lett.201812114374295810.1007/s11590-017-1109-x06836735 – reference: XuYDNonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalitiesOptim. Lett.201610527542346351310.1007/s11590-015-0879-21349.90772 – reference: GiannessiFSemidifferentiable functions and necessary optimality conditionsJ. Optim. Theory Appl.19896019121498498210.1007/BF009400050632.90061 – reference: MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and saddle pointJ. Glob. Optim.200840197208237355210.1007/s10898-007-9187-41149.49023 – reference: GiannessiFSpedicatoEGeneral optimality conditions via a separation schemeAlgorithms for Continuous Optimization1994DordrechtKluwer123 – reference: GiannessiFMastroeniGPellegriniLGiannessiFOn the theory of vector optimization and variational inequalities. Image space analysis and separationVector Variational Inequalities and Vector Equilibria2000DordrechtKluwer Academic15321510.1007/978-1-4613-0299-5_11 – reference: LiJMastroeniGImage convexity of generalized systems with infinite dimensional image and applicationsJ. Optim. Theory Appl.201616991115348979810.1007/s10957-016-0880-71379.90035 – reference: GuuSMLiJVector quasi-equilibrium problems: separation, saddle points and error bounds for the solution setJ. Glob. Optim.201458751767317640210.1007/s10898-013-0073-y1317.90295 – reference: ChinaieMZafaraniJA new approach to constrained optimization via image space analysisPositivity20162099114346204110.1007/s11117-015-0343-71333.90100 – reference: LiJFengSQZhangZA unified approach for constrained extremum problems: image space analysisJ. Optim. Theory Appl.20131596992310328710.1007/s10957-013-0276-x1288.90092 – reference: HestenesMROptimization Theory: The Finite Dimensional Case1975New YorkWiley0327.90015 – reference: XuYDLiSJNonlinear separation functions and constrained extremum problemsOptim. Lett.2014811491160317059310.1007/s11590-013-0644-31321.90133 – reference: MastroeniGPappalardoMGiannessiFKomlósiSRapcsákeTSeparation and regularity in the image spaceNew Trends in Mathematical Programming1998BostonKluwer Academic Publications18119010.1007/978-1-4757-2878-1_14 – reference: ChenJWLiSJWanZPYaoJCVector variational-like inequalities with constraints: separation and alternativeJ. Optim. Theory Appl.2015166460479337138410.1007/s10957-015-0736-61322.49010 – reference: GiannessiFCottleRWGiannessiFLionsJ-LTheorems of alternative, quadratic programs, and complementarity problemsVariational Inequalities and Complementarity Problems. Theory and Applications1980New YorkWiley151186 – reference: CastellaniMMastroeniGPappalardoMSeparation of sets, Lagrange multipliers, and totally regular extremum problemsJ. Optim. Theory Appl.199792249261143001310.1023/A:10226988119480886.90127 – reference: MastroeniGOn the image space analysis for vector quasi-equilibrium problems with a variable ordering relationJ. Glob. Optim.201253203214291721710.1007/s10898-011-9674-51274.90434 – reference: BellmanRDynamic Programming1957PrincetonPrinceton University Press0077.13605 – reference: Hiriart-UrrutyJBTangent cone, generalized gradients and mathematical programming in Banach spacesMath. Oper. Res.19794799754361110.1287/moor.4.1.790409.90086 – reference: LiJHuangNJImage space analysis for variational inequalities with cone constraints and applications to traffic equilibriaSci. China Math.201255851868290346710.1007/s11425-011-4287-51266.90182 – reference: ZhuSKLiSJUnified duality theory for constrained extremum problems. Part II: special duality schemesJ. Optim. Theory Appl.2014161763782321021610.1007/s10957-013-0467-51316.90060 – reference: RubinovAMUderzoAOn global optimality conditions via separation functionsJ. Optim. Theory Appl.2001109345370183418010.1023/A:10175664062160983.90049 – reference: GiannessiFConstrained Optimization and Image Space Analysis2005New YorkSpringer1082.49001 – reference: Carathéodory, C.: Calculus of Variations and Partial Differential Equations of the First Order. Chelsea, New York (1982). Translation of the Volume Variationsrechnung und Partielle Differential Gleichungen Erster Ordnung. B.G. Teubner, Berlin (1935) – reference: MoldovanAPellergriniLOn regularity for constrained extremum problems. Part I: sufficient optimality conditionsJ. Optim. Theory Appl.2009142147163252036410.1007/s10957-009-9518-31198.90391 – reference: DienPHMastroeniGPappalardoMQuangPHRegularity conditions for constrained extremum problems via image spaceJ. Optim. Theory Appl.1994801937125613510.1007/BF021965910797.90089 – reference: GiannessiFMastroeniGUderzoAOn necessary conditions for infinite-dimensional extremum problemsJ. Glob. Optim.200428319337207479110.1023/B:JOGO.0000026452.32070.991089.49025 – reference: MastroeniGPellegriniLConic separation for vector optimization problemsOptimization201160129142277214010.1080/023319310036107811237.90224 – reference: LuoHZWuHXLiuJZSome results on augmented Lagrangians in constrained global optimization via image space analysisJ. Optim. Theory Appl.2013159360385311827310.1007/s10957-013-0358-91282.90142 – reference: LiJMastroeniGVector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functionsJ. Optim. Theory Appl.2010145355372263008310.1007/s10957-009-9625-11205.90279 – reference: ZhuSKLiSJUnified duality theory for constrained extremum problems. Part I: image space analysisJ. Optim. Theory Appl.2014161738762321021510.1007/s10957-013-0468-41307.90198 – reference: WuHXLuoHZYangJFNonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programmingJ. Glob. Optim.201459695727322682810.1007/s10898-013-0093-71330.90071 – reference: GerthCWeidnerPNonconvex separation theorems and some applications in vector optimizationJ. Optim. Theory Appl.199067297320108013810.1007/BF009404780692.90063 – reference: MastroeniGAnsariQHYaoJ-COptimality conditions and image space analysis for vector optimization problemsRecent Developments in Vector Optimization, Vector Optimization2012DordrechtSpringer16922010.1007/978-3-642-21114-0_6 – reference: MastroeniGPanicucciBPassacantandoMYaoJCA separation approach to vector quasi-equilibrium problems: saddle point and gap functionTaiwan. J. Math.200913657673251082810.11650/twjm/15004053931213.90223 – reference: AntoniCGiannessiFDemyanovVFSome remarks on bi-level vector extremum problemsConstructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications2014New YorkSpringer137157 – reference: TardellaFOn the image of a constrained extremum problem and some applications to the existence of a minimumJ. Optim. Theory Appl.1989609310498194810.1007/BF009388020631.90066 – reference: MastroeniGRapcsákTOn convex generalized systemsJ. Optim. Theory Appl.2000104605627176074110.1023/A:10046417262641034.90015 – reference: LiJHuangNJImage space analysis for vector variational inequalities with matrix inequality constraints and applicationsJ. Optim. Theory Appl.2010145459477264579710.1007/s10957-010-9691-41213.90243 – reference: XuYDLiSJOptimality conditions for generalized Ky Fan quasi-inequalities with applicationsJ. Optim. Theory Appl.2013157663684304702410.1007/s10957-012-0242-z1282.90185 – reference: LuoHZWuHXLiuJZOn saddle points in semidefinite optimization via separation schemeJ. Optim. Theory Appl.2015165113150332741810.1007/s10957-014-0634-31330.90070 – reference: GiannessiFMastroeniGUderzoAA multifunction approach to extremum problems having infinite-dimensional images: necessary conditions for unilateral constraintsCybern. Syst. Anal.20023395120080261176.90650 – reference: MarteinLRegularity conditions for constrained extremum problemsJ. Optim. Theory Appl.19854721723381012910.1007/BF009407700549.49016 – reference: MastroeniGDi PilloGGiannessiFSeparation methods for vector variational inequalities. saddle point and gap functionNonlinear Optimization and Applications2000DordrechtKluwer Academic207217 – reference: GiannessiFTheorems of the alternative and optimality conditionsJ. Optim. Theory Appl.19844233136573783410.1007/BF009353210504.49012 – reference: MoldovanAPellegriniLOn regularity for constrained extremum problems. II: necessary optimality conditionsJ. Optim. Theory Appl.2009142165183252036510.1007/s10957-009-9521-81205.90294 – reference: ZhuSKImage space analysis to lagrange-type duality for constrained vector optimization problems with applicationsJ. Optim. Theory Appl.2016 – reference: BigiGPappalardoMRegularity conditions for the linear separation of setsJ. Optim. Theory Appl.199899533540165704910.1023/A:10217387141100911.90297 – reference: PappalardoMImage space approach to penalty methodsJ. Optim. Theory Appl.199064141152103542710.1007/BF009400280667.90084 – reference: CambiniAContiRDe GiorgiEGiannessiFNonlinear separation theorems, duality, and optimality conditionsOptimization and Related Fields1986BerlinSpringer579310.1007/BFb0076702 – reference: LiJYangLSet-valued systems with infinite-dimensional image and applicationsJ. Optim. Theory Appl.2016 – reference: MadaniKMastroeniGMoldovanAConstrained extremum problems with infinite-dimensional image: selection and necessary conditionsJ. Optimiz. Theory Appl.20071353753234265210.1007/s10957-007-9213-11126.49005 – reference: ChinaieMZafaraniJNonlinear separation in the image space with applications to constrained optimizationPositivity20172110311047368894510.1007/s11117-016-0450-006816284 – reference: Zhu, S.K.: Constrained extremum problems, regularity conditions and image space analysis. Part I: the scalar finite dimensional case. In the Special Issue, vol. 177, No. 3, June 2018 (2017) – reference: MastroeniGPellegriniLImage space analysis and separation for G-semidifferentiable vector problemsOptimization20156497112329354310.1080/02331934.2014.9729541343.90087 – volume: 55 start-page: 851 year: 2012 ident: 1247_CR46 publication-title: Sci. China Math. doi: 10.1007/s11425-011-4287-5 – volume: 8 start-page: 1149 year: 2014 ident: 1247_CR50 publication-title: Optim. Lett. doi: 10.1007/s11590-013-0644-3 – ident: 1247_CR1 – volume-title: Dynamic Programming year: 1957 ident: 1247_CR2 – volume: 92 start-page: 249 year: 1997 ident: 1247_CR29 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1022698811948 – year: 2016 ident: 1247_CR38 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-1027-6 – volume: 21 start-page: 1031 year: 2017 ident: 1247_CR42 publication-title: Positivity doi: 10.1007/s11117-016-0450-0 – start-page: 207 volume-title: Nonlinear Optimization and Applications year: 2000 ident: 1247_CR53 – volume-title: Optimization Theory: The Finite Dimensional Case year: 1975 ident: 1247_CR3 – volume: 60 start-page: 129 year: 2011 ident: 1247_CR51 publication-title: Optimization doi: 10.1080/02331931003610781 – start-page: 57 volume-title: Optimization and Related Fields year: 1986 ident: 1247_CR7 doi: 10.1007/BFb0076702 – volume: 159 start-page: 360 year: 2013 ident: 1247_CR23 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0358-9 – volume: 47 start-page: 217 year: 1985 ident: 1247_CR28 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940770 – volume: 40 start-page: 197 year: 2008 ident: 1247_CR59 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9187-4 – volume: 145 start-page: 355 year: 2010 ident: 1247_CR61 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-009-9625-1 – volume: 64 start-page: 97 year: 2015 ident: 1247_CR15 publication-title: Optimization doi: 10.1080/02331934.2014.972954 – volume: 13 start-page: 657 year: 2009 ident: 1247_CR44 publication-title: Taiwan. J. Math. doi: 10.11650/twjm/1500405393 – volume: 154 start-page: 143 year: 2010 ident: 1247_CR54 publication-title: Contemp. Math. doi: 10.1090/conm/514/10105 – volume: 109 start-page: 345 year: 2001 ident: 1247_CR39 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1017566406216 – volume: 157 start-page: 663 year: 2013 ident: 1247_CR47 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0242-z – ident: 1247_CR12 doi: 10.1007/s10957-018-1216-6 – volume: 64 start-page: 141 year: 1990 ident: 1247_CR40 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940028 – volume: 175 start-page: 527 year: 2017 ident: 1247_CR19 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-1029-4 – volume: 55 start-page: 233 year: 1987 ident: 1247_CR6 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00939083 – volume-title: Constrained Optimization and Image Space Analysis year: 2005 ident: 1247_CR37 doi: 10.1007/0-387-28020-0 – volume: 135 start-page: 37 year: 2007 ident: 1247_CR58 publication-title: J. Optimiz. Theory Appl. doi: 10.1007/s10957-007-9213-1 – ident: 1247_CR4 – volume: 20 start-page: 99 year: 2016 ident: 1247_CR41 publication-title: Positivity doi: 10.1007/s11117-015-0343-7 – start-page: 153 volume-title: Vector Variational Inequalities and Vector Equilibria year: 2000 ident: 1247_CR36 doi: 10.1007/978-1-4613-0299-5_11 – volume: 3 start-page: 39 year: 2002 ident: 1247_CR56 publication-title: Cybern. Syst. Anal. – volume: 60 start-page: 93 year: 1989 ident: 1247_CR8 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00938802 – volume: 60 start-page: 191 year: 1989 ident: 1247_CR16 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940005 – start-page: 137 volume-title: Constructive Nonsmooth Analysis and Related Topics, Springer Optimization and Its Applications year: 2014 ident: 1247_CR55 – start-page: 1 volume-title: Algorithms for Continuous Optimization year: 1994 ident: 1247_CR17 – start-page: 169 volume-title: Recent Developments in Vector Optimization, Vector Optimization year: 2012 ident: 1247_CR43 doi: 10.1007/978-3-642-21114-0_6 – volume: 28 start-page: 319 year: 2004 ident: 1247_CR57 publication-title: J. Glob. Optim. doi: 10.1023/B:JOGO.0000026452.32070.99 – volume: 144 start-page: 275 year: 2010 ident: 1247_CR21 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-009-9598-0 – volume: 142 start-page: 147 year: 2009 ident: 1247_CR26 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-009-9518-3 – volume: 58 start-page: 751 year: 2014 ident: 1247_CR35 publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0073-y – volume: 169 start-page: 91 year: 2016 ident: 1247_CR33 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-0880-7 – volume: 80 start-page: 19 year: 1994 ident: 1247_CR25 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF02196591 – volume: 161 start-page: 763 year: 2014 ident: 1247_CR11 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0467-5 – volume: 67 start-page: 297 year: 1990 ident: 1247_CR13 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00940478 – volume: 104 start-page: 605 year: 2000 ident: 1247_CR60 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1004641726264 – volume: 99 start-page: 533 year: 1998 ident: 1247_CR31 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1021738714110 – start-page: 181 volume-title: New Trends in Mathematical Programming year: 1998 ident: 1247_CR30 doi: 10.1007/978-1-4757-2878-1_14 – volume: 10 start-page: 527 year: 2016 ident: 1247_CR48 publication-title: Optim. Lett. doi: 10.1007/s11590-015-0879-2 – volume: 59 start-page: 695 year: 2014 ident: 1247_CR24 publication-title: J. Glob. Optim. doi: 10.1007/s10898-013-0093-7 – volume: 145 start-page: 459 year: 2010 ident: 1247_CR45 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9691-4 – volume: 53 start-page: 203 year: 2012 ident: 1247_CR34 publication-title: J. Glob. Optim. doi: 10.1007/s10898-011-9674-5 – volume: 12 start-page: 1 year: 2018 ident: 1247_CR52 publication-title: Optim. Lett. doi: 10.1007/s11590-017-1109-x – volume: 142 start-page: 165 year: 2009 ident: 1247_CR27 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-009-9521-8 – volume: 165 start-page: 113 year: 2015 ident: 1247_CR22 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-014-0634-3 – volume: 166 start-page: 460 year: 2015 ident: 1247_CR49 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0736-6 – volume: 42 start-page: 331 year: 1984 ident: 1247_CR5 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00935321 – year: 2016 ident: 1247_CR32 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-1041-8 – volume: 4 start-page: 79 year: 1979 ident: 1247_CR14 publication-title: Math. Oper. Res. doi: 10.1287/moor.4.1.79 – volume: 161 start-page: 738 year: 2014 ident: 1247_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0468-4 – start-page: 151 volume-title: Variational Inequalities and Complementarity Problems. Theory and Applications year: 1980 ident: 1247_CR9 – volume: 154 start-page: 842 year: 2012 ident: 1247_CR18 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0027-4 – volume: 159 start-page: 69 year: 2013 ident: 1247_CR20 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-013-0276-x |
| SSID | ssj0009874 |
| Score | 2.292388 |
| Snippet | Image space analysis is a new tool for studying scalar and vector constrained extremum problems as well as generalized systems. In the last decades, the... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 609 |
| SubjectTerms | Applications of Mathematics Calculus of Variations and Optimal Control; Optimization Engineering Inequalities Mathematical analysis Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Theory of Computation |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60etCDb7FaZQ-elIV0N09vIi0WtBarpbewTxBMlKYV6cn_4D_0l7ibZE0VFfQSCNksycxkZyY7830AHAYedijjDPmUCORK30NMkQgJpVioiO9RlWv6Iuh2w-Ew6pV93JmtdrdbkvlKPdPsFnmmTFJnPdgN0HQeLGhvFxq-huv-oELaDS30MkYEk8huZX43xWdnVEWYXzZFc1_TXv3XU66BlTK0hKeFLayDOZlugOUZwEF9dvmB0pptgoFh68w5IqSArefxSCaTBPYKipkM0lTATqLXG9jXibWEFr_k7eW1pw0Odk7glV5wkjySh3ouUZR_bYHbduvm7ByVPAuIk6Y_RtTBkgvGlVaoPjLqKCll5IpAUOITGTHftNtyNxBYujIgyvAohL7C3OHMc8k2qKUPqdwBsMlCyrVPFAbzxTO-TwqdMkqlAwXFMa4Dxwo85iUIuXnP-7iCTzYCjLUAYyPAeFoHRx-3PBYIHL8NblgtxuXHmBmmTT_SiXgQ1MGx1Vp1-cfJdv80eg8sYaP2_A9NA9TGo4ncB4v8aXyXjQ5yG30HX63ktg priority: 102 providerName: Springer Nature |
| Title | Constrained Extremum Problems and Image Space Analysis–Part I: Optimality Conditions |
| URI | https://link.springer.com/article/10.1007/s10957-018-1247-z https://www.proquest.com/docview/2006983777 |
| Volume | 177 |
| WOSCitedRecordID | wos000435528500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1573-2878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009874 issn: 0022-3239 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71wYEeaMtDXWgrHzgVWWTtJE64IFpt1Qp2G3WhFC5R_JKQutt2s0WoJ_4D_7C_pDN5NIBEL1xGspJYcT5nHvb4G4CXKhJBoY3mcSEtD10cce1lyq33OvEyjgpfIf1BjUbJ6WmaNQtuZZNW2erESlHbc0Nr5K8p9E0xmlLq7cUlp6pRtLvalNBYhGX0bPqU0jUUWUe6m7QszIJLIdN2V7M-OpdGlHSJMZQIFb_-0y51zuZf-6OV2dlf_d8XXoNHjcPJ3tUzZB0W3PQxrPxGQ4it4R13a_kETqiGZ1U5wlk2-DGfucnVhGV14ZmSFVPLDieohdgYw23HWlaTm5-_MpyG7PANO0I1NKn8e4Z92Top7Cl82h983DvgTfUFbmQ_nvMiEM5YbTzCjFIXgXfOpaFVtpCxdKmO6RCuCZUVLnRKeqqukMRemMDoKJTPYGl6PnUbwPo6KQxaSktMMBFZRGcxkHQe3QdvhOhB0H773DTU5DTOs7wjVSa4coQrJ7jy6x7s3D1yUfNy3HfzZgtR3vyiZd7h04NXLcjd5X929vz-zl7AQ0Gzqlqo2YSl-ezKbcED833-rZxtw6L6_GUblncHo-wYW-8VRzkM9kiKo0pmJNUYZRZ9RXk8PrkFYEz20w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NThRBEK4gmigH8TeugPZBL5qOQ_f8khBiFMKGZd1ENNyG_qlOTNxl3VkQOPkOvIcP5ZPQNbPNqIncOHiZZDIzlZnpr6uruqu_D-BFlohIaaN5qqTlMaYJ104W3DqncyfTRLm6pXtZv5_v7xeDOfgZ9sJQWWXwibWjtoeG5sjfUOpb-GwqyzbG3zipRtHqapDQaGCxg6fffcpWrXff-_Z9KcTW5t67bT5TFeBGrqZTriKBxmrj_Ov7o1aRQ8QitplVMpVY6JQ2l5o4swJjzKQj1YA8dcJERiex9HZvwM2YmMWoVFAMWpLfPLA-Cy6FLMIqarNVr0ioyNPnbCLO-Nmf42Ab3P61HlsPc1uL_9sPugd3ZwE1e9v0gPswh6MHsPAbzaI_273kpq0ewmfSKK2VMdCyzZPpBIdHQzZohHUqpkaWdYfey7KPY2WQBdaWXz_OB76bse4a--Dd7LDOX5i3ZZuit0fw6Vo-8zHMjw5H-ATYqs6V8ZGAJaabhEZ8tB4e6Hx45IwQHYhCW5dmRr1O3_m1bEmjCR6lh0dJ8CjPOvDq8pFxwzty1c3LARLlzAVVZYuHDrwOoGov_9PY06uNPYfb23u7vbLX7e8swR1BiK4npZZhfjo5whW4ZY6nX6rJs7pvMDi4bqxdAEF8USk |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBSG64FnEtAW8gA3IamoncVKpQlXbEaOWIRIPVd2kfkpIzHSYTHl0xT_0b_icfkmvk7gBJLrrgk2kKMmVHB9f32NfnwvwTCQskkormkpuaGzThCrHc2qcU5njaSJd3dN7YjjM9vfzYg5-hbMwPq0y-MTaUZsj7dfIVz31zZFNCbHq2rSIYrv_avKF-gpSfqc1lNNoILJrf3xD-lZtDLaxr58z1t95v_WathUGqOZr6YzKiFltlHbYFLwqGTlrbR4bYSRPuc1V6g-a6lgYZmMruPMVBLLUMR1plcQc7V6D6wI5pk8nLJKDTvA3CwrQjHLG87Cj2hzbyxOf8In8jcWCnvw5J3aB7l97s_WU17_zP_-su3C7DbTJZjMy7sGcHd-Hhd_kF_HuzYVmbfUAPvrapXXFDGvIzvfZ1I6OR6RoCu5URI4NGYzQ-5J3E6ktCWouZz9PCxx-ZLBO3qL7HdW8hqAt0yTDLcKHK2nmQ5gfH43tIyBrKpMaIwTjFXASHwlYgwTaOgybnGasB1Ho91K3kuy-nZ_LTkzaQ6VEqJQeKuVJD15cfDJp9Egue3klwKNsXVNVdtjowcsAsO7xP40tXW7sKdxEiJV7g-HuMtxiHtz1WtUKzM-mx_Yx3NBfZ5-q6ZN6mBA4vGqonQMKNFoV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Extremum+Problems+and+Image+Space+Analysis%E2%80%93Part+I%3A+Optimality+Conditions&rft.jtitle=Journal+of+optimization+theory+and+applications&rft.au=Li%2C+Shengjie&rft.au=Xu%2C+Yangdong&rft.au=You%2C+Manxue&rft.au=Zhu%2C+Shengkun&rft.date=2018-06-01&rft.issn=0022-3239&rft.eissn=1573-2878&rft.volume=177&rft.issue=3&rft.spage=609&rft.epage=636&rft_id=info:doi/10.1007%2Fs10957-018-1247-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10957_018_1247_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3239&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3239&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3239&client=summon |