Optimal design of Stirling heat engine using an advanced optimization algorithm

The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot engine and it is less pollutant and requires little maintenance. In this paper, Stirling heat engine is considered for optimization with multiple criteria. A recently developed advanced optimization algor...

Full description

Saved in:
Bibliographic Details
Published in:Sadhana (Bangalore) Vol. 41; no. 11; pp. 1321 - 1331
Main Authors: Rao, R V, More, K C, Taler, J, Ocłoń, P
Format: Journal Article
Language:English
Published: New Delhi Springer India 01.11.2016
Springer Nature B.V
Subjects:
ISSN:0256-2499, 0973-7677
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot engine and it is less pollutant and requires little maintenance. In this paper, Stirling heat engine is considered for optimization with multiple criteria. A recently developed advanced optimization algorithm namely “teaching–learning-based optimization (TLBO) algorithm” is used for maximization of output power, minimization of pressure losses and maximization of the thermal efficiency of the entire solar Stirling system. The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear programming technique for multi-dimensional analysis of preference (LINMAP), technique for order of preference by similarity to ideal solution (TOPSIS) and fuzzy Bellman–Zadeh method that have used the Pareto frontier gained through non-dominated sorting genetic algorithm-II (NSGA-II). The comparisons were also made with those obtained by the experimental results. It is found that the TLBO algorithm has produced comparatively better results than those given by the decision-making methods and the experimental results presented by the previous researchers.
AbstractList The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot engine and it is less pollutant and requires little maintenance. In this paper, Stirling heat engine is considered for optimization with multiple criteria. A recently developed advanced optimization algorithm namely “teaching–learning-based optimization (TLBO) algorithm” is used for maximization of output power, minimization of pressure losses and maximization of the thermal efficiency of the entire solar Stirling system. The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear programming technique for multi-dimensional analysis of preference (LINMAP), technique for order of preference by similarity to ideal solution (TOPSIS) and fuzzy Bellman–Zadeh method that have used the Pareto frontier gained through non-dominated sorting genetic algorithm-II (NSGA-II). The comparisons were also made with those obtained by the experimental results. It is found that the TLBO algorithm has produced comparatively better results than those given by the decision-making methods and the experimental results presented by the previous researchers.
Author Taler, J
Rao, R V
More, K C
Ocłoń, P
Author_xml – sequence: 1
  givenname: R V
  surname: Rao
  fullname: Rao, R V
  organization: Department of Mechanical Engineering, S.V. National Institute of Technology
– sequence: 2
  givenname: K C
  surname: More
  fullname: More, K C
  email: kiran.imagine67@gmail.com
  organization: Department of Mechanical Engineering, S.V. National Institute of Technology
– sequence: 3
  givenname: J
  surname: Taler
  fullname: Taler, J
  organization: Instytut Maszyn i Urządzeń Energetycznych, Politechnika Krakowska
– sequence: 4
  givenname: P
  surname: Ocłoń
  fullname: Ocłoń, P
  organization: Instytut Maszyn i Urządzeń Energetycznych, Politechnika Krakowska
BookMark eNp9kEtLxDAQx4Os4O7qB_AW8FzNo23aoyy-QNiDeg5pOu1m6SZrkhX005taDyLoYZgH85vHf4Fm1llA6JySS0qIuAqUkbzMCE1WFDwjR2hOasEzUQoxSzEryozldX2CFiFsCWGCVHyO1ut9NDs14BaC6S12HX6Kxg_G9ngDKmKwvbGAD2GsKItV-6ashha7ETQfKhqXqkPvvImb3Sk67tQQ4OzbL9HL7c3z6j57XN89rK4fM81pGbMaWN01UCnRiUI0VZc3jeAFZ1VKSEXqPO94pXMAVbSMABdaV40ui7JsGgU1X6KLae7eu9cDhCi37uBtWilplSZwQTlJXXTq0t6F4KGTe5--9e-SEjnqJifdZNJNjrrJkRG_GG3i15fRKzP8S7KJDGmL7cH_uOlP6BPWKYQY
CitedBy_id crossref_primary_10_1088_1674_1056_acc7f8
crossref_primary_10_1007_s10845_019_01486_9
crossref_primary_10_1119_5_0199979
crossref_primary_10_1007_s40430_019_2072_5
crossref_primary_10_1016_j_solmat_2022_111743
crossref_primary_10_1007_s12046_018_0829_7
crossref_primary_10_1016_j_enconman_2018_09_011
Cites_doi 10.1016/j.enconman.2013.06.030
10.1016/S0196-8904(97)10036-X
10.1007/978-3-319-22732-0
10.1016/j.energy.2008.02.005
10.1016/j.enconman.2013.05.031
10.1016/S0960-1481(02)00018-6
10.1016/j.energy.2014.12.008
10.1016/S1364-0321(02)00053-9
10.1243/0954406001523885
10.1002/er.806
10.1016/j.rser.2012.01.022
10.1016/j.enconman.2010.02.010
10.1016/S0196-8904(00)00063-7
10.1016/S0196-8904(99)00065-5
10.1016/j.enconman.2013.07.082
10.1016/S0360-5442(00)00023-2
10.1016/j.renene.2013.05.005
10.1016/S1359-4311(01)00038-2
10.1016/S0196-8904(97)10037-1
10.1016/S0020-7225(99)00025-7
10.1016/j.cad.2010.12.015
10.1016/S0196-8904(98)00063-6
10.1016/0011-9164(87)90118-4
10.1016/j.renene.2010.06.037
10.1016/j.energy.2009.10.036
ContentType Journal Article
Copyright Indian Academy of Sciences 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Indian Academy of Sciences 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s12046-016-0553-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
EndPage 1331
ExternalDocumentID 10_1007_s12046_016_0553_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
H13
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RAB
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ABJCF
ABRTQ
ADHKG
AEUYN
AFDZB
AFFHD
AFKRA
AFOHR
AGQPQ
AHPBZ
ARAPS
ATHPR
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
OVT
PDBOC
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c316t-9e29fbe8a7f757b8f4bb7353287b8080944f38c4eea5d20e37cc8bc6566bbae93
IEDL.DBID RSV
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388729700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0256-2499
IngestDate Thu Sep 25 00:57:53 EDT 2025
Sat Nov 29 05:51:11 EST 2025
Tue Nov 18 22:46:26 EST 2025
Fri Feb 21 02:42:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Stirling heat engine
multi-objective optimization
pressure loss
teaching–learning-based optimization algorithm
thermal efficiency
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9e29fbe8a7f757b8f4bb7353287b8080944f38c4eea5d20e37cc8bc6566bbae93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880837130
PQPubID 2043821
PageCount 11
ParticipantIDs proquest_journals_1880837130
crossref_primary_10_1007_s12046_016_0553_0
crossref_citationtrail_10_1007_s12046_016_0553_0
springer_journals_10_1007_s12046_016_0553_0
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sādhanā
PublicationYear 2016
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Minassians, Sanders (CR1) 2011; 133
Kongtragool, Wongwise (CR2) 2007; 7
Formosa, Despesse (CR20) 2010; 51
Costea, Feidt (CR7) 1998; 39
Tlili (CR22) 2012; 16
Rao, More (CR32) 2014; 2
Ahmadi, Mohammadi, Saeed (CR24) 2013; 76
Reader, Hooper (CR30) 1988
CR31
Petrescu, Costea, Harman, Florea (CR17) 2002; 26
Organ (CR12) 2000; 214
Ahmadi, Sayyadi, Mohammadi, Marco (CR25) 2013; 73
Ahmadi, Mohammadi, Saeed, Marco (CR26) 2013; 75
Markman, Shmatok, Krasovkii (CR3) 1983; 19
Kaushik, Kumar (CR13) 2000; 25
Martaj, Grosu, Rochelle (CR18) 2007; 10
CR6
Kaushik, Kumar (CR14) 2001; 42
Rao (CR28) 2016
Abdalla, Yacoub (CR5) 1987; 64
Orunov, Trukhov, Tursunbaev (CR4) 1983; 19
Wu, Chen, Wu (CR11) 2000; 38
Wu, Chen, Sun, Wu, Zhu (CR8) 1998; 39
Costea, Petrescu, Harman (CR10) 1999; 40
Rao, Savsani, Vakharia (CR29) 2011; 43
Wu, Chen, Wu, Sun (CR9) 1998; 39
Hsu, Lin, Chiou (CR16) 2003; 28
Gu, Sato, Feng (CR15) 2001; 21
Rao, More (CR27) 2015; 80
Li, Yaling, Weiwei (CR21) 2011; 36
Ahmadi, Hosseinzade, Sayyadi, Mohammadi, Kimiaghalam (CR23) 2013; 60
Timoumi, Tlili, Ben (CR19) 2008; 33
F Formosa (553_CR20) 2010; 51
F Wu (553_CR11) 2000; 38
Y Li (553_CR21) 2011; 36
AD Minassians (553_CR1) 2011; 133
Z Gu (553_CR15) 2001; 21
MH Ahmadi (553_CR24) 2013; 76
MA Markman (553_CR3) 1983; 19
N Martaj (553_CR18) 2007; 10
MH Ahmadi (553_CR26) 2013; 75
RV Rao (553_CR27) 2015; 80
553_CR31
F Wu (553_CR9) 1998; 39
S Petrescu (553_CR17) 2002; 26
RV Rao (553_CR28) 2016
AJ Organ (553_CR12) 2000; 214
M Costea (553_CR7) 1998; 39
M Costea (553_CR10) 1999; 40
GT Reader (553_CR30) 1988
RV Rao (553_CR29) 2011; 43
F Wu (553_CR8) 1998; 39
SC Kaushik (553_CR14) 2001; 42
B Kongtragool (553_CR2) 2007; 7
B Orunov (553_CR4) 1983; 19
553_CR6
Y Timoumi (553_CR19) 2008; 33
RV Rao (553_CR32) 2014; 2
SC Kaushik (553_CR13) 2000; 25
MH Ahmadi (553_CR25) 2013; 73
I Tlili (553_CR22) 2012; 16
MH Ahmadi (553_CR23) 2013; 60
ST Hsu (553_CR16) 2003; 28
S Abdalla (553_CR5) 1987; 64
References_xml – volume: 75
  start-page: 438
  year: 2013
  end-page: 445
  ident: CR26
  article-title: Multi-objective thermodynamic-based optimization of output power of Solar Dish-Stirling engine by implementing an evolutionary algorithm
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2013.06.030
– volume: 39
  start-page: 727
  year: 1998
  end-page: 732
  ident: CR9
  article-title: Optimum performance of irreversible Stirling engine with imperfect regeneration
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(97)10036-X
– volume: 19
  start-page: 29
  year: 1983
  end-page: 33
  ident: CR4
  article-title: Calculation of the parameters of a symmetrical rhombic drive for a single-cylinder Stirling engine
  publication-title: Geliotekhnika.
– year: 2016
  ident: CR28
  publication-title: Teaching learning based optimization algorithm and its engineering applications
  doi: 10.1007/978-3-319-22732-0
– year: 1988
  ident: CR30
  publication-title: Stirling engines
– volume: 133
  start-page: 223
  year: 2011
  end-page: 235
  ident: CR1
  article-title: Stirling Engines for Distributed Low-Cost Solar-Thermal-Electric Power Generation
  publication-title: J. Solar Energ Engg.
– volume: 33
  start-page: 1100
  issue: 7
  year: 2008
  end-page: 1114
  ident: CR19
  article-title: Design and performance optimization of GPU-3 Stirling engines
  publication-title: Energ.
  doi: 10.1016/j.energy.2008.02.005
– volume: 73
  start-page: 370
  year: 2013
  end-page: 380
  ident: CR25
  article-title: Thermo-economic multi-objective optimization of solar dish-Stirling engine by implementing evolutionary algorithm
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2013.05.031
– volume: 28
  start-page: 59
  year: 2003
  end-page: 69
  ident: CR16
  article-title: Heat-transfer aspects of Stirling power generation using incinerator waste energy
  publication-title: Renew. Energ.
  doi: 10.1016/S0960-1481(02)00018-6
– ident: CR6
– volume: 80
  start-page: 535
  year: 2015
  end-page: 544
  ident: CR27
  article-title: Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm
  publication-title: Energy.
  doi: 10.1016/j.energy.2014.12.008
– volume: 7
  start-page: 131
  year: 2007
  end-page: 154
  ident: CR2
  article-title: A review of solar-powered Stirling engines and low temperature differential Stirling engines
  publication-title: Renew. Sustain. Energy. Review.
  doi: 10.1016/S1364-0321(02)00053-9
– volume: 19
  start-page: 19
  year: 1983
  end-page: 24
  ident: CR3
  article-title: Experimental investigation of a low-power Stirling engine
  publication-title: Geliotekhnika.
– volume: 214
  start-page: 511
  year: 2000
  end-page: 536
  ident: CR12
  article-title: Stirling air engine thermodynamic appreciation
  publication-title: Proc. IMech E, Part C: J. Mech. Engg. Sci
  doi: 10.1243/0954406001523885
– volume: 26
  start-page: 589
  year: 2002
  end-page: 609
  ident: CR17
  article-title: Application of the direct method to irreversible Stirling cycles with finite speed
  publication-title: Int. J. Energ. Rese.
  doi: 10.1002/er.806
– volume: 16
  start-page: 2234
  issue: 4
  year: 2012
  end-page: 2241
  ident: CR22
  article-title: Finite time thermodynamic evaluation of endoreversible Stirling heat engine at maximum power conditions
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2012.01.022
– volume: 51
  start-page: 1855
  year: 2010
  end-page: 1863
  ident: CR20
  article-title: Analytical model for Stirling cycle machine designs
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2010.02.010
– volume: 42
  start-page: 295
  year: 2001
  end-page: 312
  ident: CR14
  article-title: Finite time thermodynamic evaluation of irreversible Ericsson and Stirling heat engines
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(00)00063-7
– volume: 40
  start-page: 1723
  year: 1999
  end-page: 1731
  ident: CR10
  article-title: The effect of irreversibilities on solar Stirling engine cycle performance
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(99)00065-5
– volume: 2
  start-page: 71
  issue: 1
  year: 2014
  end-page: 94
  ident: CR32
  article-title: Advanced optimal tolerance design of machine elements using teaching–learning-based optimization algorithm
  publication-title: Prod. Manuf. Rese.
– volume: 10
  start-page: 165
  issue: 4
  year: 2007
  end-page: 176
  ident: CR18
  article-title: Thermodynamic study of a low temperature difference Stirling engine at steady state operation
  publication-title: Int. J. Thermo.
– volume: 76
  start-page: 561
  year: 2013
  end-page: 570
  ident: CR24
  article-title: Evaluation of the maximized power of a regenerative endoreversible Stirling cycle using the thermodynamic analysis
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2013.07.082
– volume: 25
  start-page: 989
  year: 2000
  end-page: 1003
  ident: CR13
  article-title: Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses
  publication-title: Energ.
  doi: 10.1016/S0360-5442(00)00023-2
– volume: 60
  start-page: 313
  year: 2013
  end-page: 322
  ident: CR23
  article-title: Application of the multi-objective optimization method for designing a powered Stirling heat engine: Design with maximized power, thermal efficiency and minimized pressure loss
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2013.05.005
– ident: CR31
– volume: 21
  start-page: 1621
  year: 2001
  end-page: 1630
  ident: CR15
  article-title: Using supercritical heat recovery process in Stirling engines for high thermal efficiency
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(01)00038-2
– volume: 39
  start-page: 733
  year: 1998
  end-page: 739
  ident: CR8
  article-title: Performance and optimization criteria for forward and reverse quantum Stirling cycles
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(97)10037-1
– volume: 38
  start-page: 239
  year: 2000
  end-page: 247
  ident: CR11
  article-title: Finite-time exergoeconomic performance bound for a quantum Stirling engine
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/S0020-7225(99)00025-7
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: CR29
  article-title: Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems
  publication-title: Comp.-Aided. Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 39
  start-page: 1753
  year: 1998
  end-page: 1763
  ident: CR7
  article-title: The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(98)00063-6
– volume: 64
  start-page: 491
  year: 1987
  end-page: 500
  ident: CR5
  article-title: Feasibility prediction of potable water production using waste heat from refuse incinerator hooked up at Stirling cycling machine
  publication-title: Desalination.
  doi: 10.1016/0011-9164(87)90118-4
– volume: 36
  start-page: 421
  year: 2011
  end-page: 427
  ident: CR21
  article-title: Optimization of solar-powered Stirling heat engine with finite-time thermodynamics
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2010.06.037
– volume-title: Teaching learning based optimization algorithm and its engineering applications
  year: 2016
  ident: 553_CR28
  doi: 10.1007/978-3-319-22732-0
– volume: 25
  start-page: 989
  year: 2000
  ident: 553_CR13
  publication-title: Energ.
  doi: 10.1016/S0360-5442(00)00023-2
– volume: 7
  start-page: 131
  year: 2007
  ident: 553_CR2
  publication-title: Renew. Sustain. Energy. Review.
  doi: 10.1016/S1364-0321(02)00053-9
– volume: 40
  start-page: 1723
  year: 1999
  ident: 553_CR10
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(99)00065-5
– volume: 28
  start-page: 59
  year: 2003
  ident: 553_CR16
  publication-title: Renew. Energ.
  doi: 10.1016/S0960-1481(02)00018-6
– volume-title: Stirling engines
  year: 1988
  ident: 553_CR30
– volume: 39
  start-page: 733
  year: 1998
  ident: 553_CR8
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(97)10037-1
– volume: 73
  start-page: 370
  year: 2013
  ident: 553_CR25
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2013.05.031
– volume: 16
  start-page: 2234
  issue: 4
  year: 2012
  ident: 553_CR22
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2012.01.022
– ident: 553_CR6
– volume: 76
  start-page: 561
  year: 2013
  ident: 553_CR24
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2013.07.082
– volume: 10
  start-page: 165
  issue: 4
  year: 2007
  ident: 553_CR18
  publication-title: Int. J. Thermo.
– volume: 42
  start-page: 295
  year: 2001
  ident: 553_CR14
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(00)00063-7
– volume: 21
  start-page: 1621
  year: 2001
  ident: 553_CR15
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(01)00038-2
– volume: 19
  start-page: 19
  year: 1983
  ident: 553_CR3
  publication-title: Geliotekhnika.
– volume: 64
  start-page: 491
  year: 1987
  ident: 553_CR5
  publication-title: Desalination.
  doi: 10.1016/0011-9164(87)90118-4
– volume: 38
  start-page: 239
  year: 2000
  ident: 553_CR11
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/S0020-7225(99)00025-7
– volume: 214
  start-page: 511
  year: 2000
  ident: 553_CR12
  publication-title: Proc. IMech E, Part C: J. Mech. Engg. Sci
  doi: 10.1243/0954406001523885
– volume: 33
  start-page: 1100
  issue: 7
  year: 2008
  ident: 553_CR19
  publication-title: Energ.
  doi: 10.1016/j.energy.2008.02.005
– volume: 80
  start-page: 535
  year: 2015
  ident: 553_CR27
  publication-title: Energy.
  doi: 10.1016/j.energy.2014.12.008
– volume: 51
  start-page: 1855
  year: 2010
  ident: 553_CR20
  publication-title: Energ. Convers. Manag.
  doi: 10.1016/j.enconman.2010.02.010
– volume: 26
  start-page: 589
  year: 2002
  ident: 553_CR17
  publication-title: Int. J. Energ. Rese.
  doi: 10.1002/er.806
– volume: 2
  start-page: 71
  issue: 1
  year: 2014
  ident: 553_CR32
  publication-title: Prod. Manuf. Rese.
– volume: 75
  start-page: 438
  year: 2013
  ident: 553_CR26
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2013.06.030
– volume: 39
  start-page: 1753
  year: 1998
  ident: 553_CR7
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(98)00063-6
– volume: 36
  start-page: 421
  year: 2011
  ident: 553_CR21
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2010.06.037
– volume: 19
  start-page: 29
  year: 1983
  ident: 553_CR4
  publication-title: Geliotekhnika.
– volume: 39
  start-page: 727
  year: 1998
  ident: 553_CR9
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/S0196-8904(97)10036-X
– volume: 60
  start-page: 313
  year: 2013
  ident: 553_CR23
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2013.05.005
– volume: 43
  start-page: 303
  year: 2011
  ident: 553_CR29
  publication-title: Comp.-Aided. Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 133
  start-page: 223
  year: 2011
  ident: 553_CR1
  publication-title: J. Solar Energ Engg.
– ident: 553_CR31
  doi: 10.1016/j.energy.2009.10.036
SSID ssj0027083
Score 2.1391175
Snippet The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot engine and it is less pollutant and requires little...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1321
SubjectTerms Decision making
Design optimization
Dimensional analysis
Engineering
Genetic algorithms
Heat engines
Linear programming
Machine learning
Maximization
Multidimensional methods
Multiple criterion
Optimization algorithms
Pressure loss
Sorting algorithms
Stirling engines
Thermodynamic efficiency
Title Optimal design of Stirling heat engine using an advanced optimization algorithm
URI https://link.springer.com/article/10.1007/s12046-016-0553-0
https://www.proquest.com/docview/1880837130
Volume 41
WOSCitedRecordID wos000388729700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0973-7677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027083
  issn: 0256-2499
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQYYABaAFRXvLAwEOW0jip7REhKgbUIgpVt8h27VKpTVAT-P340oQUBEgwZLJ9inz23X3y3XcInYa-aUmhKAl8rQhYSaKcZyJKGiFVm0qWN4MZ3LFulw-H4r6o407LbPfySTK31FWxm--wnIO-7gtDShxOX3XejkO_hof-oEJZ3oJ70_ly4rCFKJ8yvxPx2RlVEeaXR9Hc13S2_vWX22izCC3x1eIs1NGKiRtoY4lwsIHqxVVO8VnBN32-g3o9ZzZmbuUoz-bAicX9bAIsWGMMphqbXASGFPkxljEu8wZwAguLQk4sp-NkPsmeZ7voqXPzeH1Lij4LRNNWOyPC-MIqwyWzLGSK20ApRkPqwJQC2kkRBJZyHRgjw5HvGcq05kpDJKhAp3QP1eIkNvsIe5pTz2hujWEAxoRvOZOGgStuedI2kVdueKQLEnLohTGNKvpk2MAIEs9gAyOviS4-lrwsGDh-m3xUajEqLmMaAeWcw-HuHDbRZam1peGfhB38afYhWvdB7Xmd4hGqZfNXc4zW9Fs2Secn-Rl9B9so3_g
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEL8YNFEfVFAjfvbBBz_SZKwb3R6NkWBEMIKEt6UtHZLAMDD9--2NzaFRE33YU9vL0rve3S-9-xXg1LV1RfiSUcdWkqKXpNJEJiqF9oWsMsGTx2C6Dd5ser2e_5D2cc-yavfsSjLx1Hmzm22wnIG-5nNdRg1OX3ZMwELC_Md2N0dZ1px708RyarCFn11lfificzDKM8wvl6JJrKlt_usvt2AjTS3J1dwWirCkoxKsLxAOlqCYHuUZOUv5ps-3odUybmNsVvaTag4yCUk7HiIL1oCgqyY6EUGwRH5ARESyugEywYVpIycRo8FkOoyfxzvwVLvpXNdp-s4CVaxSjamvbT-U2hM85C6XXuhIyZnLDJiSSDvpO07IPOVoLdy-bWnGlfKkwkxQok7ZLhSiSaT3gFjKY5ZWXqg1RzDm26HHheYYiiuWCMtgZRseqJSEHN_CGAU5fTJuYICFZ7iBgVWGi48lL3MGjt8mH2ZaDNLDOAuQcs7gcGOHZbjMtLYw_JOw_T_NPoHVeue-ETRum3cHsGajCSQ9i4dQiKev-ghW1Fs8nE2PE3t9B2N64tw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9kiuiDuqk4P_Pggx-EdU27tI-iDsUxhansrSRZMgdbN7bq32-ua90UFcSHPuWDkrvc3Y_c_Q7g2Hd1VYSSUc9VkqKVpNJ6JiqFDoWsMcHTZjDPDd5sBu12-JD1OZ3k2e75k-S0pgFZmuKkMuqYyqzwzbW4zsJg-_k-oxazL3qYR49wvfU8Q1zOlIfT-nVqcUaYP2t-t8VnxzSLNr88kKZ-p77-7z_egLUs5CQXUx0pwoKOS7A6R0RYgmJ2xSfkJOOhPt2E-3trTgZ2ZSfN8iBDQ1pJD9mxugRNONHpFgRT57tExCTPJyBDXJgVeBLR7w7HveRlsAVP9evHyxua9V-gilVrCQ21GxqpA8EN97kMjCclZz6zIEsiHWXoeYYFytNa-B3X0YwrFUiFEaJEWbNtKMTDWO8AcVTAHK0CozVHkBa6JuBCc3TRVUeYMjj54UcqIyfHHhn9aEarjAcYYUIaHmDklOHsY8loyszx2-T9XKJRdkknEVLRWXxu9bMM57kE54Z_2mz3T7OPYPnhqh41bpt3e7DiogakpYz7UEjGr_oAltRb0puMD1PVfQcWIOvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+Stirling+heat+engine+using+an+advanced+optimization+algorithm&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Rao%2C+R+V&rft.au=More%2C+K+C&rft.au=Taler%2C+J&rft.au=Oc%C5%82o%C5%84%2C+P&rft.date=2016-11-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=41&rft.issue=11&rft.spage=1321&rft.epage=1331&rft_id=info:doi/10.1007%2Fs12046-016-0553-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-2499&client=summon