SWG: an architecture for sparse weight gradient computation
On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three phases, feedforward (FF), backpropagation (BP), and weight gradient (WG) update. WG takes about one-third of the computation in the whole tra...
Uloženo v:
| Vydáno v: | Science China. Information sciences Ročník 67; číslo 2; s. 122405 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Beijing
Science China Press
01.02.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 1674-733X, 1869-1919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three phases, feedforward (FF), backpropagation (BP), and weight gradient (WG) update. WG takes about one-third of the computation in the whole training process. Current training accelerators usually ignore the special computation property of WG and process it in a way similar to FF/BP. Besides, the extensive data sparsity existing in WG, which brings opportunities to save computation, is not well explored. Nevertheless, exploiting the optimization opportunities would meet three underutilization problems, which are caused by (1) the mismatch between WG data dimensions and hardware parallelism, (2) the full sparsity, i.e., the sparsity of feature map (Fmap), error map (Emap), and gradient, and (3) the workload imbalance resulting from irregular sparsity. In this paper, we propose a specific architecture for sparse weight gradient (SWG) computation. The architecture is designed based on hierarchical unrolling and sparsity-aware (HUSA) dataflow to exploit the optimization opportunities of the special computation property and full data sparsity. In HUSA dataflow, the data dimensions are unrolled hierarchically on the hardware architecture. A valid-data trace (VDT) mechanism is embedded in the dataflow to avoid the underutilization caused by the two-sided input sparsity. The gradient is unrolled in PE to alleviate the underutilization induced by output sparsity while maintaining the data reuse opportunities. Besides, we design an intra- and inter-column balancer (IIBLC) to dynamically tackle the workload imbalance problem resulting from the irregular sparsity. Experimental results show that with HUSA dataflow exploiting the full sparsity, SWG achieves a speedup of 12.23× over state-of-the-art gradient computation architecture, TrainWare. SWG helps to improve the energy efficiency of the state-of-the-art training accelerator LNPU from 7.56 to 10.58 TOPS/W. |
|---|---|
| AbstractList | On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three phases, feedforward (FF), backpropagation (BP), and weight gradient (WG) update. WG takes about one-third of the computation in the whole training process. Current training accelerators usually ignore the special computation property of WG and process it in a way similar to FF/BP. Besides, the extensive data sparsity existing in WG, which brings opportunities to save computation, is not well explored. Nevertheless, exploiting the optimization opportunities would meet three underutilization problems, which are caused by (1) the mismatch between WG data dimensions and hardware parallelism, (2) the full sparsity, i.e., the sparsity of feature map (Fmap), error map (Emap), and gradient, and (3) the workload imbalance resulting from irregular sparsity. In this paper, we propose a specific architecture for sparse weight gradient (SWG) computation. The architecture is designed based on hierarchical unrolling and sparsity-aware (HUSA) dataflow to exploit the optimization opportunities of the special computation property and full data sparsity. In HUSA dataflow, the data dimensions are unrolled hierarchically on the hardware architecture. A valid-data trace (VDT) mechanism is embedded in the dataflow to avoid the underutilization caused by the two-sided input sparsity. The gradient is unrolled in PE to alleviate the underutilization induced by output sparsity while maintaining the data reuse opportunities. Besides, we design an intra- and inter-column balancer (IIBLC) to dynamically tackle the workload imbalance problem resulting from the irregular sparsity. Experimental results show that with HUSA dataflow exploiting the full sparsity, SWG achieves a speedup of 12.23× over state-of-the-art gradient computation architecture, TrainWare. SWG helps to improve the energy efficiency of the state-of-the-art training accelerator LNPU from 7.56 to 10.58 TOPS/W. |
| ArticleNumber | 122405 |
| Author | Wei, Shaojun Yin, Shouyi Tu, Fengbin Li, Xiangyu Wu, Weiwei |
| Author_xml | – sequence: 1 givenname: Weiwei surname: Wu fullname: Wu, Weiwei organization: School of Integrated Circuits, Tsinghua University – sequence: 2 givenname: Fengbin surname: Tu fullname: Tu, Fengbin organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology – sequence: 3 givenname: Xiangyu surname: Li fullname: Li, Xiangyu organization: School of Integrated Circuits, Tsinghua University – sequence: 4 givenname: Shaojun surname: Wei fullname: Wei, Shaojun organization: School of Integrated Circuits, Tsinghua University – sequence: 5 givenname: Shouyi surname: Yin fullname: Yin, Shouyi email: yinsy@tsinghua.edu.cn organization: School of Integrated Circuits, Tsinghua University |
| BookMark | eNp9kE9LAzEQxYMoWGs_gLcFz9FMss0fPUnRKhQ8qOgtZLOz7ZZ2d01SxG_vlhUEQecyc3i_eTPvhBw2bYOEnAG7AMbUZQTIBaeMcyo0U9QckBFoaSgYMIf9LFVOlRBvx2QS45r1JQTjSo_I9dPr_CpzTeaCX9UJfdoFzKo2ZLFzIWL2gfVylbJlcGWNTcp8u-12yaW6bU7JUeU2ESfffUxe7m6fZ_d08Th_mN0sqBcgEzVeFkUJShTaeZZrmJbGF8Ijr9BMtSiFRoPK6ZKZXCHIikmvpSw95twpJcbkfNjbhfZ9hzHZdbsLTW9pueEAyjA97VUwqHxoYwxY2S7UWxc-LTC7j8kOMdk-JruPyZqeUb8YXw-_peDqzb8kH8jYuzRLDD83_Q19AcMDfTc |
| CitedBy_id | crossref_primary_10_1007_s11432_023_3958_4 |
| Cites_doi | 10.1145/3218603.3218625 10.1007/s11432-020-3162-4 10.1145/3065386 10.1145/3352460.3358291 10.1109/MICRO.2018.00011 10.1109/CVPR.2016.90 10.1109/MICRO.2016.7783723 10.1007/s11432-023-3823-6 10.1145/3140659.3080254 10.1109/ISSCC.2019.8662302 10.1109/CVPR.2015.7298594 10.1145/3007787.3001138 10.1109/ICCV.2017.155 10.1109/MICRO.2014.58 10.1109/CVPR.2018.00474 10.1145/3007787.3001177 10.1109/CVPR.2016.280 10.1145/3392717.3392751 10.1145/3079856.3080244 |
| ContentType | Journal Article |
| Copyright | Science China Press 2024 Copyright Springer Nature B.V. Feb 2024 |
| Copyright_xml | – notice: Science China Press 2024 – notice: Copyright Springer Nature B.V. Feb 2024 |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1007/s11432-022-3807-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1869-1919 |
| ExternalDocumentID | 10_1007_s11432_022_3807_9 |
| GroupedDBID | -SI -S~ -Y2 .VR 06D 0R~ 0VY 1N0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBE ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACZOJ ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFKRA AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYFIA AZFZN B-. BDATZ BENPR BGLVJ BGNMA BSONS CAG CAJEI CCEZO CCPQU CHBEP CJPJV COF CSCUP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 H13 HCIFZ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ K7- KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9O PF0 PHGZT PT4 Q-- QOS R89 RIG ROL RSV S16 S3B SAP SCL SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAYXX ABBRH ABRTQ ADHKG AFDZB AFFHD AFOHR AGQPQ AHPBZ ATHPR CITATION PHGZM PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c316t-9c6bbd173b8ac04815d9cb3ce2fe9583d38e9e7a8d0947e16f06c866dce42a773 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155859000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1674-733X |
| IngestDate | Fri Nov 07 23:37:31 EST 2025 Sat Nov 29 08:06:10 EST 2025 Tue Nov 18 22:27:17 EST 2025 Sat Mar 22 01:16:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | CNN training sparsity gradient computation architecture |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-9c6bbd173b8ac04815d9cb3ce2fe9583d38e9e7a8d0947e16f06c866dce42a773 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2921179085 |
| PQPubID | 2043626 |
| ParticipantIDs | proquest_journals_2921179085 crossref_primary_10_1007_s11432_022_3807_9 crossref_citationtrail_10_1007_s11432_022_3807_9 springer_journals_10_1007_s11432_022_3807_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20240200 2024-02-00 20240201 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 2 year: 2024 text: 20240200 |
| PublicationDecade | 2020 |
| PublicationPlace | Beijing |
| PublicationPlace_xml | – name: Beijing – name: Heidelberg |
| PublicationTitle | Science China. Information sciences |
| PublicationTitleAbbrev | Sci. China Inf. Sci |
| PublicationYear | 2024 |
| Publisher | Science China Press Springer Nature B.V |
| Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
| References | Z-H Zhou (3807_CR1) 2024; 67 3807_CR6 3807_CR7 3807_CR11 A Parashar (3807_CR18) 2017; 45 3807_CR8 3807_CR10 Y H Chen (3807_CR14) 2016; 44 3807_CR9 3807_CR3 3807_CR15 3807_CR4 3807_CR5 3807_CR13 3807_CR19 3807_CR17 J Albericio (3807_CR16) 2016; 44 L H Guo (3807_CR12) 2022; 65 3807_CR23 3807_CR22 3807_CR21 3807_CR20 3807_CR25 3807_CR24 A Krizhevsky (3807_CR2) 2017; 60 |
| References_xml | – ident: 3807_CR13 doi: 10.1145/3218603.3218625 – volume: 65 start-page: 229101 year: 2022 ident: 3807_CR12 publication-title: Sci China Inf Sci doi: 10.1007/s11432-020-3162-4 – volume: 60 start-page: 84 year: 2017 ident: 3807_CR2 publication-title: Commun ACM doi: 10.1145/3065386 – ident: 3807_CR22 doi: 10.1145/3352460.3358291 – ident: 3807_CR24 – ident: 3807_CR17 doi: 10.1109/MICRO.2018.00011 – ident: 3807_CR4 doi: 10.1109/CVPR.2016.90 – ident: 3807_CR8 – ident: 3807_CR15 doi: 10.1109/MICRO.2016.7783723 – volume: 67 start-page: 112102 year: 2024 ident: 3807_CR1 publication-title: Sci China Inf Sci doi: 10.1007/s11432-023-3823-6 – volume: 45 start-page: 27 year: 2017 ident: 3807_CR18 publication-title: SIGARCH Comput Archit News doi: 10.1145/3140659.3080254 – ident: 3807_CR19 – ident: 3807_CR23 doi: 10.1109/ISSCC.2019.8662302 – ident: 3807_CR3 doi: 10.1109/CVPR.2015.7298594 – volume: 44 start-page: 1 year: 2016 ident: 3807_CR16 publication-title: SIGARCH Comput Archit News doi: 10.1145/3007787.3001138 – ident: 3807_CR11 doi: 10.1109/ICCV.2017.155 – ident: 3807_CR7 doi: 10.1109/MICRO.2014.58 – ident: 3807_CR21 doi: 10.1109/CVPR.2018.00474 – volume: 44 start-page: 367 year: 2016 ident: 3807_CR14 publication-title: SIGARCH Comput Archit News doi: 10.1145/3007787.3001177 – ident: 3807_CR20 – ident: 3807_CR9 – ident: 3807_CR10 doi: 10.1109/CVPR.2016.280 – ident: 3807_CR5 – ident: 3807_CR25 doi: 10.1145/3392717.3392751 – ident: 3807_CR6 doi: 10.1145/3079856.3080244 |
| SSID | ssj0000330278 |
| Score | 2.3320282 |
| Snippet | On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122405 |
| SubjectTerms | Artificial neural networks Back propagation networks Computer architecture Computer Science Feature maps Hardware Information Systems and Communication Service Optimization Research Paper Sparsity State of the art Training Workload Workloads |
| SummonAdditionalLinks | – databaseName: Advanced Technologies & Aerospace Database dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66etCDb3F1lRw8KcFu0-ahBxFx9SDLgoqLl5LmIYJ017bq3zfJtttV0Iu9Nh1KJp35Oo9vADjENCKxoBzJMDYoMoQjIaIIWecaG8yMvXyj8C3t99lwyAdVwK2oyiprm-gNtRpJFyM_CXno2MssQjgfvyE3NcplV6sRGvNgwbEkuNENg_hpGmMJsMvK-W444soOMR7WiU3fPWexQoh8OTsLKOLfXVODN3-kSL3n6a3-953XwEqFOeHF5JCsgzmdbYDlGSbCTXB293h9CkUGZxML0AJaaC1OXmj46UOo8Dn3JWIllH4ahFfrFnjoXd1f3qBqrgKSuEtKxCVJU9WlOGVCer4YxWWKpQ6N5jHDCjPNNRVM2X8_qrvEBEQyQpTUUSgoxduglY0yvQOgTJVUsbAYK5B2qUmFsaJcJ5egFk3hNgjqLU1kRTruZl-8Jg1dstNCYrWQOC0kvA2Opo-MJ4wbfy3u1DufVB9fkTTb3gbHte6a278K2_1b2B5YCi2imZRsd0CrzN_1PliUH-VLkR_4k_cFdfLdjg priority: 102 providerName: ProQuest |
| Title | SWG: an architecture for sparse weight gradient computation |
| URI | https://link.springer.com/article/10.1007/s11432-022-3807-9 https://www.proquest.com/docview/2921179085 |
| Volume | 67 |
| WOSCitedRecordID | wos001155859000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1869-1919 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: P5Z dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1869-1919 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: K7- dateStart: 20010201 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: eissn: 1869-1919 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: BENPR dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1869-1919 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000330278 issn: 1674-733X databaseCode: RSV dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB609aAHq1WxWssePCkLaTbZh55UWgWllNZH8RI2m40IUiWp-vfdbJOmigqaQy6ZDGH2MV92Zr4B2CfMo75kAivXj7EXU4Gl9DxsnKsfEx6byxYKX7Fej49Gop_XcadFtnsRkrQ7dVnsZly7i232OXcYFotQNd6OZ_0aBsPb2cGKQ7JQnC2Bo1muISGjIpr5nZbP_qgEmV_iotbddGv_-tA1WM3RJTqZTod1WNDjOtSKzg0oX8h1WJmjIdyA4-Hd-RGSYzQfVUAGzSKz3SSpRu_2_BQ9JDY_bIKUVWjHdBNuup3rswucN1XAirTpBAtFwzBqMxJyqSxZTCRUSJR2Yy18TiLCtdBM8sj8-DHdprFDFac0UtpzJWNkCyrj57HeBqTCSEW-NADLUUY0DmVsVGVlXJIZKEUa4BSmDVTOOJ41vngKSq7kzFSBMVWQmSoQDTiYvfIypdv4TbhZjFeQr7w0cIWbsdwZJNmAw2J8ysc_Ktv5k_QuLLsG3UzTt5tQmSSveg-W1NvkMU1aUD3t9PqDFixeMmzuff--ZSfpB8sW3Iw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JSwMxFH64gXpwF6tVc9CLEpwmM1kUEXGntQgq9jZmMhkRpNW2WvxT_kaTtGNV0JsH5zrJY5jv5eVL3gawRnnIIsUl1iTKcJgxiZUKQ2w31yijIrOPTxSu8GpV1GryYgDe8lwYF1aZ20RvqNOGdnfkW0QSV73MMoS9xyfsukY572reQqOrFmXz2rFHttbu2aHFd52Q46Org1Pc6yqANS2xNpaaJUla4jQRSvtqKanUCdWGZEZGgqZUGGm4Eqk9-XBTYlnAtGAs1SYkinNq5Q7CcEgFd-uqzPHHnU5AnRfQZ98xF-ZIaS13pPpsPctNCPbh8yLgWH7dCvv89ptL1u90x5P_7R9NwUSPU6P97iKYhgFTn4HxT5UWZ2Hn8uZkG6k6-uw4QZawI2tRmy2DOv6KGN01fQhcG2nf7cKr7Rxc_8nXz8NQvVE3C4B0kuo0UpZDBtoOzRKVWVEuU01xyxZpAYIcwlj3iqq73h4Pcb8ctEM9tqjHDvVYFmDjY8pjt6LIb4OLOdJxz7i04j7MBdjMdaX_-kdhi78LW4XR06vzSlw5q5aXYIxY9tYNTy_CULv5bJZhRL-071vNFa_1CG7_WoXeAWkIO1c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90iuiD06k4nZoHn5Rg17RJo0-iTsUxBL_2VtI0EUHq6Kr--yZZ61RUEPvay1HuLr1L7u53ANuEBTQUjGPphxoHmnIsRBBg41xDTSJtHtco3GW9XtTv88tyzumwqnavUpKjngaL0pQVe4NU740b34yb97GrRI88hvkkTAW2jt4e169u3y9ZPGLTcq4djtq6Q0L6VWbzOy6ffdM44PySI3Wup1P_90cvwHwZdaLDkZkswoTKGlCvJjqgcoM3YO4DPOESHFzdne4jkaGP2QZkolxkfkP5UKFXd6-K7nNXN1Yg6Rg6XS_DTefk-ugMl8MWsCRtWmAuaZKkbUaSSEgHIpNymRCpfK14GJGURIorJqLUHAiZalPtURlRmkoV-IIxsgK17ClTq4Bkkso0FCbw8qQh1YnQhpVt7xLMhFikCV4l5liWSOR2IMZjPMZQtqKKjahiK6qYN2HnfclgBMPxG3Gr0l1c7shh7HPfot8ZG2nCbqWr8esfma39iXoLZi6PO3H3vHexDrO-CYBGFd4tqBX5s9qAaflSPAzzTWenb_QL5Oo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SWG%3A+an+architecture+for+sparse+weight+gradient+computation&rft.jtitle=Science+China.+Information+sciences&rft.au=Wu%2C+Weiwei&rft.au=Tu%2C+Fengbin&rft.au=Li%2C+Xiangyu&rft.au=Wei%2C+Shaojun&rft.date=2024-02-01&rft.pub=Science+China+Press&rft.issn=1674-733X&rft.eissn=1869-1919&rft.volume=67&rft.issue=2&rft_id=info:doi/10.1007%2Fs11432-022-3807-9&rft.externalDocID=10_1007_s11432_022_3807_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-733X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-733X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-733X&client=summon |