SWG: an architecture for sparse weight gradient computation

On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three phases, feedforward (FF), backpropagation (BP), and weight gradient (WG) update. WG takes about one-third of the computation in the whole tra...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences Vol. 67; no. 2; p. 122405
Main Authors: Wu, Weiwei, Tu, Fengbin, Li, Xiangyu, Wei, Shaojun, Yin, Shouyi
Format: Journal Article
Language:English
Published: Beijing Science China Press 01.02.2024
Springer Nature B.V
Subjects:
ISSN:1674-733X, 1869-1919
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three phases, feedforward (FF), backpropagation (BP), and weight gradient (WG) update. WG takes about one-third of the computation in the whole training process. Current training accelerators usually ignore the special computation property of WG and process it in a way similar to FF/BP. Besides, the extensive data sparsity existing in WG, which brings opportunities to save computation, is not well explored. Nevertheless, exploiting the optimization opportunities would meet three underutilization problems, which are caused by (1) the mismatch between WG data dimensions and hardware parallelism, (2) the full sparsity, i.e., the sparsity of feature map (Fmap), error map (Emap), and gradient, and (3) the workload imbalance resulting from irregular sparsity. In this paper, we propose a specific architecture for sparse weight gradient (SWG) computation. The architecture is designed based on hierarchical unrolling and sparsity-aware (HUSA) dataflow to exploit the optimization opportunities of the special computation property and full data sparsity. In HUSA dataflow, the data dimensions are unrolled hierarchically on the hardware architecture. A valid-data trace (VDT) mechanism is embedded in the dataflow to avoid the underutilization caused by the two-sided input sparsity. The gradient is unrolled in PE to alleviate the underutilization induced by output sparsity while maintaining the data reuse opportunities. Besides, we design an intra- and inter-column balancer (IIBLC) to dynamically tackle the workload imbalance problem resulting from the irregular sparsity. Experimental results show that with HUSA dataflow exploiting the full sparsity, SWG achieves a speedup of 12.23× over state-of-the-art gradient computation architecture, TrainWare. SWG helps to improve the energy efficiency of the state-of-the-art training accelerator LNPU from 7.56 to 10.58 TOPS/W.
AbstractList On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three phases, feedforward (FF), backpropagation (BP), and weight gradient (WG) update. WG takes about one-third of the computation in the whole training process. Current training accelerators usually ignore the special computation property of WG and process it in a way similar to FF/BP. Besides, the extensive data sparsity existing in WG, which brings opportunities to save computation, is not well explored. Nevertheless, exploiting the optimization opportunities would meet three underutilization problems, which are caused by (1) the mismatch between WG data dimensions and hardware parallelism, (2) the full sparsity, i.e., the sparsity of feature map (Fmap), error map (Emap), and gradient, and (3) the workload imbalance resulting from irregular sparsity. In this paper, we propose a specific architecture for sparse weight gradient (SWG) computation. The architecture is designed based on hierarchical unrolling and sparsity-aware (HUSA) dataflow to exploit the optimization opportunities of the special computation property and full data sparsity. In HUSA dataflow, the data dimensions are unrolled hierarchically on the hardware architecture. A valid-data trace (VDT) mechanism is embedded in the dataflow to avoid the underutilization caused by the two-sided input sparsity. The gradient is unrolled in PE to alleviate the underutilization induced by output sparsity while maintaining the data reuse opportunities. Besides, we design an intra- and inter-column balancer (IIBLC) to dynamically tackle the workload imbalance problem resulting from the irregular sparsity. Experimental results show that with HUSA dataflow exploiting the full sparsity, SWG achieves a speedup of 12.23× over state-of-the-art gradient computation architecture, TrainWare. SWG helps to improve the energy efficiency of the state-of-the-art training accelerator LNPU from 7.56 to 10.58 TOPS/W.
ArticleNumber 122405
Author Wei, Shaojun
Yin, Shouyi
Tu, Fengbin
Li, Xiangyu
Wu, Weiwei
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Wu
  fullname: Wu, Weiwei
  organization: School of Integrated Circuits, Tsinghua University
– sequence: 2
  givenname: Fengbin
  surname: Tu
  fullname: Tu, Fengbin
  organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology
– sequence: 3
  givenname: Xiangyu
  surname: Li
  fullname: Li, Xiangyu
  organization: School of Integrated Circuits, Tsinghua University
– sequence: 4
  givenname: Shaojun
  surname: Wei
  fullname: Wei, Shaojun
  organization: School of Integrated Circuits, Tsinghua University
– sequence: 5
  givenname: Shouyi
  surname: Yin
  fullname: Yin, Shouyi
  email: yinsy@tsinghua.edu.cn
  organization: School of Integrated Circuits, Tsinghua University
BookMark eNp9kE9LAzEQxYMoWGs_gLcFz9FMss0fPUnRKhQ8qOgtZLOz7ZZ2d01SxG_vlhUEQecyc3i_eTPvhBw2bYOEnAG7AMbUZQTIBaeMcyo0U9QckBFoaSgYMIf9LFVOlRBvx2QS45r1JQTjSo_I9dPr_CpzTeaCX9UJfdoFzKo2ZLFzIWL2gfVylbJlcGWNTcp8u-12yaW6bU7JUeU2ESfffUxe7m6fZ_d08Th_mN0sqBcgEzVeFkUJShTaeZZrmJbGF8Ijr9BMtSiFRoPK6ZKZXCHIikmvpSw95twpJcbkfNjbhfZ9hzHZdbsLTW9pueEAyjA97VUwqHxoYwxY2S7UWxc-LTC7j8kOMdk-JruPyZqeUb8YXw-_peDqzb8kH8jYuzRLDD83_Q19AcMDfTc
CitedBy_id crossref_primary_10_1007_s11432_023_3958_4
Cites_doi 10.1145/3218603.3218625
10.1007/s11432-020-3162-4
10.1145/3065386
10.1145/3352460.3358291
10.1109/MICRO.2018.00011
10.1109/CVPR.2016.90
10.1109/MICRO.2016.7783723
10.1007/s11432-023-3823-6
10.1145/3140659.3080254
10.1109/ISSCC.2019.8662302
10.1109/CVPR.2015.7298594
10.1145/3007787.3001138
10.1109/ICCV.2017.155
10.1109/MICRO.2014.58
10.1109/CVPR.2018.00474
10.1145/3007787.3001177
10.1109/CVPR.2016.280
10.1145/3392717.3392751
10.1145/3079856.3080244
ContentType Journal Article
Copyright Science China Press 2024
Copyright Springer Nature B.V. Feb 2024
Copyright_xml – notice: Science China Press 2024
– notice: Copyright Springer Nature B.V. Feb 2024
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s11432-022-3807-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1869-1919
ExternalDocumentID 10_1007_s11432_022_3807_9
GroupedDBID -SI
-S~
-Y2
.VR
06D
0R~
0VY
1N0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
CJPJV
COF
CSCUP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HCIFZ
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
K7-
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9O
PF0
PHGZT
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAYXX
ABBRH
ABRTQ
ADHKG
AFDZB
AFFHD
AFOHR
AGQPQ
AHPBZ
ATHPR
CITATION
PHGZM
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-9c6bbd173b8ac04815d9cb3ce2fe9583d38e9e7a8d0947e16f06c866dce42a773
IEDL.DBID P5Z
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155859000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1674-733X
IngestDate Fri Nov 07 23:37:31 EST 2025
Sat Nov 29 08:06:10 EST 2025
Tue Nov 18 22:27:17 EST 2025
Sat Mar 22 01:16:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords CNN
training
sparsity
gradient computation
architecture
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9c6bbd173b8ac04815d9cb3ce2fe9583d38e9e7a8d0947e16f06c866dce42a773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2921179085
PQPubID 2043626
ParticipantIDs proquest_journals_2921179085
crossref_primary_10_1007_s11432_022_3807_9
crossref_citationtrail_10_1007_s11432_022_3807_9
springer_journals_10_1007_s11432_022_3807_9
PublicationCentury 2000
PublicationDate 20240200
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 2
  year: 2024
  text: 20240200
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Information sciences
PublicationTitleAbbrev Sci. China Inf. Sci
PublicationYear 2024
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Z-H Zhou (3807_CR1) 2024; 67
3807_CR6
3807_CR7
3807_CR11
A Parashar (3807_CR18) 2017; 45
3807_CR8
3807_CR10
Y H Chen (3807_CR14) 2016; 44
3807_CR9
3807_CR3
3807_CR15
3807_CR4
3807_CR5
3807_CR13
3807_CR19
3807_CR17
J Albericio (3807_CR16) 2016; 44
L H Guo (3807_CR12) 2022; 65
3807_CR23
3807_CR22
3807_CR21
3807_CR20
3807_CR25
3807_CR24
A Krizhevsky (3807_CR2) 2017; 60
References_xml – ident: 3807_CR13
  doi: 10.1145/3218603.3218625
– volume: 65
  start-page: 229101
  year: 2022
  ident: 3807_CR12
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-020-3162-4
– volume: 60
  start-page: 84
  year: 2017
  ident: 3807_CR2
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 3807_CR22
  doi: 10.1145/3352460.3358291
– ident: 3807_CR24
– ident: 3807_CR17
  doi: 10.1109/MICRO.2018.00011
– ident: 3807_CR4
  doi: 10.1109/CVPR.2016.90
– ident: 3807_CR8
– ident: 3807_CR15
  doi: 10.1109/MICRO.2016.7783723
– volume: 67
  start-page: 112102
  year: 2024
  ident: 3807_CR1
  publication-title: Sci China Inf Sci
  doi: 10.1007/s11432-023-3823-6
– volume: 45
  start-page: 27
  year: 2017
  ident: 3807_CR18
  publication-title: SIGARCH Comput Archit News
  doi: 10.1145/3140659.3080254
– ident: 3807_CR19
– ident: 3807_CR23
  doi: 10.1109/ISSCC.2019.8662302
– ident: 3807_CR3
  doi: 10.1109/CVPR.2015.7298594
– volume: 44
  start-page: 1
  year: 2016
  ident: 3807_CR16
  publication-title: SIGARCH Comput Archit News
  doi: 10.1145/3007787.3001138
– ident: 3807_CR11
  doi: 10.1109/ICCV.2017.155
– ident: 3807_CR7
  doi: 10.1109/MICRO.2014.58
– ident: 3807_CR21
  doi: 10.1109/CVPR.2018.00474
– volume: 44
  start-page: 367
  year: 2016
  ident: 3807_CR14
  publication-title: SIGARCH Comput Archit News
  doi: 10.1145/3007787.3001177
– ident: 3807_CR20
– ident: 3807_CR9
– ident: 3807_CR10
  doi: 10.1109/CVPR.2016.280
– ident: 3807_CR5
– ident: 3807_CR25
  doi: 10.1145/3392717.3392751
– ident: 3807_CR6
  doi: 10.1145/3079856.3080244
SSID ssj0000330278
Score 2.3321211
Snippet On-device training for deep neural networks (DNN) has become a trend due to various user preferences and scenarios. The DNN training process consists of three...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122405
SubjectTerms Artificial neural networks
Back propagation networks
Computer architecture
Computer Science
Feature maps
Hardware
Information Systems and Communication Service
Optimization
Research Paper
Sparsity
State of the art
Training
Workload
Workloads
SummonAdditionalLinks – databaseName: Springer Nature Consortium list (Orbis Cascade Alliance)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgcIADgwFiMFAOnECR2qRNEzghxOA0IcZjtyqvISRUUFfg75NmLR0IkODc1IrsJHZi-_sA9nkgTRxahk2gNY5MqLAiKsAmllQKEXFGjSebSAYDPhqJy6qPe1JXu9cpSX9SN81uzrUT7KvPeZBgMQ8Lztvxkq_hanj78bAS0DIV51vgWFlrSOmozmZ-J-WzP2qCzC95Ue9u-u1_TXQVVqroEp1Ml8MazNmsA-2auQFVG7kDyzMwhOtwPLw7P0IyQ7NZBeSiWeSOm3xi0Zt_P0X3ua8PK5D2Ar1NN-Cmf3Z9eoErUgWsacgKLDRTyoQJVVxqDxZjhFZUWzK2IubUUG6FTSQ37uKX2JCNA6Y5Y0bbiMgkoZvQyp4yuwWImUSOA6mtu-dGikgpImJ5zImWRsSR6kJQqzbVFeJ4SXzxmDZYyaWqUqeqtFRVKrpw8PHL8xRu47fBvdpeabXzJikRpES5c5FkFw5r-zSffxS2_afRO7BEXHQzLd_uQavIX-wuLOrX4mGS7_kF-Q4idNkj
  priority: 102
  providerName: Springer Nature
Title SWG: an architecture for sparse weight gradient computation
URI https://link.springer.com/article/10.1007/s11432-022-3807-9
https://www.proquest.com/docview/2921179085
Volume 67
WOSCitedRecordID wos001155859000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: P5Z
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: K7-
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: BENPR
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1869-1919
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330278
  issn: 1674-733X
  databaseCode: RSV
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHeDAjihL5QMnkEViJ17ggACxSEhVxVpxibwVIaEW2gK_j-0mFJDgwiWXJFY044yfZ8bvAWyJRNk8dQzbxBic2VRjTXSCba6okjITjNooNsEbDdFqyWaZcOuXbZVVTIyB2nZNyJHvEkkCe5lHCAfPLzioRoXqaimhMQ6TgSUhSDc08_vPHEtCQ1UunoZjoe2Q0lZV2Iyn5zxWIDi2s4uEY_l9aRrhzR8l0rjynM7995vnYbbEnOhwOEkWYMx1FmHmCxPhEuxf3Z3tIdVBXwsLyANa5CNOr-_Qe0yhoodebBEbIBPVIKJbl-Hm9OT6-ByXugrY0JQNsDRMa5tyqoUykS_GSqOpcaTtZC6opcJJx5Wwfu_HXcraCTOCMWtcRhTndAUmOt2OWwXELFftRBnnt7qZJkrJjDiRC2KUlXmma5BUJi1MSToetC-eihFdcvBC4b1QBC8Usgbbn688Dxk3_np4o7J8Uf58_WJk9hrsVL4b3f51sLW_B1uHaeIRzbBlewMmBr1XtwlT5m3w2O_VYfLopNG8rMP4Bcf1OA_99fLq9gNY3uEV
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bLyRBFD6xSJYHrCXGZdXDeiEV3VXddSEiwrpkmEiQnbdWtxGJDGYG8af8RlU10wYJbx48d_dJpb9Tp75T5wbwVyTK5qlj2CbG4MymGmuiE2xzRZWUmWDUxmETvFYT9bo8HoCnshYmpFWWNjEaanttwh35KpEkdC_zDGHz5haHqVEhulqO0OiqRdU9PniXrb1xsOPxXSJk99_p9j7uTRXAhqasg6VhWtuUUy2Uid1SrDSaGkcaTuaCWiqcdFwJ6z0f7lLWSJgRjFnjMqI4p17uDxjKqOBhX1U5frnTSWiIAsbqOxbSHCmtl4HUWK3nuQnBMX1eJBzLt0dhn9--C8nGk253_Lv9owkY63FqtNXdBL9gwDUnYfRVp8XfsH7yf28NqSZ6HThBnrAjb1FbbYce4hUxumjFFLgOMnHaRVTbKTj7ktVPw2DzuulmADHLVSNRxnlXPtNEKZkRJ3JBjLIyz3QFkhLCwvSaqofZHldFvx10QL3wqBcB9UJWYPnlk5tuR5HPXp4vkS56xqVd9GGuwEqpK_3HHwqb_VzYIvzcPz06LA4PatU5GCGevXXT0-dhsNO6cwswbO47l-3Wn6j1CM6_WoWeAQmOO1g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwsSquzxw8KWHbpE0TPYm6Ksoi-NpbyasiSJXdqn_fJtu6KiqI56ZDmUw6M5lvvgHY4oE0cWgZNoHWODKhwoqoAJtYUilExBk1fthE0unwbldcVHNO-zXavS5JDnoaHEtTXrSeTNYaNr6Vbp5gj0TnQYLFKIxHDkfv0vXLm_dLloC6spxvh2MOd0hpt65sfifls28aBpxfaqTe9bRn__3RczBTRZ1of2Am8zBi8wbM1hMdUHXAGzD9gZ5wAfYub493kczRx2oDKqNcVP6Gen2LXv29KrrredxYgbQX6Pd6Ea7bR1cHJ7gatoA1DVmBhWZKmTChikvtSWSM0IpqSzIrYk4N5VbYRHJTJoSJDVkWMM0ZM9pGRCYJXYKx_DG3y4CYSWQWSG3L_DdSREoREctjTrQ0Io5UE4JazamumMjdQIyHdMih7FSVlqpKnapS0YTt91eeBjQcvy1eq_curU5kPyWCOPa70kaasFPv1fDxj8JW_rR6EyYvDtvp-WnnbBWmSBkADRDeazBW9J7tOkzol-K-39vwdvoGaJ_k6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SWG%3A+an+architecture+for+sparse+weight+gradient+computation&rft.jtitle=Science+China.+Information+sciences&rft.au=Wu%2C+Weiwei&rft.au=Tu%2C+Fengbin&rft.au=Li%2C+Xiangyu&rft.au=Wei%2C+Shaojun&rft.date=2024-02-01&rft.issn=1674-733X&rft.eissn=1869-1919&rft.volume=67&rft.issue=2&rft_id=info:doi/10.1007%2Fs11432-022-3807-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11432_022_3807_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-733X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-733X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-733X&client=summon