Splitting extrapolation algorithms for solving the boundary integral equations of anisotropic Darcy’s equation on polygons by mechanical quadrature methods

In this paper we study the stability and convergence of the solution for the first kind integral equations of the anisotropic Darcy’s equations by the mechanical quadrature methods on closed polygonal boundaries in ℝ 2 . Using the collectively compact theory, we construct numerical solutions which c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical algorithms Jg. 62; H. 1; S. 27 - 43
Hauptverfasser: Luo, Xin, Huang, Jin, Wang, Chuan-Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.01.2013
Springer Nature B.V
Schlagworte:
ISSN:1017-1398, 1572-9265
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the stability and convergence of the solution for the first kind integral equations of the anisotropic Darcy’s equations by the mechanical quadrature methods on closed polygonal boundaries in ℝ 2 . Using the collectively compact theory, we construct numerical solutions which converge with the order , where is the mesh size. In addition, An a posteriori asymptotic error representation is derived by splitting extrapolation methods in order to construct self-adaptive algorithms, and the convergence rate can be achieved after using the splitting extrapolation methods once. Finally, the numerical examples show the efficiency of our methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1017-1398
1572-9265
DOI:10.1007/s11075-012-9563-0