Enhancing flood susceptibility mapping in Sana’a, Yemen with random forest and eXtreme gradient boosting algorithms
Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to improve Sana’a City, Yemen’s flood susceptibility mapping by utilizing two cutting-edge machine learning RF and XGBoost. The RF and XGBoost algo...
Uloženo v:
| Vydáno v: | Geocarto international Ročník 40; číslo 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis Group
31.12.2025
|
| Témata: | |
| ISSN: | 1010-6049, 1752-0762 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to improve Sana’a City, Yemen’s flood susceptibility mapping by utilizing two cutting-edge machine learning RF and XGBoost. The RF and XGBoost algorithms were selected for their robust performance in handling complex datasets and producing accurate predictions. The study’s methodology involved optimizing the algorithms through grid search and cross-validation techniques, followed by validation using historical flood data. Both models demonstrated high accuracy in predicting flood-prone areas, with RF achieving an accuracy of 92% and XGBoost slightly outperforming it with an accuracy of 94%. Sana’a City’s identified flood-prone areas were precisely highlighted on the flood susceptibility maps, which offered insightful information about the spatial distribution of flood hazards. The results offer practical implications for urban planners and policymakers, facilitating targeted interventions to mitigate flood risks and improve urban resilience. |
|---|---|
| AbstractList | Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to improve Sana’a City, Yemen’s flood susceptibility mapping by utilizing two cutting-edge machine learning RF and XGBoost. The RF and XGBoost algorithms were selected for their robust performance in handling complex datasets and producing accurate predictions. The study’s methodology involved optimizing the algorithms through grid search and cross-validation techniques, followed by validation using historical flood data. Both models demonstrated high accuracy in predicting flood-prone areas, with RF achieving an accuracy of 92% and XGBoost slightly outperforming it with an accuracy of 94%. Sana’a City’s identified flood-prone areas were precisely highlighted on the flood susceptibility maps, which offered insightful information about the spatial distribution of flood hazards. The results offer practical implications for urban planners and policymakers, facilitating targeted interventions to mitigate flood risks and improve urban resilience. |
| Author | Al-Masnay, Yousef A. Alwathaf, Yahia Al-Aizari, Ali R. Al-Areeq, Ahmed M. Al-Areeq, Nabil M. |
| Author_xml | – sequence: 1 givenname: Yahia surname: Alwathaf fullname: Alwathaf, Yahia – sequence: 2 givenname: Ahmed M. surname: Al-Areeq fullname: Al-Areeq, Ahmed M. – sequence: 3 givenname: Yousef A. surname: Al-Masnay fullname: Al-Masnay, Yousef A. – sequence: 4 givenname: Ali R. surname: Al-Aizari fullname: Al-Aizari, Ali R. – sequence: 5 givenname: Nabil M. surname: Al-Areeq fullname: Al-Areeq, Nabil M. |
| BookMark | eNo9kU1uHCEQhVHkSP7LESxxgPSkoKHpXkaW44w0khfOIl6hgoYZrG4YAVbkXa7h6-Uk6Y4dr-rnvfpq8c7JSUzREXLFYMOghy8MGHQghg0HLjdc9FyB-kDOmJK8AdXxk6VfPM1qOiXnpTwCtKrv2jPydBMPGG2Ie-qnlEZanop1xxpMmEJ9pjMej6sYIr3HiH9-v-Bn-uBmF-mvUA80YxzTTH3KrlS6DNT9rHnR6T7jGFys1KRU6srAaZ_ycjSXS_LR41Tcp7d6Qe6_3fy4_t7s7m631193jW1ZV5sB0dhRuH6QXKJybHBqgN4Y1VqOIzgpvBcSXO-84YNQRiom_GglcD-0F2T7Sh0TPupjDjPmZ50w6H-LlPcacw12crobJPOisx4sF7zjy0dQhpletkb2rV9Y8pVlcyolO__OY6DXFPT_FPSagn5Lof0LPft-0A |
| Cites_doi | 10.1023/A:1010933404324/METRICS 10.1080/19475705.2024.2360000 10.1023/B:NHAZ.0000007201.80743.FC/METRICS 10.1016/j.gsf.2022.101425 10.5194/nhess-10-793-2010 10.1007/S11269-020-02603-7/FIGURES/5 10.1007/S12145-021-00653-Y/FIGURES/10 10.1016/J.SCITOTENV.2019.135161 10.1007/S11069-019-03615-2/FIGURES/7 10.19026/RJASET.6.3920 10.1002/hyp.5852 10.1080/1573062X.2023.2256722 10.1080/02626667.2011.555836 10.2166/nh.2019.090 10.1016/J.SCITOTENV.2019.135868 10.3390/w10111536 10.1038/s41597-019-0155-x 10.1007/S10584-010-9979-2/METRICS 10.1016/J.SCITOTENV.2018.12.217 10.1596/978-0-8213-8866-2 10.1080/10106049.2023.2243884 10.1016/j.rineng.2024.102123 10.3390/ijgi9100569 10.1038/s41598-020-69703-7 10.1007/S00477-015-1021-9/FIGURES/9 10.1016/j.jclepro.2020.122757 10.1016/j.jhydrol.2016.03.037 10.1080/10106049.2021.1920636 10.1016/J.SCITOTENV.2018.06.197 10.1080/02626667.2020.1842412 10.1111/J.1467-7717.2007.01020.X 10.1007/S11269-021-02944-X/TABLES/7 10.1007/S11356-021-13255-4/FIGURES/8 10.1016/J.SCITOTENV.2018.01.266 10.1016/J.SCITOTENV.2020.143785 10.1080/19475705.2018.1506509 10.1016/j.gsf.2020.10.007 10.1016/j.jhydrol.2018.12.002 10.1007/S41207-020-00166-Y/FIGURES/7 10.1016/j.psep.2020.08.006 10.1016/j.gsf.2020.09.006 10.1016/j.ijdrr.2018.03.017 10.1201/9780367816377 10.1371/JOURNAL.PONE.0229153 10.1007/s10668-021-01377-1 10.3390/rs12203423 10.1061/(ASCE)HE.1943-5584.0000317/ASSET/7270FB50-68D0-4D2F-A88D-103C9F69F3E6/ASSETS/IMAGES/LARGE/18.JPG 10.1080/02626667.2013.857411 10.1007/S11069-016-2357-2/TABLES/6 10.3390/su11195426 10.1016/j.catena.2011.01.014 10.1016/j.jhydrol.2014.03.008 10.1016/j.wse.2020.06.006 10.5194/nhess-14-1921-2014 10.2166/wcc.2022.257 10.1007/S40808-019-00593-Z/TABLES/6 10.1016/j.jhydrol.2021.126382 10.3390/rs12020266 10.1111/RISA.12597 10.1016/j.pce.2022.103198 10.1016/j.jhydrol.2020.125615 10.2166/wcc.2021.051 10.1016/j.jhydrol.2017.04.048 10.1080/10106049.2015.1041559 10.1080/19475705.2025.2451737 10.1080/02626667909491834 10.1016/j.jhydrol.2021.126454 10.1016/J.SCITOTENV.2015.02.027 10.1007/978-94-007-5666-3_11/TABLES/3 10.3390/W13182476/S1 10.1016/J.JENVMAN.2019.06.102 10.1016/J.SCITOTENV.2019.01.021 10.1016/j.ijdrr.2019.101211 10.2166/wp.2004.0004 10.1016/j.jhydrol.2014.05.044 10.1016/j.earscirev.2020.103225 10.1007/s12517-009-0075-8 10.1016/j.catena.2018.12.011 10.1016/j.jhydrol.2020.125712 10.1016/J.SCITOTENV.2019.134979 10.1016/j.jhydrol.2024.130692 10.1016/j.jhydrol.2020.125552 10.1007/S13369-014-1130-7/METRICS 10.1016/j.jher.2021.10.002 10.1016/J.JENVMAN.2018.03.089 10.1007/S11069-022-05357-0/METRICS 10.3390/URBANSCI1010007 10.1016/j.jhydrol.2024.130846 10.2495/WRM050111 10.1016/J.SCITOTENV.2019.134514 10.1016/J.SCITOTENV.2018.12.184 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1080/10106049.2025.2482707 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics |
| EISSN | 1752-0762 |
| ExternalDocumentID | oai_doaj_org_article_6951f46cf0c2426289507b1b853b583f 10_1080_10106049_2025_2482707 |
| GroupedDBID | .7F .QJ 0BK 0YH 30N 4.4 5GY 5VS AAENE AAHBH AAJMT AAYXX ABCCY ABFIM ABHAV ABPAQ ABPEM ABTAI ABXYU ACGFS ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG CE4 CITATION CS3 DKSSO EBS E~A E~B F5P GROUPED_DOAJ GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P S-T SJN SNACF TDBHL TFL TFT TFW TNC TQWBC TTHFI TUROJ TWF UPT UT5 UU3 ~02 ~S~ |
| ID | FETCH-LOGICAL-c316t-9aabcd4e89525a7e19e7908bb73c2ad0e54ff450e8efb2947b5714fdc502f93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001455438600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1010-6049 |
| IngestDate | Fri Oct 03 12:44:17 EDT 2025 Sat Nov 29 08:07:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-9aabcd4e89525a7e19e7908bb73c2ad0e54ff450e8efb2947b5714fdc502f93 |
| OpenAccessLink | https://doaj.org/article/6951f46cf0c2426289507b1b853b583f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6951f46cf0c2426289507b1b853b583f crossref_primary_10_1080_10106049_2025_2482707 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-31 |
| PublicationDateYYYYMMDD | 2025-12-31 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | Geocarto international |
| PublicationYear | 2025 |
| Publisher | Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis Group |
| References | e_1_3_4_3_1 e_1_3_4_61_1 e_1_3_4_84_1 Rouse JW (e_1_3_4_74_1) 1974 e_1_3_4_42_1 e_1_3_4_80_1 e_1_3_4_7_1 e_1_3_4_46_1 e_1_3_4_69_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_88_1 Cronshey R. (e_1_3_4_31_1) 1986 e_1_3_4_72_1 e_1_3_4_95_1 e_1_3_4_53_1 e_1_3_4_91_1 e_1_3_4_30_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_76_1 e_1_3_4_99_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_57_1 e_1_3_4_19_1 e_1_3_4_2_1 e_1_3_4_85_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_81_1 e_1_3_4_24_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_66_1 e_1_3_4_47_1 e_1_3_4_89_1 Chen T (e_1_3_4_26_1) 2016 e_1_3_4_101_1 e_1_3_4_73_1 e_1_3_4_96_1 e_1_3_4_50_1 e_1_3_4_92_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_77_1 e_1_3_4_63_1 e_1_3_4_86_1 e_1_3_4_9_1 e_1_3_4_40_1 e_1_3_4_82_1 e_1_3_4_5_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_67_1 e_1_3_4_29_1 Central Statistical Organization (CSO) (e_1_3_4_23_1) 2005 e_1_3_4_100_1 e_1_3_4_97_1 e_1_3_4_51_1 e_1_3_4_70_1 e_1_3_4_93_1 Pradhan B. (e_1_3_4_68_1) 2009; 9 e_1_3_4_13_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_78_1 e_1_3_4_36_1 e_1_3_4_4_1 e_1_3_4_83_1 e_1_3_4_64_1 e_1_3_4_8_1 e_1_3_4_41_1 e_1_3_4_60_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_49_1 e_1_3_4_87_1 Moore TA (e_1_3_4_62_1) 1989 e_1_3_4_94_1 e_1_3_4_75_1 e_1_3_4_52_1 e_1_3_4_90_1 e_1_3_4_71_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_98_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_79_1 e_1_3_4_18_1 |
| References_xml | – ident: e_1_3_4_21_1 doi: 10.1023/A:1010933404324/METRICS – ident: e_1_3_4_77_1 doi: 10.1080/19475705.2024.2360000 – ident: e_1_3_4_66_1 – ident: e_1_3_4_73_1 doi: 10.1023/B:NHAZ.0000007201.80743.FC/METRICS – ident: e_1_3_4_88_1 doi: 10.1016/j.gsf.2022.101425 – ident: e_1_3_4_90_1 doi: 10.5194/nhess-10-793-2010 – ident: e_1_3_4_95_1 doi: 10.1007/S11269-020-02603-7/FIGURES/5 – ident: e_1_3_4_3_1 doi: 10.1007/S12145-021-00653-Y/FIGURES/10 – ident: e_1_3_4_40_1 doi: 10.1016/J.SCITOTENV.2019.135161 – ident: e_1_3_4_53_1 doi: 10.1007/S11069-019-03615-2/FIGURES/7 – volume-title: Urban hydrology for small watersheds (No. 55) year: 1986 ident: e_1_3_4_31_1 – ident: e_1_3_4_38_1 doi: 10.19026/RJASET.6.3920 – ident: e_1_3_4_78_1 doi: 10.1002/hyp.5852 – volume: 9 issue: 2 year: 2009 ident: e_1_3_4_68_1 article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing publication-title: J Spatial Hydrol – ident: e_1_3_4_11_1 doi: 10.1080/1573062X.2023.2256722 – ident: e_1_3_4_51_1 doi: 10.1080/02626667.2011.555836 – ident: e_1_3_4_33_1 doi: 10.2166/nh.2019.090 – ident: e_1_3_4_92_1 doi: 10.1016/J.SCITOTENV.2019.135868 – ident: e_1_3_4_63_1 doi: 10.3390/w10111536 – ident: e_1_3_4_43_1 doi: 10.1038/s41597-019-0155-x – ident: e_1_3_4_72_1 doi: 10.1007/S10584-010-9979-2/METRICS – ident: e_1_3_4_99_1 doi: 10.1016/J.SCITOTENV.2018.12.217 – volume-title: Proceedings of the 3rd ERTS Symposium year: 1974 ident: e_1_3_4_74_1 – ident: e_1_3_4_45_1 doi: 10.1596/978-0-8213-8866-2 – ident: e_1_3_4_7_1 doi: 10.1080/10106049.2023.2243884 – ident: e_1_3_4_35_1 doi: 10.1016/j.rineng.2024.102123 – ident: e_1_3_4_69_1 doi: 10.3390/ijgi9100569 – ident: e_1_3_4_70_1 doi: 10.1038/s41598-020-69703-7 – ident: e_1_3_4_87_1 doi: 10.1007/S00477-015-1021-9/FIGURES/9 – ident: e_1_3_4_75_1 doi: 10.1016/j.jclepro.2020.122757 – ident: e_1_3_4_96_1 doi: 10.1016/j.jhydrol.2016.03.037 – ident: e_1_3_4_2_1 doi: 10.1080/10106049.2021.1920636 – ident: e_1_3_4_41_1 doi: 10.1016/J.SCITOTENV.2018.06.197 – ident: e_1_3_4_30_1 doi: 10.1080/02626667.2020.1842412 – ident: e_1_3_4_14_1 doi: 10.1111/J.1467-7717.2007.01020.X – ident: e_1_3_4_24_1 doi: 10.1007/S11269-021-02944-X/TABLES/7 – ident: e_1_3_4_10_1 doi: 10.1007/S11356-021-13255-4/FIGURES/8 – ident: e_1_3_4_49_1 doi: 10.1016/J.SCITOTENV.2018.01.266 – ident: e_1_3_4_50_1 doi: 10.1016/J.SCITOTENV.2020.143785 – ident: e_1_3_4_80_1 doi: 10.1080/19475705.2018.1506509 – ident: e_1_3_4_83_1 doi: 10.1016/j.gsf.2020.10.007 – ident: e_1_3_4_32_1 doi: 10.1016/j.jhydrol.2018.12.002 – ident: e_1_3_4_76_1 doi: 10.1007/S41207-020-00166-Y/FIGURES/7 – ident: e_1_3_4_101_1 doi: 10.1016/j.psep.2020.08.006 – ident: e_1_3_4_42_1 doi: 10.1016/j.gsf.2020.09.006 – ident: e_1_3_4_84_1 doi: 10.1016/j.ijdrr.2018.03.017 – ident: e_1_3_4_20_1 doi: 10.1201/9780367816377 – ident: e_1_3_4_89_1 doi: 10.1371/JOURNAL.PONE.0229153 – ident: e_1_3_4_56_1 doi: 10.1007/s10668-021-01377-1 – ident: e_1_3_4_13_1 doi: 10.3390/rs12203423 – volume-title: Expanatory notes to the geologic map of the Makkah Quadrangle, Sheet 21D, Kingdom of Saudi Arabia year: 1989 ident: e_1_3_4_62_1 – ident: e_1_3_4_46_1 doi: 10.1061/(ASCE)HE.1943-5584.0000317/ASSET/7270FB50-68D0-4D2F-A88D-103C9F69F3E6/ASSETS/IMAGES/LARGE/18.JPG – ident: e_1_3_4_52_1 doi: 10.1080/02626667.2013.857411 – ident: e_1_3_4_47_1 doi: 10.1007/S11069-016-2357-2/TABLES/6 – ident: e_1_3_4_58_1 – ident: e_1_3_4_44_1 doi: 10.3390/su11195426 – ident: e_1_3_4_94_1 doi: 10.1016/j.catena.2011.01.014 – ident: e_1_3_4_86_1 doi: 10.1016/j.jhydrol.2014.03.008 – ident: e_1_3_4_93_1 doi: 10.1016/j.wse.2020.06.006 – ident: e_1_3_4_60_1 doi: 10.5194/nhess-14-1921-2014 – ident: e_1_3_4_64_1 doi: 10.2166/wcc.2022.257 – ident: e_1_3_4_9_1 doi: 10.1007/S40808-019-00593-Z/TABLES/6 – ident: e_1_3_4_57_1 doi: 10.1016/j.jhydrol.2021.126382 – ident: e_1_3_4_82_1 doi: 10.3390/rs12020266 – ident: e_1_3_4_65_1 doi: 10.1111/RISA.12597 – ident: e_1_3_4_39_1 doi: 10.1016/j.pce.2022.103198 – ident: e_1_3_4_67_1 doi: 10.1016/j.jhydrol.2020.125615 – ident: e_1_3_4_54_1 doi: 10.2166/wcc.2021.051 – volume-title: Statistical yearbook year: 2005 ident: e_1_3_4_23_1 – ident: e_1_3_4_36_1 doi: 10.1016/j.jhydrol.2017.04.048 – ident: e_1_3_4_71_1 doi: 10.1080/10106049.2015.1041559 – ident: e_1_3_4_5_1 doi: 10.1080/19475705.2025.2451737 – ident: e_1_3_4_19_1 doi: 10.1080/02626667909491834 – ident: e_1_3_4_15_1 doi: 10.1016/j.jhydrol.2021.126454 – ident: e_1_3_4_28_1 doi: 10.1016/J.SCITOTENV.2015.02.027 – ident: e_1_3_4_25_1 doi: 10.1007/978-94-007-5666-3_11/TABLES/3 – ident: e_1_3_4_79_1 doi: 10.3390/W13182476/S1 – ident: e_1_3_4_91_1 doi: 10.1016/J.JENVMAN.2019.06.102 – ident: e_1_3_4_12_1 doi: 10.1016/J.SCITOTENV.2019.01.021 – ident: e_1_3_4_61_1 doi: 10.1016/j.ijdrr.2019.101211 – ident: e_1_3_4_34_1 doi: 10.2166/wp.2004.0004 – ident: e_1_3_4_98_1 doi: 10.1016/j.jhydrol.2014.05.044 – ident: e_1_3_4_59_1 doi: 10.1016/j.earscirev.2020.103225 – ident: e_1_3_4_8_1 doi: 10.1007/s12517-009-0075-8 – ident: e_1_3_4_85_1 doi: 10.1016/j.catena.2018.12.011 – ident: e_1_3_4_97_1 doi: 10.1016/j.jhydrol.2020.125712 – ident: e_1_3_4_27_1 doi: 10.1016/J.SCITOTENV.2019.134979 – ident: e_1_3_4_6_1 doi: 10.1016/j.jhydrol.2024.130692 – ident: e_1_3_4_48_1 doi: 10.1016/j.jhydrol.2020.125552 – ident: e_1_3_4_4_1 doi: 10.1007/S13369-014-1130-7/METRICS – ident: e_1_3_4_16_1 doi: 10.1016/j.jher.2021.10.002 – ident: e_1_3_4_81_1 doi: 10.1016/J.JENVMAN.2018.03.089 – ident: e_1_3_4_17_1 doi: 10.1007/S11069-022-05357-0/METRICS – ident: e_1_3_4_18_1 doi: 10.3390/URBANSCI1010007 – ident: e_1_3_4_22_1 – ident: e_1_3_4_55_1 doi: 10.1016/j.jhydrol.2024.130846 – ident: e_1_3_4_37_1 doi: 10.2495/WRM050111 – start-page: 13 volume-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2016 ident: e_1_3_4_26_1 – ident: e_1_3_4_29_1 doi: 10.1016/J.SCITOTENV.2019.134514 – ident: e_1_3_4_100_1 doi: 10.1016/J.SCITOTENV.2018.12.184 |
| SSID | ssj0037863 |
| Score | 2.3652487 |
| Snippet | Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | eXtreme gradient boosting (XGBoost) Flood susceptibility mapping geographic information systems (GIS) machine learning techniques random Forest algorithm (RF) |
| Title | Enhancing flood susceptibility mapping in Sana’a, Yemen with random forest and eXtreme gradient boosting algorithms |
| URI | https://doaj.org/article/6951f46cf0c2426289507b1b853b583f |
| Volume | 40 |
| WOSCitedRecordID | wos001455438600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1752-0762 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037863 issn: 1010-6049 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Free Journals (Free resource, activated by CARLI) customDbUrl: eissn: 1752-0762 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037863 issn: 1010-6049 databaseCode: 0YH dateStart: 20231201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 1752-0762 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037863 issn: 1010-6049 databaseCode: TFW dateStart: 19860101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1EFN2IT3wzC5emzWMmkyxVLC5EBIvWVZg7mWkFm0qTCu78DX_PL_HeJJXu3LgJ5JLHcCa5j8nJuYydoV06Iy2-34I-M4L0tNGBZyCOE5NbZ2ux58dbdXeXDAbp_UKrL-KENfLADXDdGFMAJ2LjfEPRBOsDzGAgAAwzIJPIkff1VTovphofHKkkbqj16GViTILn_-4kfpdsZMLaMJSdkGQwqZfsQlRaEO-vo0xvk2206SG_aIa1xZZssc3W2k7lo49ttlpTNk25w2bXxYjEMoohd8Q-5-WsrDkqNd31g481SS8M-UvBH3Shvz-_9Dl_ptVATouvHINUPhlzTFoxMHDc4XZQ0Wohx3sRD6zimIGXRIvm-nU4meJJ43KXPfSu-1c3XttEwTNREFdeqjWYXFjELZRa2SC1KvUTABWZUOe-lcI5IX2bWAdhKhRIFQiXG-mHLo322HIxKew-46k1IAD8PJIglLKgRRiCMAEEiYliecA6cwizt0YpIwtaAdI55hlhnrWYH7BLAvr3YBK6rg04_Vk7_dlf03_4Hxc5Yus0sEa_8ZgtV9OZPWEr5r16Kaen9ZOF237v6Qc99NG9 |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+flood+susceptibility+mapping+in+Sana%E2%80%99a%2C+Yemen+with+random+forest+and+eXtreme+gradient+boosting+algorithms&rft.jtitle=Geocarto+international&rft.au=Alwathaf%2C+Yahia&rft.au=Al-Areeq%2C+Ahmed+M.&rft.au=Al-Masnay%2C+Yousef+A.&rft.au=Al-Aizari%2C+Ali+R.&rft.date=2025-12-31&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=40&rft.issue=1&rft_id=info:doi/10.1080%2F10106049.2025.2482707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10106049_2025_2482707 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon |