Enhancing flood susceptibility mapping in Sana’a, Yemen with random forest and eXtreme gradient boosting algorithms

Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to improve Sana’a City, Yemen’s flood susceptibility mapping by utilizing two cutting-edge machine learning RF and XGBoost. The RF and XGBoost algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geocarto international Ročník 40; číslo 1
Hlavní autoři: Alwathaf, Yahia, Al-Areeq, Ahmed M., Al-Masnay, Yousef A., Al-Aizari, Ali R., Al-Areeq, Nabil M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 31.12.2025
Témata:
ISSN:1010-6049, 1752-0762
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to improve Sana’a City, Yemen’s flood susceptibility mapping by utilizing two cutting-edge machine learning RF and XGBoost. The RF and XGBoost algorithms were selected for their robust performance in handling complex datasets and producing accurate predictions. The study’s methodology involved optimizing the algorithms through grid search and cross-validation techniques, followed by validation using historical flood data. Both models demonstrated high accuracy in predicting flood-prone areas, with RF achieving an accuracy of 92% and XGBoost slightly outperforming it with an accuracy of 94%. Sana’a City’s identified flood-prone areas were precisely highlighted on the flood susceptibility maps, which offered insightful information about the spatial distribution of flood hazards. The results offer practical implications for urban planners and policymakers, facilitating targeted interventions to mitigate flood risks and improve urban resilience.
AbstractList Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to improve Sana’a City, Yemen’s flood susceptibility mapping by utilizing two cutting-edge machine learning RF and XGBoost. The RF and XGBoost algorithms were selected for their robust performance in handling complex datasets and producing accurate predictions. The study’s methodology involved optimizing the algorithms through grid search and cross-validation techniques, followed by validation using historical flood data. Both models demonstrated high accuracy in predicting flood-prone areas, with RF achieving an accuracy of 92% and XGBoost slightly outperforming it with an accuracy of 94%. Sana’a City’s identified flood-prone areas were precisely highlighted on the flood susceptibility maps, which offered insightful information about the spatial distribution of flood hazards. The results offer practical implications for urban planners and policymakers, facilitating targeted interventions to mitigate flood risks and improve urban resilience.
Author Al-Masnay, Yousef A.
Alwathaf, Yahia
Al-Aizari, Ali R.
Al-Areeq, Ahmed M.
Al-Areeq, Nabil M.
Author_xml – sequence: 1
  givenname: Yahia
  surname: Alwathaf
  fullname: Alwathaf, Yahia
– sequence: 2
  givenname: Ahmed M.
  surname: Al-Areeq
  fullname: Al-Areeq, Ahmed M.
– sequence: 3
  givenname: Yousef A.
  surname: Al-Masnay
  fullname: Al-Masnay, Yousef A.
– sequence: 4
  givenname: Ali R.
  surname: Al-Aizari
  fullname: Al-Aizari, Ali R.
– sequence: 5
  givenname: Nabil M.
  surname: Al-Areeq
  fullname: Al-Areeq, Nabil M.
BookMark eNo9kU1uHCEQhVHkSP7LESxxgPSkoKHpXkaW44w0khfOIl6hgoYZrG4YAVbkXa7h6-Uk6Y4dr-rnvfpq8c7JSUzREXLFYMOghy8MGHQghg0HLjdc9FyB-kDOmJK8AdXxk6VfPM1qOiXnpTwCtKrv2jPydBMPGG2Ie-qnlEZanop1xxpMmEJ9pjMej6sYIr3HiH9-v-Bn-uBmF-mvUA80YxzTTH3KrlS6DNT9rHnR6T7jGFys1KRU6srAaZ_ycjSXS_LR41Tcp7d6Qe6_3fy4_t7s7m631193jW1ZV5sB0dhRuH6QXKJybHBqgN4Y1VqOIzgpvBcSXO-84YNQRiom_GglcD-0F2T7Sh0TPupjDjPmZ50w6H-LlPcacw12crobJPOisx4sF7zjy0dQhpletkb2rV9Y8pVlcyolO__OY6DXFPT_FPSagn5Lof0LPft-0A
Cites_doi 10.1023/A:1010933404324/METRICS
10.1080/19475705.2024.2360000
10.1023/B:NHAZ.0000007201.80743.FC/METRICS
10.1016/j.gsf.2022.101425
10.5194/nhess-10-793-2010
10.1007/S11269-020-02603-7/FIGURES/5
10.1007/S12145-021-00653-Y/FIGURES/10
10.1016/J.SCITOTENV.2019.135161
10.1007/S11069-019-03615-2/FIGURES/7
10.19026/RJASET.6.3920
10.1002/hyp.5852
10.1080/1573062X.2023.2256722
10.1080/02626667.2011.555836
10.2166/nh.2019.090
10.1016/J.SCITOTENV.2019.135868
10.3390/w10111536
10.1038/s41597-019-0155-x
10.1007/S10584-010-9979-2/METRICS
10.1016/J.SCITOTENV.2018.12.217
10.1596/978-0-8213-8866-2
10.1080/10106049.2023.2243884
10.1016/j.rineng.2024.102123
10.3390/ijgi9100569
10.1038/s41598-020-69703-7
10.1007/S00477-015-1021-9/FIGURES/9
10.1016/j.jclepro.2020.122757
10.1016/j.jhydrol.2016.03.037
10.1080/10106049.2021.1920636
10.1016/J.SCITOTENV.2018.06.197
10.1080/02626667.2020.1842412
10.1111/J.1467-7717.2007.01020.X
10.1007/S11269-021-02944-X/TABLES/7
10.1007/S11356-021-13255-4/FIGURES/8
10.1016/J.SCITOTENV.2018.01.266
10.1016/J.SCITOTENV.2020.143785
10.1080/19475705.2018.1506509
10.1016/j.gsf.2020.10.007
10.1016/j.jhydrol.2018.12.002
10.1007/S41207-020-00166-Y/FIGURES/7
10.1016/j.psep.2020.08.006
10.1016/j.gsf.2020.09.006
10.1016/j.ijdrr.2018.03.017
10.1201/9780367816377
10.1371/JOURNAL.PONE.0229153
10.1007/s10668-021-01377-1
10.3390/rs12203423
10.1061/(ASCE)HE.1943-5584.0000317/ASSET/7270FB50-68D0-4D2F-A88D-103C9F69F3E6/ASSETS/IMAGES/LARGE/18.JPG
10.1080/02626667.2013.857411
10.1007/S11069-016-2357-2/TABLES/6
10.3390/su11195426
10.1016/j.catena.2011.01.014
10.1016/j.jhydrol.2014.03.008
10.1016/j.wse.2020.06.006
10.5194/nhess-14-1921-2014
10.2166/wcc.2022.257
10.1007/S40808-019-00593-Z/TABLES/6
10.1016/j.jhydrol.2021.126382
10.3390/rs12020266
10.1111/RISA.12597
10.1016/j.pce.2022.103198
10.1016/j.jhydrol.2020.125615
10.2166/wcc.2021.051
10.1016/j.jhydrol.2017.04.048
10.1080/10106049.2015.1041559
10.1080/19475705.2025.2451737
10.1080/02626667909491834
10.1016/j.jhydrol.2021.126454
10.1016/J.SCITOTENV.2015.02.027
10.1007/978-94-007-5666-3_11/TABLES/3
10.3390/W13182476/S1
10.1016/J.JENVMAN.2019.06.102
10.1016/J.SCITOTENV.2019.01.021
10.1016/j.ijdrr.2019.101211
10.2166/wp.2004.0004
10.1016/j.jhydrol.2014.05.044
10.1016/j.earscirev.2020.103225
10.1007/s12517-009-0075-8
10.1016/j.catena.2018.12.011
10.1016/j.jhydrol.2020.125712
10.1016/J.SCITOTENV.2019.134979
10.1016/j.jhydrol.2024.130692
10.1016/j.jhydrol.2020.125552
10.1007/S13369-014-1130-7/METRICS
10.1016/j.jher.2021.10.002
10.1016/J.JENVMAN.2018.03.089
10.1007/S11069-022-05357-0/METRICS
10.3390/URBANSCI1010007
10.1016/j.jhydrol.2024.130846
10.2495/WRM050111
10.1016/J.SCITOTENV.2019.134514
10.1016/J.SCITOTENV.2018.12.184
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1080/10106049.2025.2482707
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
EISSN 1752-0762
ExternalDocumentID oai_doaj_org_article_6951f46cf0c2426289507b1b853b583f
10_1080_10106049_2025_2482707
GroupedDBID .7F
.QJ
0BK
0YH
30N
4.4
5GY
5VS
AAENE
AAHBH
AAJMT
AAYXX
ABCCY
ABFIM
ABHAV
ABPAQ
ABPEM
ABTAI
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
CE4
CITATION
CS3
DKSSO
EBS
E~A
E~B
F5P
GROUPED_DOAJ
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
S-T
SJN
SNACF
TDBHL
TFL
TFT
TFW
TNC
TQWBC
TTHFI
TUROJ
TWF
UPT
UT5
UU3
~02
~S~
ID FETCH-LOGICAL-c316t-9aabcd4e89525a7e19e7908bb73c2ad0e54ff450e8efb2947b5714fdc502f93
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001455438600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1010-6049
IngestDate Fri Oct 03 12:44:17 EDT 2025
Sat Nov 29 08:07:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9aabcd4e89525a7e19e7908bb73c2ad0e54ff450e8efb2947b5714fdc502f93
OpenAccessLink https://doaj.org/article/6951f46cf0c2426289507b1b853b583f
ParticipantIDs doaj_primary_oai_doaj_org_article_6951f46cf0c2426289507b1b853b583f
crossref_primary_10_1080_10106049_2025_2482707
PublicationCentury 2000
PublicationDate 2025-12-31
PublicationDateYYYYMMDD 2025-12-31
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Geocarto international
PublicationYear 2025
Publisher Taylor & Francis Group
Publisher_xml – name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_84_1
Rouse JW (e_1_3_4_74_1) 1974
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
Cronshey R. (e_1_3_4_31_1) 1986
e_1_3_4_72_1
e_1_3_4_95_1
e_1_3_4_53_1
e_1_3_4_91_1
e_1_3_4_30_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_76_1
e_1_3_4_99_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_2_1
e_1_3_4_85_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_81_1
e_1_3_4_24_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_66_1
e_1_3_4_47_1
e_1_3_4_89_1
Chen T (e_1_3_4_26_1) 2016
e_1_3_4_101_1
e_1_3_4_73_1
e_1_3_4_96_1
e_1_3_4_50_1
e_1_3_4_92_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
e_1_3_4_63_1
e_1_3_4_86_1
e_1_3_4_9_1
e_1_3_4_40_1
e_1_3_4_82_1
e_1_3_4_5_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_67_1
e_1_3_4_29_1
Central Statistical Organization (CSO) (e_1_3_4_23_1) 2005
e_1_3_4_100_1
e_1_3_4_97_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_93_1
Pradhan B. (e_1_3_4_68_1) 2009; 9
e_1_3_4_13_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_78_1
e_1_3_4_36_1
e_1_3_4_4_1
e_1_3_4_83_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_41_1
e_1_3_4_60_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_49_1
e_1_3_4_87_1
Moore TA (e_1_3_4_62_1) 1989
e_1_3_4_94_1
e_1_3_4_75_1
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_71_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_98_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_21_1
  doi: 10.1023/A:1010933404324/METRICS
– ident: e_1_3_4_77_1
  doi: 10.1080/19475705.2024.2360000
– ident: e_1_3_4_66_1
– ident: e_1_3_4_73_1
  doi: 10.1023/B:NHAZ.0000007201.80743.FC/METRICS
– ident: e_1_3_4_88_1
  doi: 10.1016/j.gsf.2022.101425
– ident: e_1_3_4_90_1
  doi: 10.5194/nhess-10-793-2010
– ident: e_1_3_4_95_1
  doi: 10.1007/S11269-020-02603-7/FIGURES/5
– ident: e_1_3_4_3_1
  doi: 10.1007/S12145-021-00653-Y/FIGURES/10
– ident: e_1_3_4_40_1
  doi: 10.1016/J.SCITOTENV.2019.135161
– ident: e_1_3_4_53_1
  doi: 10.1007/S11069-019-03615-2/FIGURES/7
– volume-title: Urban hydrology for small watersheds (No. 55)
  year: 1986
  ident: e_1_3_4_31_1
– ident: e_1_3_4_38_1
  doi: 10.19026/RJASET.6.3920
– ident: e_1_3_4_78_1
  doi: 10.1002/hyp.5852
– volume: 9
  issue: 2
  year: 2009
  ident: e_1_3_4_68_1
  article-title: Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing
  publication-title: J Spatial Hydrol
– ident: e_1_3_4_11_1
  doi: 10.1080/1573062X.2023.2256722
– ident: e_1_3_4_51_1
  doi: 10.1080/02626667.2011.555836
– ident: e_1_3_4_33_1
  doi: 10.2166/nh.2019.090
– ident: e_1_3_4_92_1
  doi: 10.1016/J.SCITOTENV.2019.135868
– ident: e_1_3_4_63_1
  doi: 10.3390/w10111536
– ident: e_1_3_4_43_1
  doi: 10.1038/s41597-019-0155-x
– ident: e_1_3_4_72_1
  doi: 10.1007/S10584-010-9979-2/METRICS
– ident: e_1_3_4_99_1
  doi: 10.1016/J.SCITOTENV.2018.12.217
– volume-title: Proceedings of the 3rd ERTS Symposium
  year: 1974
  ident: e_1_3_4_74_1
– ident: e_1_3_4_45_1
  doi: 10.1596/978-0-8213-8866-2
– ident: e_1_3_4_7_1
  doi: 10.1080/10106049.2023.2243884
– ident: e_1_3_4_35_1
  doi: 10.1016/j.rineng.2024.102123
– ident: e_1_3_4_69_1
  doi: 10.3390/ijgi9100569
– ident: e_1_3_4_70_1
  doi: 10.1038/s41598-020-69703-7
– ident: e_1_3_4_87_1
  doi: 10.1007/S00477-015-1021-9/FIGURES/9
– ident: e_1_3_4_75_1
  doi: 10.1016/j.jclepro.2020.122757
– ident: e_1_3_4_96_1
  doi: 10.1016/j.jhydrol.2016.03.037
– ident: e_1_3_4_2_1
  doi: 10.1080/10106049.2021.1920636
– ident: e_1_3_4_41_1
  doi: 10.1016/J.SCITOTENV.2018.06.197
– ident: e_1_3_4_30_1
  doi: 10.1080/02626667.2020.1842412
– ident: e_1_3_4_14_1
  doi: 10.1111/J.1467-7717.2007.01020.X
– ident: e_1_3_4_24_1
  doi: 10.1007/S11269-021-02944-X/TABLES/7
– ident: e_1_3_4_10_1
  doi: 10.1007/S11356-021-13255-4/FIGURES/8
– ident: e_1_3_4_49_1
  doi: 10.1016/J.SCITOTENV.2018.01.266
– ident: e_1_3_4_50_1
  doi: 10.1016/J.SCITOTENV.2020.143785
– ident: e_1_3_4_80_1
  doi: 10.1080/19475705.2018.1506509
– ident: e_1_3_4_83_1
  doi: 10.1016/j.gsf.2020.10.007
– ident: e_1_3_4_32_1
  doi: 10.1016/j.jhydrol.2018.12.002
– ident: e_1_3_4_76_1
  doi: 10.1007/S41207-020-00166-Y/FIGURES/7
– ident: e_1_3_4_101_1
  doi: 10.1016/j.psep.2020.08.006
– ident: e_1_3_4_42_1
  doi: 10.1016/j.gsf.2020.09.006
– ident: e_1_3_4_84_1
  doi: 10.1016/j.ijdrr.2018.03.017
– ident: e_1_3_4_20_1
  doi: 10.1201/9780367816377
– ident: e_1_3_4_89_1
  doi: 10.1371/JOURNAL.PONE.0229153
– ident: e_1_3_4_56_1
  doi: 10.1007/s10668-021-01377-1
– ident: e_1_3_4_13_1
  doi: 10.3390/rs12203423
– volume-title: Expanatory notes to the geologic map of the Makkah Quadrangle, Sheet 21D, Kingdom of Saudi Arabia
  year: 1989
  ident: e_1_3_4_62_1
– ident: e_1_3_4_46_1
  doi: 10.1061/(ASCE)HE.1943-5584.0000317/ASSET/7270FB50-68D0-4D2F-A88D-103C9F69F3E6/ASSETS/IMAGES/LARGE/18.JPG
– ident: e_1_3_4_52_1
  doi: 10.1080/02626667.2013.857411
– ident: e_1_3_4_47_1
  doi: 10.1007/S11069-016-2357-2/TABLES/6
– ident: e_1_3_4_58_1
– ident: e_1_3_4_44_1
  doi: 10.3390/su11195426
– ident: e_1_3_4_94_1
  doi: 10.1016/j.catena.2011.01.014
– ident: e_1_3_4_86_1
  doi: 10.1016/j.jhydrol.2014.03.008
– ident: e_1_3_4_93_1
  doi: 10.1016/j.wse.2020.06.006
– ident: e_1_3_4_60_1
  doi: 10.5194/nhess-14-1921-2014
– ident: e_1_3_4_64_1
  doi: 10.2166/wcc.2022.257
– ident: e_1_3_4_9_1
  doi: 10.1007/S40808-019-00593-Z/TABLES/6
– ident: e_1_3_4_57_1
  doi: 10.1016/j.jhydrol.2021.126382
– ident: e_1_3_4_82_1
  doi: 10.3390/rs12020266
– ident: e_1_3_4_65_1
  doi: 10.1111/RISA.12597
– ident: e_1_3_4_39_1
  doi: 10.1016/j.pce.2022.103198
– ident: e_1_3_4_67_1
  doi: 10.1016/j.jhydrol.2020.125615
– ident: e_1_3_4_54_1
  doi: 10.2166/wcc.2021.051
– volume-title: Statistical yearbook
  year: 2005
  ident: e_1_3_4_23_1
– ident: e_1_3_4_36_1
  doi: 10.1016/j.jhydrol.2017.04.048
– ident: e_1_3_4_71_1
  doi: 10.1080/10106049.2015.1041559
– ident: e_1_3_4_5_1
  doi: 10.1080/19475705.2025.2451737
– ident: e_1_3_4_19_1
  doi: 10.1080/02626667909491834
– ident: e_1_3_4_15_1
  doi: 10.1016/j.jhydrol.2021.126454
– ident: e_1_3_4_28_1
  doi: 10.1016/J.SCITOTENV.2015.02.027
– ident: e_1_3_4_25_1
  doi: 10.1007/978-94-007-5666-3_11/TABLES/3
– ident: e_1_3_4_79_1
  doi: 10.3390/W13182476/S1
– ident: e_1_3_4_91_1
  doi: 10.1016/J.JENVMAN.2019.06.102
– ident: e_1_3_4_12_1
  doi: 10.1016/J.SCITOTENV.2019.01.021
– ident: e_1_3_4_61_1
  doi: 10.1016/j.ijdrr.2019.101211
– ident: e_1_3_4_34_1
  doi: 10.2166/wp.2004.0004
– ident: e_1_3_4_98_1
  doi: 10.1016/j.jhydrol.2014.05.044
– ident: e_1_3_4_59_1
  doi: 10.1016/j.earscirev.2020.103225
– ident: e_1_3_4_8_1
  doi: 10.1007/s12517-009-0075-8
– ident: e_1_3_4_85_1
  doi: 10.1016/j.catena.2018.12.011
– ident: e_1_3_4_97_1
  doi: 10.1016/j.jhydrol.2020.125712
– ident: e_1_3_4_27_1
  doi: 10.1016/J.SCITOTENV.2019.134979
– ident: e_1_3_4_6_1
  doi: 10.1016/j.jhydrol.2024.130692
– ident: e_1_3_4_48_1
  doi: 10.1016/j.jhydrol.2020.125552
– ident: e_1_3_4_4_1
  doi: 10.1007/S13369-014-1130-7/METRICS
– ident: e_1_3_4_16_1
  doi: 10.1016/j.jher.2021.10.002
– ident: e_1_3_4_81_1
  doi: 10.1016/J.JENVMAN.2018.03.089
– ident: e_1_3_4_17_1
  doi: 10.1007/S11069-022-05357-0/METRICS
– ident: e_1_3_4_18_1
  doi: 10.3390/URBANSCI1010007
– ident: e_1_3_4_22_1
– ident: e_1_3_4_55_1
  doi: 10.1016/j.jhydrol.2024.130846
– ident: e_1_3_4_37_1
  doi: 10.2495/WRM050111
– start-page: 13
  volume-title: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: e_1_3_4_26_1
– ident: e_1_3_4_29_1
  doi: 10.1016/J.SCITOTENV.2019.134514
– ident: e_1_3_4_100_1
  doi: 10.1016/J.SCITOTENV.2018.12.184
SSID ssj0037863
Score 2.3652487
Snippet Floods pose a significant risk to urban areas worldwide, causing extensive damage to infrastructure, property, and human lives. The goal of this work is to...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms eXtreme gradient boosting (XGBoost)
Flood susceptibility mapping
geographic information systems (GIS)
machine learning techniques
random Forest algorithm (RF)
Title Enhancing flood susceptibility mapping in Sana’a, Yemen with random forest and eXtreme gradient boosting algorithms
URI https://doaj.org/article/6951f46cf0c2426289507b1b853b583f
Volume 40
WOSCitedRecordID wos001455438600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1752-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037863
  issn: 1010-6049
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  customDbUrl:
  eissn: 1752-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037863
  issn: 1010-6049
  databaseCode: 0YH
  dateStart: 20231201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1752-0762
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037863
  issn: 1010-6049
  databaseCode: TFW
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsNAFB1EFN2IT3wzC5emzWMmkyxVLC5EBIvWVZg7mWkFm0qTCu78DX_PL_HeJJXu3LgJ5JLHcCa5j8nJuYydoV06Iy2-34I-M4L0tNGBZyCOE5NbZ2ux58dbdXeXDAbp_UKrL-KENfLADXDdGFMAJ2LjfEPRBOsDzGAgAAwzIJPIkff1VTovphofHKkkbqj16GViTILn_-4kfpdsZMLaMJSdkGQwqZfsQlRaEO-vo0xvk2206SG_aIa1xZZssc3W2k7lo49ttlpTNk25w2bXxYjEMoohd8Q-5-WsrDkqNd31g481SS8M-UvBH3Shvz-_9Dl_ptVATouvHINUPhlzTFoxMHDc4XZQ0Wohx3sRD6zimIGXRIvm-nU4meJJ43KXPfSu-1c3XttEwTNREFdeqjWYXFjELZRa2SC1KvUTABWZUOe-lcI5IX2bWAdhKhRIFQiXG-mHLo322HIxKew-46k1IAD8PJIglLKgRRiCMAEEiYliecA6cwizt0YpIwtaAdI55hlhnrWYH7BLAvr3YBK6rg04_Vk7_dlf03_4Hxc5Yus0sEa_8ZgtV9OZPWEr5r16Kaen9ZOF237v6Qc99NG9
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+flood+susceptibility+mapping+in+Sana%E2%80%99a%2C+Yemen+with+random+forest+and+eXtreme+gradient+boosting+algorithms&rft.jtitle=Geocarto+international&rft.au=Alwathaf%2C+Yahia&rft.au=Al-Areeq%2C+Ahmed+M.&rft.au=Al-Masnay%2C+Yousef+A.&rft.au=Al-Aizari%2C+Ali+R.&rft.date=2025-12-31&rft.issn=1010-6049&rft.eissn=1752-0762&rft.volume=40&rft.issue=1&rft_id=info:doi/10.1080%2F10106049.2025.2482707&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10106049_2025_2482707
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1010-6049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1010-6049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1010-6049&client=summon