Ultimate Data Hiding in Quantum Mechanics and Beyond

The phenomenon of data hiding, i.e. the existence of pairs of states of a bipartite system that are perfectly distinguishable via general entangled measurements yet almost indistinguishable under LOCC, is a distinctive signature of nonclassicality. The relevant figure of merit is the maximal ratio (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Communications in mathematical physics Ročník 361; číslo 2; s. 661 - 708
Hlavní autori: Lami, Ludovico, Palazuelos, Carlos, Winter, Andreas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2018
Springer Nature B.V
Predmet:
ISSN:0010-3616, 1432-0916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The phenomenon of data hiding, i.e. the existence of pairs of states of a bipartite system that are perfectly distinguishable via general entangled measurements yet almost indistinguishable under LOCC, is a distinctive signature of nonclassicality. The relevant figure of merit is the maximal ratio (called data hiding ratio) between the distinguishability norms associated with the two sets of measurements we are comparing, typically all measurements vs LOCC protocols. For a bipartite n × n quantum system, it is known that the data hiding ratio scales as n , i.e. the square root of the real dimension of the local state space of density matrices. We show that for bipartite n A × n B systems the maximum data hiding ratio against LOCC protocols is Θ min { n A , n B } . This scaling is better than the previously obtained upper bounds O n A n B and min { n A 2 , n B 2 } , and moreover our intuitive argument yields constants close to optimal. In this paper, we investigate data hiding in the more general context of general probabilistic theories (GPTs), an axiomatic framework for physical theories encompassing only the most basic requirements about the predictive power of the theory. The main result of the paper is the determination of the maximal data hiding ratio obtainable in an arbitrary GPT, which is shown to scale linearly in the minimum of the local dimensions. We exhibit an explicit model achieving this bound up to additive constants, finding that quantum mechanical data hiding ratio is only of the order of the square root of the maximal one. Our proof rests crucially on an unexpected link between data hiding and the theory of projective and injective tensor products of Banach spaces. Finally, we develop a body of techniques to compute data hiding ratios for a variety of restricted classes of GPTs that support further symmetries.
AbstractList The phenomenon of data hiding, i.e. the existence of pairs of states of a bipartite system that are perfectly distinguishable via general entangled measurements yet almost indistinguishable under LOCC, is a distinctive signature of nonclassicality. The relevant figure of merit is the maximal ratio (called data hiding ratio) between the distinguishability norms associated with the two sets of measurements we are comparing, typically all measurements vs LOCC protocols. For a bipartite n×n quantum system, it is known that the data hiding ratio scales as n, i.e. the square root of the real dimension of the local state space of density matrices. We show that for bipartite nA×nB systems the maximum data hiding ratio against LOCC protocols is Θmin{nA,nB}. This scaling is better than the previously obtained upper bounds OnAnB and min{nA2,nB2}, and moreover our intuitive argument yields constants close to optimal. In this paper, we investigate data hiding in the more general context of general probabilistic theories (GPTs), an axiomatic framework for physical theories encompassing only the most basic requirements about the predictive power of the theory. The main result of the paper is the determination of the maximal data hiding ratio obtainable in an arbitrary GPT, which is shown to scale linearly in the minimum of the local dimensions. We exhibit an explicit model achieving this bound up to additive constants, finding that quantum mechanical data hiding ratio is only of the order of the square root of the maximal one. Our proof rests crucially on an unexpected link between data hiding and the theory of projective and injective tensor products of Banach spaces. Finally, we develop a body of techniques to compute data hiding ratios for a variety of restricted classes of GPTs that support further symmetries.
The phenomenon of data hiding, i.e. the existence of pairs of states of a bipartite system that are perfectly distinguishable via general entangled measurements yet almost indistinguishable under LOCC, is a distinctive signature of nonclassicality. The relevant figure of merit is the maximal ratio (called data hiding ratio) between the distinguishability norms associated with the two sets of measurements we are comparing, typically all measurements vs LOCC protocols. For a bipartite n × n quantum system, it is known that the data hiding ratio scales as n , i.e. the square root of the real dimension of the local state space of density matrices. We show that for bipartite n A × n B systems the maximum data hiding ratio against LOCC protocols is Θ min { n A , n B } . This scaling is better than the previously obtained upper bounds O n A n B and min { n A 2 , n B 2 } , and moreover our intuitive argument yields constants close to optimal. In this paper, we investigate data hiding in the more general context of general probabilistic theories (GPTs), an axiomatic framework for physical theories encompassing only the most basic requirements about the predictive power of the theory. The main result of the paper is the determination of the maximal data hiding ratio obtainable in an arbitrary GPT, which is shown to scale linearly in the minimum of the local dimensions. We exhibit an explicit model achieving this bound up to additive constants, finding that quantum mechanical data hiding ratio is only of the order of the square root of the maximal one. Our proof rests crucially on an unexpected link between data hiding and the theory of projective and injective tensor products of Banach spaces. Finally, we develop a body of techniques to compute data hiding ratios for a variety of restricted classes of GPTs that support further symmetries.
Author Palazuelos, Carlos
Lami, Ludovico
Winter, Andreas
Author_xml – sequence: 1
  givenname: Ludovico
  orcidid: 0000-0003-3290-3557
  surname: Lami
  fullname: Lami, Ludovico
  email: ludovico.lami@sns.it, ludovico.lami@gmail.com
  organization: Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona
– sequence: 2
  givenname: Carlos
  orcidid: 0000-0002-3218-855X
  surname: Palazuelos
  fullname: Palazuelos, Carlos
  organization: Departamento de Análisis y Matemática Aplicada, Universidad Complutense de Madrid, Instituto de Ciencias Matemáticas, Universidad Complutense de Madrid
– sequence: 3
  givenname: Andreas
  orcidid: 0000-0001-6344-4870
  surname: Winter
  fullname: Winter, Andreas
  organization: Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, ICREA – Institució Catalana de Recerca i Estudis Avançats
BookMark eNp9kE1Lw0AQhhepYFv9Ad4CnldndpNNctT6UaEigj0vm2RSt7Sburs99N-bEkEQ9DSX95l35pmwkescMXaJcI0A-U0AEAI4YMElZilPT9gYUyk4lKhGbAyAwKVCdcYmIawBoBRKjVm63ES7NZGSexNNMreNdavEuuRtb1zcb5MXqj-Ms3VIjGuSOzp0rjlnp63ZBLr4nlO2fHx4n8354vXpeXa74LVEFXlpsMxQta2kXFYGCaEq-uuoqUytCPIyB5TQCplSI4xEIqhkVjRKtKYVhZyyq2HvznefewpRr7u9d32lFpBDkRUiP6ZwSNW-C8FTq3e-f8kfNII-ytGDHN3L0Uc5Ou2Z_BdT22ii7Vz0xm7-JcVAhr7Frcj_3PQ39AXQl3hc
CitedBy_id crossref_primary_10_1088_1751_8121_ac8ea4
crossref_primary_10_1088_1751_8121_aba469
crossref_primary_10_1103_PhysRevResearch_2_043128
crossref_primary_10_1007_s00220_023_04836_0
crossref_primary_10_1016_j_laa_2021_03_001
crossref_primary_10_1007_s00220_022_04379_w
crossref_primary_10_1103_PhysRevX_9_031053
crossref_primary_10_1038_s41534_022_00618_z
crossref_primary_10_1088_1751_8121_ab915b
crossref_primary_10_1007_s13163_019_00329_8
crossref_primary_10_1007_s00220_023_04920_5
crossref_primary_10_1109_TIT_2025_3532701
crossref_primary_10_1088_1751_8121_ab8599
crossref_primary_10_1007_s11128_021_03251_5
crossref_primary_10_1109_TIT_2024_3404927
crossref_primary_10_1103_PhysRevA_111_052405
crossref_primary_10_1103_PRXQuantum_3_030346
crossref_primary_10_1016_j_jmaa_2021_125360
crossref_primary_10_1007_s00220_020_03688_2
crossref_primary_10_1088_1751_8121_ab4b64
crossref_primary_10_1038_s41534_022_00574_8
crossref_primary_10_1109_TIT_2022_3186428
crossref_primary_10_1016_j_physrep_2023_09_001
crossref_primary_10_1088_1367_2630_acb565
crossref_primary_10_1007_s11128_021_03228_4
crossref_primary_10_1088_1751_8121_acfeb7
crossref_primary_10_1112_jlms_70009
Cites_doi 10.1007/s00220-006-1535-6
10.1103/PhysRevA.64.062307
10.1017/CBO9780511804441
10.1103/PhysRevLett.70.1895
10.1007/BF02393206
10.1007/s00220-014-1953-9
10.1088/1367-2630/13/6/063024
10.1016/S0375-9601(01)00484-4
10.1007/BF00671964
10.1103/PhysRevLett.99.240501
10.2140/pjm.1969.31.469
10.1007/BF01878476
10.1016/j.entcs.2011.01.002
10.4064/sm-58-2-197-208
10.1007/BF01646732
10.1038/ncomms2821
10.1006/jcta.2000.3155
10.1007/978-3-642-71897-7_1
10.1016/0095-8956(88)90040-8
10.1007/s00220-014-2213-8
10.1007/BF00668911
10.1007/s10701-013-9752-2
10.1112/jlms/s1-39.1.730
10.1090/surv/223
10.1103/PhysRevLett.85.4972
10.1007/978-1-4471-3903-4
10.1090/psapm/071/600
10.1088/1367-2630/17/10/103027
10.1007/BF02058098
10.1007/978-3-642-66557-8
10.1103/PhysRevLett.86.5807
10.1103/PhysRevA.59.4206
10.1007/BF01351796
10.1103/PhysRevA.59.141
10.1103/PhysRevA.79.062306
10.1109/18.985948
10.1007/s00220-008-0582-6
10.1073/pnas.1304884110
10.1007/978-3-0348-8871-4_14
10.1016/j.laa.2015.08.024
10.1007/BF01647093
10.1103/PhysRevA.40.4277
10.1103/PhysRevA.75.032304
10.4064/sm-70-3-231-283
10.1007/s00220-009-0890-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00220-018-3154-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0916
EndPage 708
ExternalDocumentID 10_1007_s00220_018_3154_4
GrantInformation_xml – fundername: European Research Council
  grantid: 267386
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: Ministerio de Economía y Competitividad
  grantid: FIS2013-40627-P; FIS2016-86681-P; MTM2014-54240-P; RYC-2012-10449
  funderid: http://dx.doi.org/10.13039/501100003329
– fundername: Generalitat de Catalunya
  grantid: 2014 SGR 966
  funderid: http://dx.doi.org/10.13039/501100002809
– fundername: Comunidad de Madrid
  grantid: S2013/ICE-2801
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
28-
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFFOW
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMI
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KQ8
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RBV
REI
RHV
RIG
RNI
RNS
ROL
RPE
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
WS9
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8W
Z92
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
M7S
PCBAR
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-9a19516ff3e73ba1e10b8315edbac6e07970130f234ed2a31ee0b358d62faf283
IEDL.DBID RSV
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438925500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0010-3616
IngestDate Wed Sep 17 13:51:02 EDT 2025
Sat Nov 29 05:55:25 EST 2025
Tue Nov 18 21:52:07 EST 2025
Fri Feb 21 02:34:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9a19516ff3e73ba1e10b8315edbac6e07970130f234ed2a31ee0b358d62faf283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6344-4870
0000-0003-3290-3557
0000-0002-3218-855X
PQID 2070858278
PQPubID 2043584
PageCount 48
ParticipantIDs proquest_journals_2070858278
crossref_primary_10_1007_s00220_018_3154_4
crossref_citationtrail_10_1007_s00220_018_3154_4
springer_journals_10_1007_s00220_018_3154_4
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Communications in mathematical physics
PublicationTitleAbbrev Commun. Math. Phys
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References BarrettJ.Information processing in generalized probabilistic theoriesPhys. Rev. A20077503230410.1103/PhysRevA.75.0323042007PhRvA..75c2304BarXiv:quant-ph/0508211
RudinW.Functional Analysis1991New YorkMcGraw-Hill0867.46001
DiVincenzoD.P.LeungD.W.TerhalB.M.Quantum data hidingIEEE Trans. Inf. Theory2002483580599188997010.1109/18.9859481071.81511arXiv:quant-ph/0103098
Pfister, C.: One simple postulate implies that every polytopic state space is classical, Master thesis (2013). arXiv:1203.5622
RödlP. FranklV.Wilson R.M.The number of submatrices of a given type in a Hadamard matrix and related resultsJ. Combin. Theory Ser. B198844331732894144010.1016/0095-8956(88)90040-80658.05015
Lami, L.: Non-classical correlations in quantum mechanics and beyond. Ph.D thesis (2017). arXiv:1803.02092
WilceA.Tensor products in generalized measure theoryInt. J. Theor. Phys.1992311915118629710.1007/BF006719640795.46055
VinbergE.B.Homogeneous conesDokl. Acad. Nauk. SSSR19601412702730143.05203(English trans. Sov. Math. Dokl. 2, 1416–1619 (1961))
ChitambarE.LeungD.MančinskaL.OzolsM.WinterA.Everything you always wanted to know about LOCC (but were afraid to ask)Commun. Math. Phys.20143281303326319698710.1007/s00220-014-1953-91290.810122014CMaPh.328..303C
HaagerupU.The best constants in the Khintchine inequalityStud. Math.198170323128365483810.4064/sm-70-3-231-2830501.46015
ErdösP.SpencerJ.Probabilistic Methods in Combinatorics1974CambridgeAcademic Press0308.05001
MatthewsW.WehnerS.WinterA.Distinguishability of quantum states under restricted families of measurements with an application to quantum data hidingCommun. Math. Phys.20092913813843253479310.1007/s00220-009-0890-51179.810202009CMaPh.291..813M
KläyM.RandallC.H.FoulisD.J.Tensor products and probability weightsInt. J. Theor. Phys.19872619989241110.1007/BF006689110641.46049
VidalG.TarrachR.Robustness of entanglementPhys. Rev. A199959141155167056210.1103/PhysRevA.59.1411999PhRvA..59..141VarXiv:quant-ph/9806094
EdwardsC.M.The theory of pure operationsCommun. Math. Phys.197224426028829726010.1007/BF018784760227.460731971CMaPh..24..260E
HaydenP.LeungD.W.WinterA.Aspects of generic entanglementCommun. Math. Phys.2006265195117221729810.1007/s00220-006-1535-61107.810112006CMaPh.265...95H
BarnumH.WilceA.Information processing in convex operational theoriesElectron. Notes Theor. Comput. Sci.2011270131510.1016/j.entcs.2011.01.0021348.81130arXiv:0908.2352
Ludwig, G.: An Axiomatic Basis of Quantum Mechanics, vols. 1, 2. Springer, Berlin (1985, 1987)
BoydS.VandenbergheL.Convex Optimization2004CambridgeCambridge University Press10.1017/CBO97805118044411058.90049
AlonN.SpencerJ.H.The Probabilistic Method20153New YorkWiley1333.05001
ChiribellaG.ScandoloC.M.Entanglement and thermodynamics in general probabilistic theoriesNew J. Phys.20151710302710.1088/1367-2630/17/10/1030272015NJPh...17j3027C
Pisier, G.: Finite rank projections on Banach spaces and a conjecture of Grothendieck. In: Proceedings of the International Congress of Mathematicians, vol. 2, Warszawa, pp. 1027–1039 (1983)
WernerR.F.Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable modelPhys. Rev. A.19894084277428110.1103/PhysRevA.40.42771371.811451989PhRvA..40.4277W
BarnumH.BarrettJ.LeiferM.WilceA.Generalized no-broadcasting theoremPhys. Rev. Lett.20079924050110.1103/PhysRevLett.99.2405012007PhRvL..99x0501BarXiv:quant-ph/0611295
BrandãoF.G.S.L.HorodeckiM.Exponential decay of correlations implies area lawCommun. Math. Phys.20153332761798329616210.1007/s00220-014-2213-81317.810212015CMaPh.333..761B
Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012
HorodeckiM.HorodeckiP.Reduction criterion of separability and limits for a class of protocols of entanglement distillationPhys. Rev. A199959420610.1103/PhysRevA.59.42061999PhRvA..59.4206H
VollbrechtK.G.H.WernerR.F.Entanglement measures under symmetryPhys. Rev. A20016406230710.1103/PhysRevA.64.0623072001PhRvA..64f2307V
TerhalB.M.DiVincenzoD.P.LeungD.W.Hiding bits in Bell statesPhys. Rev. Lett.200186580710.1103/PhysRevLett.86.58072001PhRvL..86.5807TarXiv:quant-ph/0011042
LatalaR.OleszkiewiczK.On the best constant in the Khintchine-Kahane inequalityStud. Math.199410911011040812.60010
RyanR.A.Introduction to Tensor Products of Banach Spaces2002BerlinSpringer10.1007/978-1-4471-3903-41090.46001
MatthewsW.WinterA.On the Chernoff distance for asymptotic LOCC discrimination of bipartite quantum statesCommun. Math. Phys.20082851161174245359310.1007/s00220-008-0582-61228.811172009CMaPh.285..161MarXiv:0710.4113
AlonN.Approximating sparse binary matrices in the cut-normLinear Algebra Appl.2015486409418340177010.1016/j.laa.2015.08.0241327.15044
KimuraG.MiyaderaT.ImaiH.Optimal state discrimination in general probabilistic theoriesPhys. Rev. A20097906230610.1103/PhysRevA.79.0623062009PhRvA..79f2306K
MackeyG.Mathematical Foundations of Quantum Mechanics1963AmsterdamBenjamin0114.44002
PopescuS.RohrlichD.Quantum nonlocality as an axiomFound. Phys.1994243379385126557710.1007/BF020580981994FoPh...24..379P
HelstromC.W.Quantum Detection and Estimation Theory1976CambridgeAcademic Press1332.81011
PfisterC.WehnerS.An information-theoretic principle implies that any discrete physical theory is classicalNat. Commun.20134185110.1038/ncomms28212013NatCo...4E1851P
EdwardsC.M.Classes of operations in quantum theoryCommun. Math. Phys.1971201265627579910.1007/BF016467320203.570011971CMaPh..20...26E
MasanesL.MüllerM.P.AugusiakR.Pérez-GarcíaD.Existence of an information unit as a postulate of quantum theoryProc. Natl Acad. Sci. USA2013110163731637710.1073/pnas.13048841102013PNAS..11016373M
VirmaniS.SacchiM.F.PlenioM.B.MarkhamD.Optimal local discrimination of two multipartite pure statesPhys. Lett. A200128826268186088410.1016/S0375-9601(01)00484-40971.810082001PhLA..288...62V
EllisA.J.The duality of partially ordered normed linear spacesJ. Lond. Math. Soc.196439173074416902010.1112/jlms/s1-39.1.7300131.11302
NamiokaI.PhelphsR.R.Tensor product of compact convex setsPac. J. Math.196931246948027168910.2140/pjm.1969.31.469
JanottaP.GogolinC.BarrettJ.BrunnerN.Limits on non-local correlations from the structure of the local state spaceNew J. Phys.20111306302410.1088/1367-2630/13/6/0630242011NJPh...13f3024J
PisierG.Counterexamples to a conjecture of GrothendieckActa Math.1983151118120872300910.1007/BF023932060542.46038
Mulansky, B.: Tensor products of convex cones. In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds.) Multivariate Approximation and Splines, vol. 125. ISNM, Lübeck (1997)
KoecherM.Die geoodätischen von PositivitaätsbereichenMath. Ann.195813519220210398710.1007/BF01351796
KreinM.Sur la decomposition minimale d’une fonctionnelle lineaire en composantes positivesDokl. Akad. Nauk SSSR (NS)19402818220024.12203
de LauneyW.GordonD.M.A comment on the Hadamard conjectureJ. Combin. Theory Ser. A2001951180184184048410.1006/jcta.2000.31550973.05011
AubrunG.SzarekS.Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory2017ProvidenceAmerican Mathematical Society10.1090/surv/22306780344
DaviesE.B.LewisJ.T.An operational approach to quantum probabilityCommun. Math. Phys.197017323926026337910.1007/BF016470930194.583041970CMaPh..17..239D
SzarekS.On the best constants in the Khinchin InequalityStud. Math.197658219720843066710.4064/sm-58-2-197-2080424.42014
BennettC.H.BrassardG.CrépeauC.JozsaR.PeresA.Wootters W.K.Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channelsPhys. Rev. Lett.19937018951899120824710.1103/PhysRevLett.70.18951051.815051993PhRvL..70.1895B
BarnumH.BarrettJ.LeiferM.WilceA.Teleportation in general probabilistic theoriesProc. Symp. Appl. Math.2012712548296314110.1090/psapm/071/6001258.81011arXiv:0805.3553
BarnumH.GaeblerC.P.WilceA.Ensemble steering, weak self-duality, and the structure of probabilistic theoriesFound. Phys.2013431214111427313294010.1007/s10701-013-9752-21286.810202013FoPh...43.1411B
LindenstraussJ.TzafririL.Classical Banach Spaces I and II1977BerlinSpringer10.1007/978-3-642-66557-80362.46013
WalgateJ.ShortA.J.HardyL.VedralV.Local distinguishability of multipartite orthogonal quantum statesPhys. Rev. Lett.200085497210.1103/PhysRevLett.85.49722000PhRvL..85.4972W
Wilce, A.: Four and a half axioms for finite dimensional quantum mechanics (2009). arXiv:0912.5530
DefantA.FloretK.Tensor Norms and Operator Ideals1993AmsterdamNorth-Holland0774.46018
R.A. Ryan (3154_CR47) 2002
V. RödlP. Frankl (3154_CR52) 1988; 44
R. Latala (3154_CR58) 1994; 109
3154_CR1
3154_CR28
3154_CR21
W. Rudin (3154_CR25) 1991
G. Chiribella (3154_CR20) 2015; 17
A. Defant (3154_CR46) 1993
W. Launey de (3154_CR55) 2001; 95
S. Boyd (3154_CR24) 2004
C. Pfister (3154_CR19) 2013; 4
H. Barnum (3154_CR18) 2013; 43
E. Chitambar (3154_CR31) 2014; 328
W. Matthews (3154_CR34) 2008; 285
N. Alon (3154_CR53) 2015; 486
C.W. Helstrom (3154_CR30) 1976
S. Szarek (3154_CR56) 1976; 58
3154_CR10
G. Kimura (3154_CR29) 2009; 79
D.P. DiVincenzo (3154_CR3) 2002; 48
H. Barnum (3154_CR15) 2012; 71
U. Haagerup (3154_CR57) 1981; 70
P. Janotta (3154_CR16) 2011; 13
E.B. Vinberg (3154_CR45) 1960; 141
H. Barnum (3154_CR17) 2007; 99
J. Walgate (3154_CR32) 2000; 85
F.G.S.L. Brandão (3154_CR35) 2015; 333
G. Mackey (3154_CR5) 1963
3154_CR49
M. Koecher (3154_CR44) 1958; 135
P. Hayden (3154_CR59) 2006; 265
C.M. Edwards (3154_CR8) 1971; 20
H. Barnum (3154_CR22) 2011; 270
3154_CR41
M. Krein (3154_CR23) 1940; 28
3154_CR42
J. Barrett (3154_CR13) 2007; 75
G. Vidal (3154_CR36) 1999; 59
C.M. Edwards (3154_CR9) 1972; 24
R.F. Werner (3154_CR39) 1989; 40
S. Virmani (3154_CR33) 2001; 288
A. Wilce (3154_CR12) 1992; 31
M. Kläy (3154_CR11) 1987; 26
J. Lindenstrauss (3154_CR50) 1977
M. Horodecki (3154_CR37) 1999; 59
C.H. Bennett (3154_CR38) 1993; 70
E.B. Davies (3154_CR6) 1970; 17
B.M. Terhal (3154_CR2) 2001; 86
P. Erdös (3154_CR51) 1974
G. Pisier (3154_CR48) 1983; 151
A.J. Ellis (3154_CR7) 1964; 39
N. Alon (3154_CR54) 2015
I. Namioka (3154_CR27) 1969; 31
S. Popescu (3154_CR14) 1994; 24
G. Aubrun (3154_CR26) 2017
L. Masanes (3154_CR43) 2013; 110
W. Matthews (3154_CR4) 2009; 291
K.G.H. Vollbrecht (3154_CR40) 2001; 64
References_xml – reference: AlonN.Approximating sparse binary matrices in the cut-normLinear Algebra Appl.2015486409418340177010.1016/j.laa.2015.08.0241327.15044
– reference: SzarekS.On the best constants in the Khinchin InequalityStud. Math.197658219720843066710.4064/sm-58-2-197-2080424.42014
– reference: Hardy, L.: Quantum theory from five reasonable axioms (2001). arXiv:quant-ph/0101012
– reference: VidalG.TarrachR.Robustness of entanglementPhys. Rev. A199959141155167056210.1103/PhysRevA.59.1411999PhRvA..59..141VarXiv:quant-ph/9806094
– reference: HorodeckiM.HorodeckiP.Reduction criterion of separability and limits for a class of protocols of entanglement distillationPhys. Rev. A199959420610.1103/PhysRevA.59.42061999PhRvA..59.4206H
– reference: NamiokaI.PhelphsR.R.Tensor product of compact convex setsPac. J. Math.196931246948027168910.2140/pjm.1969.31.469
– reference: MackeyG.Mathematical Foundations of Quantum Mechanics1963AmsterdamBenjamin0114.44002
– reference: HaydenP.LeungD.W.WinterA.Aspects of generic entanglementCommun. Math. Phys.2006265195117221729810.1007/s00220-006-1535-61107.810112006CMaPh.265...95H
– reference: WalgateJ.ShortA.J.HardyL.VedralV.Local distinguishability of multipartite orthogonal quantum statesPhys. Rev. Lett.200085497210.1103/PhysRevLett.85.49722000PhRvL..85.4972W
– reference: BrandãoF.G.S.L.HorodeckiM.Exponential decay of correlations implies area lawCommun. Math. Phys.20153332761798329616210.1007/s00220-014-2213-81317.810212015CMaPh.333..761B
– reference: KimuraG.MiyaderaT.ImaiH.Optimal state discrimination in general probabilistic theoriesPhys. Rev. A20097906230610.1103/PhysRevA.79.0623062009PhRvA..79f2306K
– reference: PisierG.Counterexamples to a conjecture of GrothendieckActa Math.1983151118120872300910.1007/BF023932060542.46038
– reference: MatthewsW.WehnerS.WinterA.Distinguishability of quantum states under restricted families of measurements with an application to quantum data hidingCommun. Math. Phys.20092913813843253479310.1007/s00220-009-0890-51179.810202009CMaPh.291..813M
– reference: BarnumH.BarrettJ.LeiferM.WilceA.Generalized no-broadcasting theoremPhys. Rev. Lett.20079924050110.1103/PhysRevLett.99.2405012007PhRvL..99x0501BarXiv:quant-ph/0611295
– reference: LatalaR.OleszkiewiczK.On the best constant in the Khintchine-Kahane inequalityStud. Math.199410911011040812.60010
– reference: KläyM.RandallC.H.FoulisD.J.Tensor products and probability weightsInt. J. Theor. Phys.19872619989241110.1007/BF006689110641.46049
– reference: MasanesL.MüllerM.P.AugusiakR.Pérez-GarcíaD.Existence of an information unit as a postulate of quantum theoryProc. Natl Acad. Sci. USA2013110163731637710.1073/pnas.13048841102013PNAS..11016373M
– reference: DefantA.FloretK.Tensor Norms and Operator Ideals1993AmsterdamNorth-Holland0774.46018
– reference: EdwardsC.M.Classes of operations in quantum theoryCommun. Math. Phys.1971201265627579910.1007/BF016467320203.570011971CMaPh..20...26E
– reference: WernerR.F.Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable modelPhys. Rev. A.19894084277428110.1103/PhysRevA.40.42771371.811451989PhRvA..40.4277W
– reference: HelstromC.W.Quantum Detection and Estimation Theory1976CambridgeAcademic Press1332.81011
– reference: PopescuS.RohrlichD.Quantum nonlocality as an axiomFound. Phys.1994243379385126557710.1007/BF020580981994FoPh...24..379P
– reference: JanottaP.GogolinC.BarrettJ.BrunnerN.Limits on non-local correlations from the structure of the local state spaceNew J. Phys.20111306302410.1088/1367-2630/13/6/0630242011NJPh...13f3024J
– reference: Ludwig, G.: An Axiomatic Basis of Quantum Mechanics, vols. 1, 2. Springer, Berlin (1985, 1987)
– reference: VollbrechtK.G.H.WernerR.F.Entanglement measures under symmetryPhys. Rev. A20016406230710.1103/PhysRevA.64.0623072001PhRvA..64f2307V
– reference: Lami, L.: Non-classical correlations in quantum mechanics and beyond. Ph.D thesis (2017). arXiv:1803.02092
– reference: BarrettJ.Information processing in generalized probabilistic theoriesPhys. Rev. A20077503230410.1103/PhysRevA.75.0323042007PhRvA..75c2304BarXiv:quant-ph/0508211
– reference: DiVincenzoD.P.LeungD.W.TerhalB.M.Quantum data hidingIEEE Trans. Inf. Theory2002483580599188997010.1109/18.9859481071.81511arXiv:quant-ph/0103098
– reference: PfisterC.WehnerS.An information-theoretic principle implies that any discrete physical theory is classicalNat. Commun.20134185110.1038/ncomms28212013NatCo...4E1851P
– reference: TerhalB.M.DiVincenzoD.P.LeungD.W.Hiding bits in Bell statesPhys. Rev. Lett.200186580710.1103/PhysRevLett.86.58072001PhRvL..86.5807TarXiv:quant-ph/0011042
– reference: AlonN.SpencerJ.H.The Probabilistic Method20153New YorkWiley1333.05001
– reference: WilceA.Tensor products in generalized measure theoryInt. J. Theor. Phys.1992311915118629710.1007/BF006719640795.46055
– reference: BoydS.VandenbergheL.Convex Optimization2004CambridgeCambridge University Press10.1017/CBO97805118044411058.90049
– reference: Mulansky, B.: Tensor products of convex cones. In: Nürnberger, G., Schmidt, J.W., Walz, G. (eds.) Multivariate Approximation and Splines, vol. 125. ISNM, Lübeck (1997)
– reference: AubrunG.SzarekS.Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory2017ProvidenceAmerican Mathematical Society10.1090/surv/22306780344
– reference: Wilce, A.: Four and a half axioms for finite dimensional quantum mechanics (2009). arXiv:0912.5530
– reference: RyanR.A.Introduction to Tensor Products of Banach Spaces2002BerlinSpringer10.1007/978-1-4471-3903-41090.46001
– reference: MatthewsW.WinterA.On the Chernoff distance for asymptotic LOCC discrimination of bipartite quantum statesCommun. Math. Phys.20082851161174245359310.1007/s00220-008-0582-61228.811172009CMaPh.285..161MarXiv:0710.4113
– reference: ErdösP.SpencerJ.Probabilistic Methods in Combinatorics1974CambridgeAcademic Press0308.05001
– reference: HaagerupU.The best constants in the Khintchine inequalityStud. Math.198170323128365483810.4064/sm-70-3-231-2830501.46015
– reference: VinbergE.B.Homogeneous conesDokl. Acad. Nauk. SSSR19601412702730143.05203(English trans. Sov. Math. Dokl. 2, 1416–1619 (1961))
– reference: Pfister, C.: One simple postulate implies that every polytopic state space is classical, Master thesis (2013). arXiv:1203.5622
– reference: BennettC.H.BrassardG.CrépeauC.JozsaR.PeresA.Wootters W.K.Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channelsPhys. Rev. Lett.19937018951899120824710.1103/PhysRevLett.70.18951051.815051993PhRvL..70.1895B
– reference: DaviesE.B.LewisJ.T.An operational approach to quantum probabilityCommun. Math. Phys.197017323926026337910.1007/BF016470930194.583041970CMaPh..17..239D
– reference: ChitambarE.LeungD.MančinskaL.OzolsM.WinterA.Everything you always wanted to know about LOCC (but were afraid to ask)Commun. Math. Phys.20143281303326319698710.1007/s00220-014-1953-91290.810122014CMaPh.328..303C
– reference: BarnumH.GaeblerC.P.WilceA.Ensemble steering, weak self-duality, and the structure of probabilistic theoriesFound. Phys.2013431214111427313294010.1007/s10701-013-9752-21286.810202013FoPh...43.1411B
– reference: RudinW.Functional Analysis1991New YorkMcGraw-Hill0867.46001
– reference: BarnumH.BarrettJ.LeiferM.WilceA.Teleportation in general probabilistic theoriesProc. Symp. Appl. Math.2012712548296314110.1090/psapm/071/6001258.81011arXiv:0805.3553
– reference: KreinM.Sur la decomposition minimale d’une fonctionnelle lineaire en composantes positivesDokl. Akad. Nauk SSSR (NS)19402818220024.12203
– reference: EllisA.J.The duality of partially ordered normed linear spacesJ. Lond. Math. Soc.196439173074416902010.1112/jlms/s1-39.1.7300131.11302
– reference: EdwardsC.M.The theory of pure operationsCommun. Math. Phys.197224426028829726010.1007/BF018784760227.460731971CMaPh..24..260E
– reference: VirmaniS.SacchiM.F.PlenioM.B.MarkhamD.Optimal local discrimination of two multipartite pure statesPhys. Lett. A200128826268186088410.1016/S0375-9601(01)00484-40971.810082001PhLA..288...62V
– reference: ChiribellaG.ScandoloC.M.Entanglement and thermodynamics in general probabilistic theoriesNew J. Phys.20151710302710.1088/1367-2630/17/10/1030272015NJPh...17j3027C
– reference: KoecherM.Die geoodätischen von PositivitaätsbereichenMath. Ann.195813519220210398710.1007/BF01351796
– reference: Pisier, G.: Finite rank projections on Banach spaces and a conjecture of Grothendieck. In: Proceedings of the International Congress of Mathematicians, vol. 2, Warszawa, pp. 1027–1039 (1983)
– reference: de LauneyW.GordonD.M.A comment on the Hadamard conjectureJ. Combin. Theory Ser. A2001951180184184048410.1006/jcta.2000.31550973.05011
– reference: BarnumH.WilceA.Information processing in convex operational theoriesElectron. Notes Theor. Comput. Sci.2011270131510.1016/j.entcs.2011.01.0021348.81130arXiv:0908.2352
– reference: LindenstraussJ.TzafririL.Classical Banach Spaces I and II1977BerlinSpringer10.1007/978-3-642-66557-80362.46013
– reference: RödlP. FranklV.Wilson R.M.The number of submatrices of a given type in a Hadamard matrix and related resultsJ. Combin. Theory Ser. B198844331732894144010.1016/0095-8956(88)90040-80658.05015
– ident: 3154_CR49
– volume: 265
  start-page: 95
  issue: 1
  year: 2006
  ident: 3154_CR59
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-006-1535-6
– volume: 64
  start-page: 062307
  year: 2001
  ident: 3154_CR40
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.64.062307
– volume: 28
  start-page: 18
  year: 1940
  ident: 3154_CR23
  publication-title: Dokl. Akad. Nauk SSSR (NS)
– volume-title: Convex Optimization
  year: 2004
  ident: 3154_CR24
  doi: 10.1017/CBO9780511804441
– volume-title: Probabilistic Methods in Combinatorics
  year: 1974
  ident: 3154_CR51
– volume: 70
  start-page: 1895
  year: 1993
  ident: 3154_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.70.1895
– volume-title: Tensor Norms and Operator Ideals
  year: 1993
  ident: 3154_CR46
– volume: 151
  start-page: 181
  issue: 1
  year: 1983
  ident: 3154_CR48
  publication-title: Acta Math.
  doi: 10.1007/BF02393206
– volume: 328
  start-page: 303
  issue: 1
  year: 2014
  ident: 3154_CR31
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-1953-9
– volume: 13
  start-page: 063024
  year: 2011
  ident: 3154_CR16
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/6/063024
– volume: 288
  start-page: 62
  issue: 2
  year: 2001
  ident: 3154_CR33
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(01)00484-4
– volume: 31
  start-page: 1915
  year: 1992
  ident: 3154_CR12
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF00671964
– volume: 99
  start-page: 240501
  year: 2007
  ident: 3154_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.240501
– volume: 31
  start-page: 469
  issue: 2
  year: 1969
  ident: 3154_CR27
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1969.31.469
– volume-title: Quantum Detection and Estimation Theory
  year: 1976
  ident: 3154_CR30
– ident: 3154_CR42
– volume: 24
  start-page: 260
  issue: 4
  year: 1972
  ident: 3154_CR9
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01878476
– volume-title: Mathematical Foundations of Quantum Mechanics
  year: 1963
  ident: 3154_CR5
– volume: 270
  start-page: 3
  issue: 1
  year: 2011
  ident: 3154_CR22
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2011.01.002
– volume: 58
  start-page: 197
  issue: 2
  year: 1976
  ident: 3154_CR56
  publication-title: Stud. Math.
  doi: 10.4064/sm-58-2-197-208
– volume: 20
  start-page: 26
  issue: 1
  year: 1971
  ident: 3154_CR8
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01646732
– volume: 4
  start-page: 1851
  year: 2013
  ident: 3154_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2821
– volume: 95
  start-page: 180
  issue: 1
  year: 2001
  ident: 3154_CR55
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1006/jcta.2000.3155
– volume: 109
  start-page: 101
  issue: 1
  year: 1994
  ident: 3154_CR58
  publication-title: Stud. Math.
– ident: 3154_CR10
  doi: 10.1007/978-3-642-71897-7_1
– volume: 44
  start-page: 317
  issue: 3
  year: 1988
  ident: 3154_CR52
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/0095-8956(88)90040-8
– volume: 333
  start-page: 761
  issue: 2
  year: 2015
  ident: 3154_CR35
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-014-2213-8
– volume: 26
  start-page: 199
  year: 1987
  ident: 3154_CR11
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF00668911
– volume: 43
  start-page: 1411
  issue: 12
  year: 2013
  ident: 3154_CR18
  publication-title: Found. Phys.
  doi: 10.1007/s10701-013-9752-2
– volume-title: Functional Analysis
  year: 1991
  ident: 3154_CR25
– volume: 39
  start-page: 730
  issue: 1
  year: 1964
  ident: 3154_CR7
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/s1-39.1.730
– volume-title: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory
  year: 2017
  ident: 3154_CR26
  doi: 10.1090/surv/223
– volume: 85
  start-page: 4972
  year: 2000
  ident: 3154_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.4972
– volume-title: Introduction to Tensor Products of Banach Spaces
  year: 2002
  ident: 3154_CR47
  doi: 10.1007/978-1-4471-3903-4
– volume-title: The Probabilistic Method
  year: 2015
  ident: 3154_CR54
– volume: 71
  start-page: 25
  year: 2012
  ident: 3154_CR15
  publication-title: Proc. Symp. Appl. Math.
  doi: 10.1090/psapm/071/600
– volume: 17
  start-page: 103027
  year: 2015
  ident: 3154_CR20
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/10/103027
– volume: 24
  start-page: 379
  issue: 3
  year: 1994
  ident: 3154_CR14
  publication-title: Found. Phys.
  doi: 10.1007/BF02058098
– volume-title: Classical Banach Spaces I and II
  year: 1977
  ident: 3154_CR50
  doi: 10.1007/978-3-642-66557-8
– volume: 86
  start-page: 5807
  year: 2001
  ident: 3154_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.86.5807
– volume: 141
  start-page: 270
  year: 1960
  ident: 3154_CR45
  publication-title: Dokl. Acad. Nauk. SSSR
– volume: 59
  start-page: 4206
  year: 1999
  ident: 3154_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.4206
– volume: 135
  start-page: 192
  year: 1958
  ident: 3154_CR44
  publication-title: Math. Ann.
  doi: 10.1007/BF01351796
– volume: 59
  start-page: 141
  year: 1999
  ident: 3154_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.141
– volume: 79
  start-page: 062306
  year: 2009
  ident: 3154_CR29
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.79.062306
– volume: 48
  start-page: 580
  issue: 3
  year: 2002
  ident: 3154_CR3
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.985948
– volume: 285
  start-page: 161
  issue: 1
  year: 2008
  ident: 3154_CR34
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0582-6
– ident: 3154_CR1
– volume: 110
  start-page: 16373
  year: 2013
  ident: 3154_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1304884110
– ident: 3154_CR21
– ident: 3154_CR28
  doi: 10.1007/978-3-0348-8871-4_14
– volume: 486
  start-page: 409
  year: 2015
  ident: 3154_CR53
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2015.08.024
– volume: 17
  start-page: 239
  issue: 3
  year: 1970
  ident: 3154_CR6
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01647093
– volume: 40
  start-page: 4277
  issue: 8
  year: 1989
  ident: 3154_CR39
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.40.4277
– volume: 75
  start-page: 032304
  year: 2007
  ident: 3154_CR13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032304
– ident: 3154_CR41
– volume: 70
  start-page: 231
  issue: 3
  year: 1981
  ident: 3154_CR57
  publication-title: Stud. Math.
  doi: 10.4064/sm-70-3-231-283
– volume: 291
  start-page: 813
  issue: 3
  year: 2009
  ident: 3154_CR4
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-009-0890-5
SSID ssj0009266
Score 2.539012
Snippet The phenomenon of data hiding, i.e. the existence of pairs of states of a bipartite system that are perfectly distinguishable via general entangled...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 661
SubjectTerms Banach spaces
Classical and Quantum Gravitation
Complex Systems
Figure of merit
Mathematical and Computational Physics
Mathematical Physics
Norms
Physics
Physics and Astronomy
Quantum mechanics
Quantum Physics
Quantum theory
Relativity Theory
Theoretical
Upper bounds
Title Ultimate Data Hiding in Quantum Mechanics and Beyond
URI https://link.springer.com/article/10.1007/s00220-018-3154-4
https://www.proquest.com/docview/2070858278
Volume 361
WOSCitedRecordID wos000438925500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009266
  issn: 0010-3616
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86FfTgdCpOp-TgSSkkTZp0R1HHLhuKTnYr-YTBrLJ2_v0m_RqKCnps-5qG95K89_p7HwBc6IhpxKXPdVLcw4w0kEayQFOhjVRIUmqLZhN8PI6n0_59lced1dHuNSRZnNRNsptXNz6Iyv_Pi2hA18FG5IvNeBf98XlVaTcsAUqP8hKGWQ1lfjfEZ2W0sjC_gKKFrhm0_zXLPbBbmZbwulwL-2DNpB3QrsxMWG3irAN2Rk2pVne1VcSAquwA0Mk8n7nbBt6KXMDhzKs1OEvhw9Kxf_kCR8anCTtaKFINy9yXQzAZ3D3dDIOqqUKgCGZ50BfYGVXMWmI4kQIbjGTspmq0FIoZxPvcg5k2JNToUBBsDJIkijULrbDOGDkCrfQ1NccAaudcOmtEWaydE8eJQIpqJDC3zDAi4y5ANXcTVVUc940v5klTK7ngVuK4lXhuJbQLLptX3spyG78R92qRJdXOy5LQnWFxFIfcff6qFtHq8Y-DnfyJ-hRsh17GRdxuD7TyxdKcgU31ns-yxXmxID8AIETW0w
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90KuqD8xOnU_Pgk1JomyzpHkUdE7ehuMneSr4Kg1ll7fz7Tfo1FBX0se01DXdJ7q6_-wA4Vy2qXCZsrpNkFmYkjtCCOopwpYV0BSFR1myCDQbBeNx-KPK4kzLavYQks5O6Snaz6sYGUdn_eS3ikGVYIbbLjnXRn54XlXb9HKC0KC-mHi2hzO-G-KyMFhbmF1A00zWd-r9muQ1bhWmJrvK1sANLOt6FemFmomITJ7uw2a9KtZqrtSwGVCZ7QEbTdGJua3TDU466E6vW0CRGj3PD_vkL6mubJmxoEY8VynNf9mHUuR1ed52iqYIjsUdTp809Y1TRKMKaYcE97bkiMFPVSnBJtcvazIKZkY-JVj7HntauwK1AUT_ikTFGDqAWv8b6EJAyzqWxRmTkKePEMcxdSZTLPRZRTbEIGuCW3A1lUXHcNr6YhlWt5IxboeFWaLkVkgZcVK-85eU2fiNuliILi52XhL45w4JW4DPz-ctSRIvHPw529CfqM1jvDvu9sHc3uD-GDd_KO4vhbUItnc31CazK93SSzE6zxfkBOunZtw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60HuiD9cR67oNPSmiS3e6mj6KWirbUE9_CnlCoUUzq73c3R4uigviYZLJZZnYzM_vNAXCkWlT5TLhcJ8kczEg8oQX1FOFKC-kLQkzebIL1-9HTU3tQ9jlNq2j3CpIschpclaYka74q05wkvjnV4wKq3Nlei3hkFuaIdWRcTNft3eO06m5YgJUO8cU0oBWs-d0QnxXT1Nr8ApDmeqdT__eMV2GlNDnRabFG1mBGJ-tQL81PVG7udB2We5MSrvZqIY8NlekGkIdRNrS3NTrnGUfdoVN3aJigm7EVy_gZ9bRLH7a0iCcKFTkxm_DQubg_63plswVP4oBmXpsH1tiixmDNsOCBDnwR2alqJbik2mdt5kBOE2KiVchxoLUvcCtSNDTcWCNlC2rJS6K3ASnrdForRZpAWeeOYe5LonweMEM1xSJqgF9xOpZlJXLXEGMUT2oo59yKLbdix62YNOB48sprUYbjN-K9SnxxuSPTOLT_tqgVhcx-_qQS1_Txj4Pt_In6EBYH5534-rJ_tQtLoRN3Htq7B7Xsbaz3YV6-Z8P07SBfpx9VgOKb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultimate+Data+Hiding+in+Quantum+Mechanics+and+Beyond&rft.jtitle=Communications+in+mathematical+physics&rft.au=Lami%2C+Ludovico&rft.au=Palazuelos%2C+Carlos&rft.au=Winter%2C+Andreas&rft.date=2018-07-01&rft.pub=Springer+Nature+B.V&rft.issn=0010-3616&rft.eissn=1432-0916&rft.volume=361&rft.issue=2&rft.spage=661&rft.epage=708&rft_id=info:doi/10.1007%2Fs00220-018-3154-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-3616&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-3616&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-3616&client=summon