Spectral Extremal Results with Forbidding Linear Forests

The Turán type extremal problems ask to maximize the number of edges over all graphs which do not contain fixed subgraphs. Similarly, their spectral counterparts ask to maximize spectral radius of all graphs which do not contain fixed subgraphs. In this paper, we determine the maximum spectral radiu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Graphs and combinatorics Ročník 35; číslo 1; s. 335 - 351
Hlavní autori: Chen, Ming-Zhu, Liu, A-Ming, Zhang, Xiao-Dong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tokyo Springer Japan 01.01.2019
Springer Nature B.V
Predmet:
ISSN:0911-0119, 1435-5914
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The Turán type extremal problems ask to maximize the number of edges over all graphs which do not contain fixed subgraphs. Similarly, their spectral counterparts ask to maximize spectral radius of all graphs which do not contain fixed subgraphs. In this paper, we determine the maximum spectral radius of all graphs without a linear forest as a subgraph and all the extremal graphs. In addition, the maximum number of edges and spectral radius of all bipartite graphs without k · P 3 as a subgraph are obtained and all the extremal graphs are also determined. Moreover, some relations between Turán type extremal problems and their spectral counterparts are discussed.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-018-1996-3