An algorithm for the inversion of Laplace transforms using Puiseux expansions
This paper is devoted to designing a practical algorithm to invert the Laplace transform by assuming that the transform possesses the Puiseux expansion at infinity. First, the general asymptotic expansion of the inverse function at zero is derived, which can be used to approximate the inverse functi...
Uloženo v:
| Vydáno v: | Numerical algorithms Ročník 78; číslo 1; s. 107 - 132 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.05.2018
Springer Nature B.V |
| Témata: | |
| ISSN: | 1017-1398, 1572-9265 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper is devoted to designing a practical algorithm to invert the Laplace transform by assuming that the transform possesses the Puiseux expansion at infinity. First, the general asymptotic expansion of the inverse function at zero is derived, which can be used to approximate the inverse function when the variable is small. Second, an inversion algorithm is formulated by splitting the Bromwich integral into two parts. One is the main weakly oscillatory part, which is evaluated by a composite Gauss–Legendre rule and its Kronrod extension, and the other is the remaining strongly oscillatory part, which is integrated analytically using the Puiseux expansion of the transform at infinity. Finally, some typical tests show that the algorithm can be used to invert a wide range of Laplace transforms automatically with high accuracy and the output error estimator matches well with the true error. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1017-1398 1572-9265 |
| DOI: | 10.1007/s11075-017-0369-y |