Analysis of Entropy Production of Immiscible Micropolar and Newtonian Fluids Flow through a Channel: Effect of Thermal Radiation and Magnetic Field

This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and Newtonian viscous fluid within a channel. Here, the authors emphasize the influence of thermal radiation and oriented magnetic field on the therm...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Colloid journal of the Russian Academy of Sciences Ročník 85; číslo 1; s. 95 - 113
Hlavní autori: Pramod Kumar Yadav, Kumar, Ankit, Filippov, A. N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Moscow Pleiades Publishing 01.02.2023
Springer Nature B.V
Predmet:
ISSN:1061-933X, 1608-3067
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and Newtonian viscous fluid within a channel. Here, the authors emphasize the influence of thermal radiation and oriented magnetic field on the thermal profile and entropy generation of two different types of non-miscible and incompressible micropolar and Newtonian fluids in a channel. The viscous dissipation and thermal radiation effect are also considered in the thermal energy equation. In this work, the entropy production is analyzed within a channel due to oriented magnetic field and thermal radiation. A constant pressure gradient acts on the entry zone of flow domain and static walls of the channel are isothermal. In this problem, we tried to simulate thermal radiation in energy equation by adopting the Rosseland’s diffusion approximation. According to geometrical configuration of the problem, the conditions of no-slip at the walls of the channel and continuity of thermal exchange, microrotation, shear stress, flow velocity and heat flux at the interface of immiscible fluids are used. The governing equations for the flow of immiscible fluids are solved by reliable technique and exact solution for thermal characteristics and flow field are evaluated. The mathematical results of thermal profile and flow characteristics are used to obtain the Bejan number profile as well as the entropy production number profile. The influence of various thermo-physical governing parameters such as radiation parameter, Reynolds number, inclination angle parameter, viscous dissipation parameter, micropolarity parameter and Hartmann number, which describe the physical significance of the present model, on the flow and thermal characteristics of the model are discussed graphically. The newly obtained results of this study are verified with previous published results.
AbstractList This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and Newtonian viscous fluid within a channel. Here, the authors emphasize the influence of thermal radiation and oriented magnetic field on the thermal profile and entropy generation of two different types of non-miscible and incompressible micropolar and Newtonian fluids in a channel. The viscous dissipation and thermal radiation effect are also considered in the thermal energy equation. In this work, the entropy production is analyzed within a channel due to oriented magnetic field and thermal radiation. A constant pressure gradient acts on the entry zone of flow domain and static walls of the channel are isothermal. In this problem, we tried to simulate thermal radiation in energy equation by adopting the Rosseland’s diffusion approximation. According to geometrical configuration of the problem, the conditions of no-slip at the walls of the channel and continuity of thermal exchange, microrotation, shear stress, flow velocity and heat flux at the interface of immiscible fluids are used. The governing equations for the flow of immiscible fluids are solved by reliable technique and exact solution for thermal characteristics and flow field are evaluated. The mathematical results of thermal profile and flow characteristics are used to obtain the Bejan number profile as well as the entropy production number profile. The influence of various thermo-physical governing parameters such as radiation parameter, Reynolds number, inclination angle parameter, viscous dissipation parameter, micropolarity parameter and Hartmann number, which describe the physical significance of the present model, on the flow and thermal characteristics of the model are discussed graphically. The newly obtained results of this study are verified with previous published results.
Author Pramod Kumar Yadav
Kumar, Ankit
Filippov, A. N.
Author_xml – sequence: 1
  surname: Pramod Kumar Yadav
  fullname: Pramod Kumar Yadav
  organization: Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad
– sequence: 2
  givenname: Ankit
  surname: Kumar
  fullname: Kumar, Ankit
  organization: Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad
– sequence: 3
  givenname: A. N.
  surname: Filippov
  fullname: Filippov, A. N.
  email: filippov.a@gubkin.ru
  organization: Department of Higher Mathematics, National University of Oil and Gas “Gubkin University”
BookMark eNp9kctKLDEQhoMoeH0Ad4Gzbs2lp6fbnQwz5wje8ALumup09Uwkk4xJGpnn8IVNO4KgHFdVVP3fn0rVPtm2ziIhx5ydcC7z03vOCl5J-SREwZhkbIvs8YKVmWTFeDvlqZ0N_V2yH8IzY6zIWblH3s4tmHXQgbqOTm30brWmt961vYra2aF6sVzqoHRjkF5plQTOgKdgW3qNr9FZDZbOTK_bkIJ7pXHhXT9fUKCTBViL5oxOuw5VHMweFuiXYOgdtBo-XhiMrmBuMWpFZxpNe0h2OjABjz7jAXmcTR8m_7LLm78Xk_PLTElexKwaM-xy2TQjEIqPuEhZVfKyVCihhLbgAiuEUVe2DcMGueKQI2uxUlAJ0ckD8mfju_LupccQ62fX-7SPUEsxykVR8bxKqvFGlb4egseuVjp-jB49aFNzVg8XqH9cIJH8G7nyegl-_SsjNkxIWjtH_zXT_6F32n6bSw
CitedBy_id crossref_primary_10_1080_23324309_2024_2413187
crossref_primary_10_1002_zamm_202300635
crossref_primary_10_1016_j_icheatmasstransfer_2024_108118
crossref_primary_10_1016_j_icheatmasstransfer_2025_108846
crossref_primary_10_1007_s41939_025_00859_3
crossref_primary_10_1002_zamm_70080
crossref_primary_10_1016_j_jrras_2025_101367
crossref_primary_10_1016_j_aej_2024_06_075
crossref_primary_10_1016_j_cjph_2025_07_028
crossref_primary_10_1007_s41939_025_00978_x
crossref_primary_10_1140_epjp_s13360_023_04357_8
crossref_primary_10_1177_09544089231218977
crossref_primary_10_3390_app151810183
Cites_doi 10.1063/1.1724410
10.1007/978-1-4612-0641-5
10.1016/j.icheatmasstransfer.2022.105954
10.1155/2011/132302
10.1007/978-3-7091-2720-9
10.1016/j.jestch.2014.05.004
10.1016/j.ijheatmasstransfer.2013.11.058
10.1109/TPS.1986.4316600
10.1038/s41598-021-99269-x
10.1007/s00231-004-0565-x
10.1109/TPS.1979.4317226
10.1017/S0022112062000889
10.2514/8.9412
10.1002/9781119245964
10.1007/s00231-011-0815-7
10.3390/e13091595
10.1016/j.ijheatmasstransfer.2012.01.051
10.1016/j.icheatmasstransfer.2011.03.006
10.1002/9781118671627
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2023. ISSN 1061-933X, Colloid Journal, 2023, Vol. 85, No. 1, pp. 95–113. © Pleiades Publishing, Ltd., 2023. ISSN 1061-933X, Colloid Journal, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Kolloidnyi Zhurnal, 2023, Vol. 85, No. 1, pp. 101–121.
Pleiades Publishing, Ltd. 2023.
Copyright_xml – notice: Pleiades Publishing, Ltd. 2023. ISSN 1061-933X, Colloid Journal, 2023, Vol. 85, No. 1, pp. 95–113. © Pleiades Publishing, Ltd., 2023. ISSN 1061-933X, Colloid Journal, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Kolloidnyi Zhurnal, 2023, Vol. 85, No. 1, pp. 101–121.
– notice: Pleiades Publishing, Ltd. 2023.
DBID AAYXX
CITATION
7XB
8FE
8FG
ABJCF
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1134/S1061933X22600300
DatabaseName CrossRef
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Materials Science Collection
ProQuest Central Student
Technology Collection
ProQuest Central Basic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1608-3067
EndPage 113
ExternalDocumentID 10_1134_S1061933X22600300
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
ML-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P9N
PF0
PT4
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
XU3
YLTOR
Z5O
Z7V
Z7W
Z7Y
Z85
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PDBOC
PHGZM
PHGZT
PQGLB
7XB
8FE
8FG
D1I
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-970ef43bb5a2c1512bb598188ce3a8ad612e9ea5f8db0ebe1c1a4e0de9ca922f3
IEDL.DBID M2P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936427900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1061-933X
IngestDate Sat Sep 27 04:21:55 EDT 2025
Sat Nov 29 04:49:24 EST 2025
Tue Nov 18 21:29:41 EST 2025
Fri Feb 21 02:43:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords inclined magnetic field
entropy production number
Bejan number
micropolar fluid
immiscible fluids
thermal radiation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-970ef43bb5a2c1512bb598188ce3a8ad612e9ea5f8db0ebe1c1a4e0de9ca922f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3254269149
PQPubID 2043575
PageCount 19
ParticipantIDs proquest_journals_3254269149
crossref_citationtrail_10_1134_S1061933X22600300
crossref_primary_10_1134_S1061933X22600300
springer_journals_10_1134_S1061933X22600300
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Colloid journal of the Russian Academy of Sciences
PublicationTitleAbbrev Colloid J
PublicationYear 2023
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References NowackiW.Theory of Micropolar Elasticity1970WienSpringer–Verlag10.1007/978-3-7091-2720-9
KamışlıF.ÖztopH. F.Second law analysis of the 2D laminar flow of two-immiscible, incompressible viscous fluids in a channel, Heat Mass Transfer200844751761
MurthyJ.R.SrinivasJ.Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel, Int. J. Heat Mass Transfer201365254264
HappelJ.BrennerH.Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media2012
ArimanT.CakmakA.S.Some basic viscous flows in micropolar fluids, Rheol. Acta19687236242
JenaS.K.MathurM.Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci.198119143114391:CAS:528:DyaL3MXlvV2htLY%3D
BejanA.Advanced Engineering Thermodynamics201610.1002/9781119245964
NikodijevićD.StamenkovićZ.MilenkovićD.BlagojevićB.NikodijevicJ.Math. Probl. Eng.2011201113230210.1155/2011/132302
UmavathiJ.C.ChamkhaA.J.MateenA.Al–MudhafA.Heat Mass Transfer20054281901:CAS:528:DC%2BD2MXhtlemurnM10.1007/s00231-004-0565-x
SrinivasacharyaD.BinduK.H.Entropy generation in a micropolar fluid flow through an inclined channel, AlexandriaEng. J.201655973982
EringenA.C.Microcontinuum Field Theories: II. Fluent Media2001
ArimanT.TurkM.SylvesterN.Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci.197412273293
EringenA.C.Simple microfluids, Int. J. Eng. Sci.19642205217
GorlaR.S.R.Second law analysis of mixed convection in a laminar, non-Newtonian fluid flow through a vertical channel, ISRNApplied Mathematics20112011287691
BejanA.Convection Heat Transfer201310.1002/9781118671627
OahimireJ.OlajuwonB.Effect of hall current and thermal radiation on heat and mass transfer of a chemically reacting MHD flow of a micropolar fluid through a porous medium, J. King Saud Univ.–Eng. Sci.201426112121
JangiliS.AdesanyaS.FaladeJ.GajjelaN.Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non-Darcian porous medium, Int. J. Appl. Comput. Math.2017337593782
SrinivasJ.MurthyJ.R.ChamkhaA.J.Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using ham, Int. J. Numer. Methods Heat Fluid Flow.20162610271049
YadavP.K.JaiswalS.SharmaB.Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel, Appl. Math. Mech.2018399931006
BitlaP.IyengarT.Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field, European J. Mech.–B/Fluids201448174182
SrinivasJ.MurthyJ.R.BégO.A.Entropy generation analysis of radiative heat transfer effects on channel flow of two immiscible couple stress fluids, J. Braz. Soc. Mech. Sci. Eng.201739219122021:CAS:528:DC%2BC2sXksVCmtbg%3D
DarA.A.ElangovanK.Influence of an inclined magnetic field on heat and mass transfer of the peristaltic flow of a couple stress fluid in an inclined channel, WorldJ. Eng.2017147181:CAS:528:DC%2BC1cXlsVait7Y%3D
BlumE.L.ZaksM.V.IvanovU.I.MikhailovY.A.Heat Exchange and Mass Exchange in Magnetic Field1967RigaZinatne
KhanukaevaD.Yu.FilippovA.N.Isothermal Flows of Micropolar Liquids: Formulation of Problems and Analytical Solutions, Colloid J.20188014361:CAS:528:DC%2BC1cXjsFSlsb0%3D
DesoukyaA.ElIsmaila, H.N.A., Abourabiab, A.M., Hammada, D., and Ahmeda, N.AAnalysis of entropy generation of MHD micropolar fluid through a rectangular duct with effect of induced magnetic field and slip boundary conditions, International Journal of Advances in Applied Mathematics and Mechanics202073142
NikodijevicD.MilenkovicD.StamenkovicZ.Heat Mass Transfer201147152515351:CAS:528:DC%2BC3MXhsVSqtrfM10.1007/s00231-011-0815-7
BejanA.Second law analysis in heat transfer, Energy19805720732
MagyariE.PantokratorasA.Int. Commun. Heat Mass Transfer20113855455610.1016/j.icheatmasstransfer.2011.03.006
BhattacharyyaK.MukhopadhyayS.LayekG.PopI.Int. J. Heat Mass Transfer201255294529521:CAS:528:DC%2BC38XlsFyhurk%3D10.1016/j.ijheatmasstransfer.2012.01.051
ShahN.A.AlrabaiahH.VieruD.YookS.Sci. Rep.20221211410.1038/s41598-021-99269-x
MuthurajR.SrinivasS.Fully developed MHD flow of a micropolar and viscous fluids in a vertical porous space using ham, InternationalJournal of Applied Mathematics and Mechanics201065578
SunR.HuW.JiaoB.QiC.Heat transfer characteristics and entropy generation of electroosmotic flow in a rotating rectangular microchannel, Int. J. Therm. Sci.2019140238254
SoundalgekarV.VighnesamN.TakharH.IEEE Trans. Plasma Sci.1979717818210.1109/TPS.1979.4317226
EringenA.C.Theory of micropolar fluids, J. Math. Mech.196616118
SparrowE.M.Radiation Heat Transfer2018
ChenC.K.YangY.T.ChangK.H.Entropy2011131595161010.3390/e13091595
SoundalgekarV.UplekarA.IEEE Trans. Plasma Sci.19861457958310.1109/TPS.1986.4316600
GlobeS.Phys. Fluids1959240440710.1063/1.1724410
JaiswalS.YadavP.K.A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field, Phys. Fluids201931071901
RashidiM.KavyaniN.AbelmanS.Int. J. Heat Mass Transfer20147089291710.1016/j.ijheatmasstransfer.2013.11.058
SrinivasJ.MurthyJ.R.Second law analysis of the flow of two immiscible micropolar fluids between two porous beds, J. Engin. Thermophys.2016251261421:CAS:528:DC%2BC28Xjt1Wmu7w%3D
JangiliS.MurthyJ.Thermodynamic analysis for the MHD flow of two immiscible micropolar fluids between two parallel plates, Front.Heat Mass Transfer201561
GoldR.R.J. Fluid Mech.19621350551210.1017/S0022112062000889
ReesD.A.S.BassomA.P.The Blasius boundary-layer flow of a micropolar fluid, Int. J. Eng. Sci.1996341131241:CAS:528:DyaK28XmtlGhtA%3D%3D
PaolettiS.RispoliF.SciubbaE.Calculation of exergetic losses in compact heat exchanger passages, ASME AES1989102129
HartmannJ.LazarusF.Hg–Dynamics1937CopenhagenLevin & Munksgaard
LukaszewiczGMicropolar Fluids: Theory and Applications199910.1007/978-1-4612-0641-5
Olajuwon, B., Oahimire, J., and Ferdow, M., Effect of thermal radiation and hall current on heat and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium, Engineering Science and Technology, an International Journal, 2014, vol. 17, no. 4, pp. 185–193.
YadavP.K.JaiswalS.Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium, Can. J. Phys.201896101610281:CAS:528:DC%2BC1cXhsF2ns7nJ
DeoS.MauryaD.K.FilippovA.N.Effect of Magnetic Field on Hydrodynamic Permeability of Biporous Membrane Relative to Micropolar Liquid Flow, Colloid J.202183662675
YadavP.K.KumarA.An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit, Int. Commun. Heat Mass Transfer2021124105266
SrinivasS.MuthurajR.Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation20101520982108
NezhadA.ShahriM.Entropy generation case studies of two-immiscible fluids under the influence of a uniform magnetic field in an inclined channel, J. Mech.2016327497571:CAS:528:DC%2BC1cXkvVSqs70%3D
TaniI.Aerosp. Sci.19622929730510.2514/8.9412
AhmadiG.Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci.197614639646
KumawatC.SharmaB.K.Al–MdallalQ.M.Rahimi–GorjiM.Int. Commun. Heat Mass Transfer20221331059541:CAS:528:DC%2BB38XhtVOqtrrP10.1016/j.icheatmasstransfer.2022.105954
Sandeep, P. and Deshpande, M., A Note on the No-Slip Boundary Condition, Nat. Aerosp. Lab. Rept. PD-CF-0304, Bangalore, India, 2003.
ChenX.JianY.Entropy generation minimization analysis of two immiscible fluids, Int. J. Mol. Sci.2022171107210
YadavP.K.KumarA.El–SapaS.ChamkhaA.J.Impact of thermal radiation and oriented magnetic field on the flow of two immiscible fluids through porous media with different porosity, Waves in Random and Complex Media202232133
KhanA.KhanI.AlkanhalT.A.AliF.KhanD.NisarK.S.Entropy generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis, Entropy2019213591:CAS:528:DC%2BC1MXhsFGmt73L33267073
PrakashD.MuthtamilselvanM.Ain ShamsEngineering Journal2014512771286
GuptaV.JainA.JhaA.K.Convective effects on MHD flow and heat transfer between vertical plates moving in opposite direction and partially filled with a porous medium, J. Math. Phys.20164341358
AfridiM.I.QasimM.HussananA.Second law analysis of dissipative flow over a riga plate with non-linear Rosseland thermal radiation and variable transport properties, Entropy201820615
T. Ariman (8377_CR50) 1968; 7
A. Khan (8377_CR41) 2019; 21
A. Bejan (8377_CR57) 2016
E. Magyari (8377_CR13) 2011; 38
8377_CR15
J. Happel (8377_CR48) 2012
A. Desoukya (8377_CR24) 2020; 7
D.A.S. Rees (8377_CR54) 1996; 34
8377_CR56
T. Ariman (8377_CR51) 1974; 12
C. Kumawat (8377_CR32) 2022; 133
A. Nezhad (8377_CR22) 2016; 32
J. Hartmann (8377_CR2) 1937
A.C. Eringen (8377_CR34) 1966; 16
A. Bejan (8377_CR18) 1980; 5
P.K. Yadav (8377_CR27) 2021; 124
E.M. Sparrow (8377_CR45) 2018
D. Prakash (8377_CR14) 2014; 5
S. Paoletti (8377_CR58) 1989; 10
D. Nikodijevic (8377_CR9) 2011; 47
A.C. Eringen (8377_CR46) 2001
P.K. Yadav (8377_CR35) 2018; 39
N.A. Shah (8377_CR10) 2022; 12
G. Ahmadi (8377_CR47) 1976; 14
J. Srinivas (8377_CR21) 2016; 26
S. Srinivas (8377_CR11) 2010; 15
R. Muthuraj (8377_CR30) 2010; 6
A.A. Dar (8377_CR59) 2017; 14
D.Yu. Khanukaeva (8377_CR62) 2018; 80
S. Globe (8377_CR3) 1959; 2
F. Kamışlı (8377_CR23) 2008; 44
R. Sun (8377_CR26) 2019; 140
J. Srinivas (8377_CR31) 2016; 25
D. Nikodijević (8377_CR8) 2011; 2011
E.L. Blum (8377_CR1) 1967
S. Jaiswal (8377_CR39) 2019; 31
A. Bejan (8377_CR19) 2013
J. Srinivas (8377_CR17) 2017; 39
I. Tani (8377_CR5) 1962; 29
J.R. Murthy (8377_CR29) 2013; 65
V. Gupta (8377_CR42) 2016; 4
X. Chen (8377_CR25) 2022; 171
M. Rashidi (8377_CR43) 2014; 70
P. Bitla (8377_CR60) 2014; 48
R.R. Gold (8377_CR4) 1962; 13
S. Deo (8377_CR40) 2021; 83
V. Soundalgekar (8377_CR6) 1979; 7
R.S.R. Gorla (8377_CR61) 2011; 2011
S.K. Jena (8377_CR53) 1981; 19
J. Oahimire (8377_CR37) 2014; 26
W. Nowacki (8377_CR63) 1970
V. Soundalgekar (8377_CR7) 1986; 14
C.K. Chen (8377_CR12) 2011; 13
S. Jangili (8377_CR20) 2015; 6
D. Srinivasacharya (8377_CR38) 2016; 55
J.C. Umavathi (8377_CR44) 2005; 42
A.C. Eringen (8377_CR33) 1964; 2
M.I. Afridi (8377_CR49) 2018; 20
G Lukaszewicz (8377_CR52) 1999
S. Jangili (8377_CR16) 2017; 3
P.K. Yadav (8377_CR36) 2018; 96
K. Bhattacharyya (8377_CR55) 2012; 55
P.K. Yadav (8377_CR28) 2022; 32
References_xml – reference: BhattacharyyaK.MukhopadhyayS.LayekG.PopI.Int. J. Heat Mass Transfer201255294529521:CAS:528:DC%2BC38XlsFyhurk%3D10.1016/j.ijheatmasstransfer.2012.01.051
– reference: EringenA.C.Microcontinuum Field Theories: II. Fluent Media2001
– reference: PrakashD.MuthtamilselvanM.Ain ShamsEngineering Journal2014512771286
– reference: BitlaP.IyengarT.Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field, European J. Mech.–B/Fluids201448174182
– reference: SoundalgekarV.VighnesamN.TakharH.IEEE Trans. Plasma Sci.1979717818210.1109/TPS.1979.4317226
– reference: RashidiM.KavyaniN.AbelmanS.Int. J. Heat Mass Transfer20147089291710.1016/j.ijheatmasstransfer.2013.11.058
– reference: ShahN.A.AlrabaiahH.VieruD.YookS.Sci. Rep.20221211410.1038/s41598-021-99269-x
– reference: EringenA.C.Theory of micropolar fluids, J. Math. Mech.196616118
– reference: YadavP.K.JaiswalS.Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium, Can. J. Phys.201896101610281:CAS:528:DC%2BC1cXhsF2ns7nJ
– reference: LukaszewiczGMicropolar Fluids: Theory and Applications199910.1007/978-1-4612-0641-5
– reference: MuthurajR.SrinivasS.Fully developed MHD flow of a micropolar and viscous fluids in a vertical porous space using ham, InternationalJournal of Applied Mathematics and Mechanics201065578
– reference: JaiswalS.YadavP.K.A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field, Phys. Fluids201931071901
– reference: DeoS.MauryaD.K.FilippovA.N.Effect of Magnetic Field on Hydrodynamic Permeability of Biporous Membrane Relative to Micropolar Liquid Flow, Colloid J.202183662675
– reference: NowackiW.Theory of Micropolar Elasticity1970WienSpringer–Verlag10.1007/978-3-7091-2720-9
– reference: SrinivasS.MuthurajR.Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation20101520982108
– reference: ChenX.JianY.Entropy generation minimization analysis of two immiscible fluids, Int. J. Mol. Sci.2022171107210
– reference: NikodijevićD.StamenkovićZ.MilenkovićD.BlagojevićB.NikodijevicJ.Math. Probl. Eng.2011201113230210.1155/2011/132302
– reference: GlobeS.Phys. Fluids1959240440710.1063/1.1724410
– reference: Olajuwon, B., Oahimire, J., and Ferdow, M., Effect of thermal radiation and hall current on heat and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium, Engineering Science and Technology, an International Journal, 2014, vol. 17, no. 4, pp. 185–193.
– reference: NikodijevicD.MilenkovicD.StamenkovicZ.Heat Mass Transfer201147152515351:CAS:528:DC%2BC3MXhsVSqtrfM10.1007/s00231-011-0815-7
– reference: KamışlıF.ÖztopH. F.Second law analysis of the 2D laminar flow of two-immiscible, incompressible viscous fluids in a channel, Heat Mass Transfer200844751761
– reference: GuptaV.JainA.JhaA.K.Convective effects on MHD flow and heat transfer between vertical plates moving in opposite direction and partially filled with a porous medium, J. Math. Phys.20164341358
– reference: ArimanT.CakmakA.S.Some basic viscous flows in micropolar fluids, Rheol. Acta19687236242
– reference: KumawatC.SharmaB.K.Al–MdallalQ.M.Rahimi–GorjiM.Int. Commun. Heat Mass Transfer20221331059541:CAS:528:DC%2BB38XhtVOqtrrP10.1016/j.icheatmasstransfer.2022.105954
– reference: YadavP.K.JaiswalS.SharmaB.Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel, Appl. Math. Mech.2018399931006
– reference: AfridiM.I.QasimM.HussananA.Second law analysis of dissipative flow over a riga plate with non-linear Rosseland thermal radiation and variable transport properties, Entropy201820615
– reference: HartmannJ.LazarusF.Hg–Dynamics1937CopenhagenLevin & Munksgaard
– reference: ChenC.K.YangY.T.ChangK.H.Entropy2011131595161010.3390/e13091595
– reference: JangiliS.AdesanyaS.FaladeJ.GajjelaN.Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non-Darcian porous medium, Int. J. Appl. Comput. Math.2017337593782
– reference: HappelJ.BrennerH.Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media2012
– reference: SoundalgekarV.UplekarA.IEEE Trans. Plasma Sci.19861457958310.1109/TPS.1986.4316600
– reference: ReesD.A.S.BassomA.P.The Blasius boundary-layer flow of a micropolar fluid, Int. J. Eng. Sci.1996341131241:CAS:528:DyaK28XmtlGhtA%3D%3D
– reference: SparrowE.M.Radiation Heat Transfer2018
– reference: MurthyJ.R.SrinivasJ.Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel, Int. J. Heat Mass Transfer201365254264
– reference: BejanA.Convection Heat Transfer201310.1002/9781118671627
– reference: TaniI.Aerosp. Sci.19622929730510.2514/8.9412
– reference: YadavP.K.KumarA.El–SapaS.ChamkhaA.J.Impact of thermal radiation and oriented magnetic field on the flow of two immiscible fluids through porous media with different porosity, Waves in Random and Complex Media202232133
– reference: AhmadiG.Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci.197614639646
– reference: NezhadA.ShahriM.Entropy generation case studies of two-immiscible fluids under the influence of a uniform magnetic field in an inclined channel, J. Mech.2016327497571:CAS:528:DC%2BC1cXkvVSqs70%3D
– reference: OahimireJ.OlajuwonB.Effect of hall current and thermal radiation on heat and mass transfer of a chemically reacting MHD flow of a micropolar fluid through a porous medium, J. King Saud Univ.–Eng. Sci.201426112121
– reference: KhanA.KhanI.AlkanhalT.A.AliF.KhanD.NisarK.S.Entropy generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis, Entropy2019213591:CAS:528:DC%2BC1MXhsFGmt73L33267073
– reference: YadavP.K.KumarA.An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit, Int. Commun. Heat Mass Transfer2021124105266
– reference: EringenA.C.Simple microfluids, Int. J. Eng. Sci.19642205217
– reference: SrinivasacharyaD.BinduK.H.Entropy generation in a micropolar fluid flow through an inclined channel, AlexandriaEng. J.201655973982
– reference: PaolettiS.RispoliF.SciubbaE.Calculation of exergetic losses in compact heat exchanger passages, ASME AES1989102129
– reference: Sandeep, P. and Deshpande, M., A Note on the No-Slip Boundary Condition, Nat. Aerosp. Lab. Rept. PD-CF-0304, Bangalore, India, 2003.
– reference: BlumE.L.ZaksM.V.IvanovU.I.MikhailovY.A.Heat Exchange and Mass Exchange in Magnetic Field1967RigaZinatne
– reference: ArimanT.TurkM.SylvesterN.Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci.197412273293
– reference: MagyariE.PantokratorasA.Int. Commun. Heat Mass Transfer20113855455610.1016/j.icheatmasstransfer.2011.03.006
– reference: SrinivasJ.MurthyJ.R.Second law analysis of the flow of two immiscible micropolar fluids between two porous beds, J. Engin. Thermophys.2016251261421:CAS:528:DC%2BC28Xjt1Wmu7w%3D
– reference: SrinivasJ.MurthyJ.R.BégO.A.Entropy generation analysis of radiative heat transfer effects on channel flow of two immiscible couple stress fluids, J. Braz. Soc. Mech. Sci. Eng.201739219122021:CAS:528:DC%2BC2sXksVCmtbg%3D
– reference: SrinivasJ.MurthyJ.R.ChamkhaA.J.Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using ham, Int. J. Numer. Methods Heat Fluid Flow.20162610271049
– reference: GoldR.R.J. Fluid Mech.19621350551210.1017/S0022112062000889
– reference: UmavathiJ.C.ChamkhaA.J.MateenA.Al–MudhafA.Heat Mass Transfer20054281901:CAS:528:DC%2BD2MXhtlemurnM10.1007/s00231-004-0565-x
– reference: DarA.A.ElangovanK.Influence of an inclined magnetic field on heat and mass transfer of the peristaltic flow of a couple stress fluid in an inclined channel, WorldJ. Eng.2017147181:CAS:528:DC%2BC1cXlsVait7Y%3D
– reference: DesoukyaA.ElIsmaila, H.N.A., Abourabiab, A.M., Hammada, D., and Ahmeda, N.AAnalysis of entropy generation of MHD micropolar fluid through a rectangular duct with effect of induced magnetic field and slip boundary conditions, International Journal of Advances in Applied Mathematics and Mechanics202073142
– reference: GorlaR.S.R.Second law analysis of mixed convection in a laminar, non-Newtonian fluid flow through a vertical channel, ISRNApplied Mathematics20112011287691
– reference: SunR.HuW.JiaoB.QiC.Heat transfer characteristics and entropy generation of electroosmotic flow in a rotating rectangular microchannel, Int. J. Therm. Sci.2019140238254
– reference: BejanA.Advanced Engineering Thermodynamics201610.1002/9781119245964
– reference: JenaS.K.MathurM.Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci.198119143114391:CAS:528:DyaL3MXlvV2htLY%3D
– reference: KhanukaevaD.Yu.FilippovA.N.Isothermal Flows of Micropolar Liquids: Formulation of Problems and Analytical Solutions, Colloid J.20188014361:CAS:528:DC%2BC1cXjsFSlsb0%3D
– reference: BejanA.Second law analysis in heat transfer, Energy19805720732
– reference: JangiliS.MurthyJ.Thermodynamic analysis for the MHD flow of two immiscible micropolar fluids between two parallel plates, Front.Heat Mass Transfer201561
– volume: 39
  start-page: 993
  year: 2018
  ident: 8377_CR35
  publication-title: Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel, Appl. Math. Mech.
– volume: 96
  start-page: 1016
  year: 2018
  ident: 8377_CR36
  publication-title: Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium, Can. J. Phys.
– volume: 2
  start-page: 404
  year: 1959
  ident: 8377_CR3
  publication-title: Phys. Fluids
  doi: 10.1063/1.1724410
– volume: 34
  start-page: 113
  year: 1996
  ident: 8377_CR54
  publication-title: The Blasius boundary-layer flow of a micropolar fluid, Int. J. Eng. Sci.
– volume-title: Micropolar Fluids: Theory and Applications
  year: 1999
  ident: 8377_CR52
  doi: 10.1007/978-1-4612-0641-5
– volume: 133
  start-page: 105954
  year: 2022
  ident: 8377_CR32
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.105954
– volume: 14
  start-page: 639
  year: 1976
  ident: 8377_CR47
  publication-title: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci.
– volume: 4
  start-page: 341
  year: 2016
  ident: 8377_CR42
  publication-title: Convective effects on MHD flow and heat transfer between vertical plates moving in opposite direction and partially filled with a porous medium, J. Math. Phys.
– volume-title: Heat Exchange and Mass Exchange in Magnetic Field
  year: 1967
  ident: 8377_CR1
– volume: 2011
  start-page: 132302
  year: 2011
  ident: 8377_CR8
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2011/132302
– volume: 39
  start-page: 2191
  year: 2017
  ident: 8377_CR17
  publication-title: Entropy generation analysis of radiative heat transfer effects on channel flow of two immiscible couple stress fluids, J. Braz. Soc. Mech. Sci. Eng.
– volume: 25
  start-page: 126
  year: 2016
  ident: 8377_CR31
  publication-title: Second law analysis of the flow of two immiscible micropolar fluids between two porous beds, J. Engin. Thermophys.
– volume-title: Theory of Micropolar Elasticity
  year: 1970
  ident: 8377_CR63
  doi: 10.1007/978-3-7091-2720-9
– ident: 8377_CR15
  doi: 10.1016/j.jestch.2014.05.004
– volume: 5
  start-page: 720
  year: 1980
  ident: 8377_CR18
  publication-title: Second law analysis in heat transfer, Energy
– volume: 7
  start-page: 236
  year: 1968
  ident: 8377_CR50
  publication-title: Some basic viscous flows in micropolar fluids, Rheol. Acta
– volume: 70
  start-page: 892
  year: 2014
  ident: 8377_CR43
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.11.058
– volume: 14
  start-page: 579
  year: 1986
  ident: 8377_CR7
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1986.4316600
– volume: 83
  start-page: 662
  year: 2021
  ident: 8377_CR40
  publication-title: Effect of Magnetic Field on Hydrodynamic Permeability of Biporous Membrane Relative to Micropolar Liquid Flow, Colloid J.
– volume: 12
  start-page: 1
  year: 2022
  ident: 8377_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99269-x
– volume: 6
  start-page: 55
  year: 2010
  ident: 8377_CR30
  publication-title: Journal of Applied Mathematics and Mechanics
– volume: 42
  start-page: 81
  year: 2005
  ident: 8377_CR44
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-004-0565-x
– volume: 26
  start-page: 1027
  year: 2016
  ident: 8377_CR21
  publication-title: Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using ham, Int. J. Numer. Methods Heat Fluid Flow.
– volume: 55
  start-page: 973
  year: 2016
  ident: 8377_CR38
  publication-title: Eng. J.
– ident: 8377_CR56
– volume: 20
  start-page: 615
  year: 2018
  ident: 8377_CR49
  publication-title: Second law analysis of dissipative flow over a riga plate with non-linear Rosseland thermal radiation and variable transport properties, Entropy
– volume: 65
  start-page: 254
  year: 2013
  ident: 8377_CR29
  publication-title: Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel, Int. J. Heat Mass Transfer
– volume: 7
  start-page: 178
  year: 1979
  ident: 8377_CR6
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1979.4317226
– volume: 19
  start-page: 1431
  year: 1981
  ident: 8377_CR53
  publication-title: Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci.
– volume: 3
  start-page: 3759
  year: 2017
  ident: 8377_CR16
  publication-title: Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non-Darcian porous medium, Int. J. Appl. Comput. Math.
– volume: 12
  start-page: 273
  year: 1974
  ident: 8377_CR51
  publication-title: Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci.
– volume: 44
  start-page: 751
  year: 2008
  ident: 8377_CR23
  publication-title: Second law analysis of the 2D laminar flow of two-immiscible, incompressible viscous fluids in a channel, Heat Mass Transfer
– volume-title: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
  year: 2012
  ident: 8377_CR48
– volume: 171
  start-page: 107210
  year: 2022
  ident: 8377_CR25
  publication-title: Entropy generation minimization analysis of two immiscible fluids, Int. J. Mol. Sci.
– volume: 48
  start-page: 174
  year: 2014
  ident: 8377_CR60
  publication-title: Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field, European J. Mech.–B/Fluids
– volume: 13
  start-page: 505
  year: 1962
  ident: 8377_CR4
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112062000889
– volume: 29
  start-page: 297
  year: 1962
  ident: 8377_CR5
  publication-title: Aerosp. Sci.
  doi: 10.2514/8.9412
– volume-title: Advanced Engineering Thermodynamics
  year: 2016
  ident: 8377_CR57
  doi: 10.1002/9781119245964
– volume: 47
  start-page: 1525
  year: 2011
  ident: 8377_CR9
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-011-0815-7
– volume: 21
  start-page: 359
  year: 2019
  ident: 8377_CR41
  publication-title: Entropy generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis, Entropy
– volume: 13
  start-page: 1595
  year: 2011
  ident: 8377_CR12
  publication-title: Entropy
  doi: 10.3390/e13091595
– volume-title: Hg–Dynamics
  year: 1937
  ident: 8377_CR2
– volume: 6
  start-page: 1
  year: 2015
  ident: 8377_CR20
  publication-title: Heat Mass Transfer
– volume: 2011
  start-page: 287691
  year: 2011
  ident: 8377_CR61
  publication-title: Applied Mathematics
– volume: 55
  start-page: 2945
  year: 2012
  ident: 8377_CR55
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2012.01.051
– volume: 15
  start-page: 2098
  year: 2010
  ident: 8377_CR11
  publication-title: Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation
– volume: 14
  start-page: 7
  year: 2017
  ident: 8377_CR59
  publication-title: J. Eng.
– volume: 124
  start-page: 105266
  year: 2021
  ident: 8377_CR27
  publication-title: An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit, Int. Commun. Heat Mass Transfer
– volume: 16
  start-page: 1
  year: 1966
  ident: 8377_CR34
  publication-title: Theory of micropolar fluids, J. Math. Mech.
– volume-title: Microcontinuum Field Theories: II. Fluent Media
  year: 2001
  ident: 8377_CR46
– volume: 80
  start-page: 14
  year: 2018
  ident: 8377_CR62
  publication-title: Isothermal Flows of Micropolar Liquids: Formulation of Problems and Analytical Solutions, Colloid J.
– volume: 32
  start-page: 749
  year: 2016
  ident: 8377_CR22
  publication-title: Entropy generation case studies of two-immiscible fluids under the influence of a uniform magnetic field in an inclined channel, J. Mech.
– volume: 7
  start-page: 31
  year: 2020
  ident: 8377_CR24
  publication-title: Analysis of entropy generation of MHD micropolar fluid through a rectangular duct with effect of induced magnetic field and slip boundary conditions, International Journal of Advances in Applied Mathematics and Mechanics
– volume: 2
  start-page: 205
  year: 1964
  ident: 8377_CR33
  publication-title: Simple microfluids, Int. J. Eng. Sci.
– volume: 10
  start-page: 21
  year: 1989
  ident: 8377_CR58
  publication-title: Calculation of exergetic losses in compact heat exchanger passages, ASME AES
– volume: 5
  start-page: 1277
  year: 2014
  ident: 8377_CR14
  publication-title: Engineering Journal
– volume: 140
  start-page: 238
  year: 2019
  ident: 8377_CR26
  publication-title: Heat transfer characteristics and entropy generation of electroosmotic flow in a rotating rectangular microchannel, Int. J. Therm. Sci.
– volume: 32
  start-page: 1
  year: 2022
  ident: 8377_CR28
  publication-title: Impact of thermal radiation and oriented magnetic field on the flow of two immiscible fluids through porous media with different porosity, Waves in Random and Complex Media
– volume-title: Radiation Heat Transfer
  year: 2018
  ident: 8377_CR45
– volume: 31
  start-page: 071901
  year: 2019
  ident: 8377_CR39
  publication-title: A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field, Phys. Fluids
– volume: 26
  start-page: 112
  year: 2014
  ident: 8377_CR37
  publication-title: Eng. Sci.
– volume: 38
  start-page: 554
  year: 2011
  ident: 8377_CR13
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.03.006
– volume-title: Convection Heat Transfer
  year: 2013
  ident: 8377_CR19
  doi: 10.1002/9781118671627
SSID ssj0006408
Score 2.374152
Snippet This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 95
SubjectTerms Approximation
Boundary conditions
Chemistry
Chemistry and Materials Science
Dissipation
Electric fields
Electromagnetism
Entropy
Exact solutions
Flow characteristics
Flow velocity
Fluid flow
Hartmann number
Heat flux
Heat transfer
Inclination angle
Incompressible flow
Investigations
Magnetic fields
Mathematical analysis
Mathematical models
Miscibility
Newtonian fluids
Non-Newtonian fluids
Parameters
Polymer Sciences
Radiation
Researchers
Reynolds number
Shear stress
Surfaces and Interfaces
Thermal energy
Thermal radiation
Thin Films
Viscous fluids
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8RADA7igfrgsSquF_Pgk1JsZ8a245uIi4KKeLFvZTqdilC7i10Vf4d_2KSHt4I-tbTTtJA0ycck-QDWrfUTIQLuxAFiE6kT39FuGDsxTz2eKiW9knnu6ig4OQm7XXVa93EXTbV7syVZeuqKd0RunRN4Qfjd5TRTXbiI00cw2oXE13B2fvXqfn3pVv1vvufQ8nor81sRH4PRW4b5aVO0jDWd6X995QxM1akl261sYRaGbN6C8b2G0a0Fk--GD7ZgrCz-NMUcPDeTSVgvZftUut5_YqfVKFhUG109vL2l9t04s-yYSvj6hIiZzhOGXhLTRzQy1snub5ICD71HVtP_MM2ofSG32Q6r5iSTMDRNDAcZO6O5COUbSNCxvs6po5J1qKhuHi47-xd7B05N1uAY4fkDRwWuTaWI423NDaUReKYwGwiNFTpEG_C4VVZvp2ESu2g5nvG0tG5ildGK81QswHDey-0iMOFbtO8EvUlqJZehkkZrHsTGM4rywza4jdYiU08yJ0KNLCoRjZDRFy20YeP1kX41xuO3xSuNKUT1H11EApE09xUCyjZsNqp_u_2jsKU_rV6GCeKzr8rCV2B4cHdvV2HUPAxuiru10tBfADY39p8
  priority: 102
  providerName: Springer Nature
Title Analysis of Entropy Production of Immiscible Micropolar and Newtonian Fluids Flow through a Channel: Effect of Thermal Radiation and Magnetic Field
URI https://link.springer.com/article/10.1134/S1061933X22600300
https://www.proquest.com/docview/3254269149
Volume 85
WOSCitedRecordID wos000936427900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1608-3067
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0006408
  issn: 1061-933X
  databaseCode: KB.
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1608-3067
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0006408
  issn: 1061-933X
  databaseCode: BENPR
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1608-3067
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0006408
  issn: 1061-933X
  databaseCode: M2P
  dateStart: 20230201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1608-3067
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006408
  issn: 1061-933X
  databaseCode: RSV
  dateStart: 20001101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFkQ58EhBBEq0B04gU--jtpcLolUiECSKUqhys9brNarkOqFOW_V38IeZsddNBaIXLra1tseW5vPsN955ALx2LsqljEWQxeibKJNHgQmTLMhEwUWhteJN57njr_Fkkszneup_uNU-rLKziY2hzheW_pHvSfRkRKSR0H9Y_gyoaxStrvoWGhuwhcyGU0jXWEyvLXGkwjYVLuIBOu5zv6rJpdo7okEaE1ShXVKC2815aU02_1gfbaad0aP_feHH8NATTvaxRcgTuOOqHtw_7Pq89eDBjZKEPbjXhITaegd-dfVK2KJgQwpoX16xaVsgFpVJo59PTympNysdG1Ng35L8ZGaqnKHtRFKJ0GOj8vwkr3G3uGS-KRAzjJIaKle-Z231ZBKGgMVJomQzqpbQPIEEjc2PivIs2YhC7Z7C99Hw2-GnwLdwCKzk0SrQcegKJbNs3whL5AKPNHKExDppEkQGF047s18keRYinrjlRrkwd9oaLUQhn8Fmtajcc2Aycoj6HG1M4ZRQiVbWGBFnlltNrLEPYafA1Pr65tRmo0wbP0eq9C-d9-HN9S3LtrjHbRfvdnpO_Xdep2sl9-Fth5T16X8Ke3G7sJewTW3t2-jwXdhcnZ27V3DXXqxO6rMBbB0MJ9PZADa-HLwbNJDH7ezo-DcaNAVU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAmo58AigBgrsAS4gq95HbS8SqqrSqFGTKIKCcnPX6zWq5DqhTqn6O_o_-huZ8aOpQPTWAydba3v8mufuzDcAb50LUilD4SUhxibKpIFn_CjxEpFxkWmteNV57vsgHI2iyUSPl-CyrYWhtMpWJ1aKOp1amiPfkBjJiECjQ781--lR1yhaXW1baNRsse_OzzBkKz_1P-P_fSdEb_dgZ89rugp4VvJg7unQd5mSSbJphCV7h3sazVZknTQRPiwXTjuzmUVp4uMrcsuNcn7qtDVaiEwi3TtwVxGyGKUKivGV5g-UX5feBdzTUk6aVVQu1cZXGqQxQYjwkgrqrtvBhXP7x3psZeZ6j_63D_QYHjYONduuJeAJLLmiAys7bR-7Djy4BrnYgftVyqstn8JFi8fCphnbpYT92Tkb1wC4yKw02j8-pqLlJHdsSImLM5oHYKZIGdoGdJpRtFgvPz1KS9xMz1jT9IgZRkUbhcs_shodmoihQKIRzNkXQoOo7kCEhuZHQXWkrEephM_g2618q-ewXEwLtwZMBg6lOkUdmjklVKSVNUaEieVWk1fcBb9lmNg2-O3URiSPqzhOqvgvHuvC-6tLZjV4yU0nr7d8FTd6rIwXTNWFDy1nLg7_k9iLm4m9gZW9g-EgHvRH-y9hVaDjWGfCr8Py_OTUvYJ79tf8qDx5XQkYg8PbZtjfrFBhjw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hCpQe-FhasZQWHziBIhLbJDG3ihIVAasVULS3yHGcCilkV2Qp4nfwh5nJB5SPIiFOiRLHieQXe5488x7AurV-KkTAnSRAbiJ16jvaDRMn4ZnHM6WkVznPnR0GvV44GKh-43Nattnu7ZZkXdNAKk3FeGuUZo0Hidw6ISKDVHzASV9duMjZP0jKoye6fnJ2PxX70q1r4XzPoebNtuaLXTxemB6izScbpNW6E82_-4sXYK4JOdmPGiOLMGGLDnzcbZ3eOvDpH1HCDkxXSaGmXILbVrGEDTO2RyntoxvWryVicTjp6v7FBZX1JrllR5TaNyKmzHSRMpw9MaxE8LEovzpPSzwMr1ljC8Q0o7KGwuY7rNZPps4QsrhM5OyY9BKqN1BHR_pPQZWWLKJku8_wO9o73f3lNCYOjhGeP3ZU4NpMiiTZ1txQeIFnCqOE0FihQ8SGx62yejsL08RFRHnG09K6qVVGK84z8QUmi2Fhl4EJ3yLuU5xlMiu5DJU0WvMgMZ5RFDd2wW1HMDaNwjkZbeRxxXSEjJ-NQhc27h8Z1fIerzVebWERN396GQtk2NxXSDS7sNnC4OH2fztbeVPrNZjp_4ziw_3ewVeYJcv7OnN8FSbHl1f2G0yZv-Pz8vJ7hf8756oCdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Entropy+Production+of+Immiscible+Micropolar+and+Newtonian+Fluids+Flow+through+a+Channel%3A+Effect+of+Thermal+Radiation+and+Magnetic+Field&rft.jtitle=Colloid+journal+of+the+Russian+Academy+of+Sciences&rft.au=Pramod+Kumar+Yadav&rft.au=Kumar%2C+Ankit&rft.au=Filippov%2C+A.+N.&rft.date=2023-02-01&rft.issn=1061-933X&rft.eissn=1608-3067&rft.volume=85&rft.issue=1&rft.spage=95&rft.epage=113&rft_id=info:doi/10.1134%2FS1061933X22600300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1061933X22600300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-933X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-933X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-933X&client=summon