Analysis of Entropy Production of Immiscible Micropolar and Newtonian Fluids Flow through a Channel: Effect of Thermal Radiation and Magnetic Field
This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and Newtonian viscous fluid within a channel. Here, the authors emphasize the influence of thermal radiation and oriented magnetic field on the therm...
Uložené v:
| Vydané v: | Colloid journal of the Russian Academy of Sciences Ročník 85; číslo 1; s. 95 - 113 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Moscow
Pleiades Publishing
01.02.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1061-933X, 1608-3067 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and Newtonian viscous fluid within a channel. Here, the authors emphasize the influence of thermal radiation and oriented magnetic field on the thermal profile and entropy generation of two different types of non-miscible and incompressible micropolar and Newtonian fluids in a channel. The viscous dissipation and thermal radiation effect are also considered in the thermal energy equation. In this work, the entropy production is analyzed within a channel due to oriented magnetic field and thermal radiation. A constant pressure gradient acts on the entry zone of flow domain and static walls of the channel are isothermal. In this problem, we tried to simulate thermal radiation in energy equation by adopting the Rosseland’s diffusion approximation. According to geometrical configuration of the problem, the conditions of no-slip at the walls of the channel and continuity of thermal exchange, microrotation, shear stress, flow velocity and heat flux at the interface of immiscible fluids are used. The governing equations for the flow of immiscible fluids are solved by reliable technique and exact solution for thermal characteristics and flow field are evaluated. The mathematical results of thermal profile and flow characteristics are used to obtain the Bejan number profile as well as the entropy production number profile. The influence of various thermo-physical governing parameters such as radiation parameter, Reynolds number, inclination angle parameter, viscous dissipation parameter, micropolarity parameter and Hartmann number, which describe the physical significance of the present model, on the flow and thermal characteristics of the model are discussed graphically. The newly obtained results of this study are verified with previous published results. |
|---|---|
| AbstractList | This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and Newtonian viscous fluid within a channel. Here, the authors emphasize the influence of thermal radiation and oriented magnetic field on the thermal profile and entropy generation of two different types of non-miscible and incompressible micropolar and Newtonian fluids in a channel. The viscous dissipation and thermal radiation effect are also considered in the thermal energy equation. In this work, the entropy production is analyzed within a channel due to oriented magnetic field and thermal radiation. A constant pressure gradient acts on the entry zone of flow domain and static walls of the channel are isothermal. In this problem, we tried to simulate thermal radiation in energy equation by adopting the Rosseland’s diffusion approximation. According to geometrical configuration of the problem, the conditions of no-slip at the walls of the channel and continuity of thermal exchange, microrotation, shear stress, flow velocity and heat flux at the interface of immiscible fluids are used. The governing equations for the flow of immiscible fluids are solved by reliable technique and exact solution for thermal characteristics and flow field are evaluated. The mathematical results of thermal profile and flow characteristics are used to obtain the Bejan number profile as well as the entropy production number profile. The influence of various thermo-physical governing parameters such as radiation parameter, Reynolds number, inclination angle parameter, viscous dissipation parameter, micropolarity parameter and Hartmann number, which describe the physical significance of the present model, on the flow and thermal characteristics of the model are discussed graphically. The newly obtained results of this study are verified with previous published results. |
| Author | Pramod Kumar Yadav Kumar, Ankit Filippov, A. N. |
| Author_xml | – sequence: 1 surname: Pramod Kumar Yadav fullname: Pramod Kumar Yadav organization: Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad – sequence: 2 givenname: Ankit surname: Kumar fullname: Kumar, Ankit organization: Department of Mathematics, Motilal Nehru National Institute of Technology Allahabad – sequence: 3 givenname: A. N. surname: Filippov fullname: Filippov, A. N. email: filippov.a@gubkin.ru organization: Department of Higher Mathematics, National University of Oil and Gas “Gubkin University” |
| BookMark | eNp9kctKLDEQhoMoeH0Ad4Gzbs2lp6fbnQwz5wje8ALumup09Uwkk4xJGpnn8IVNO4KgHFdVVP3fn0rVPtm2ziIhx5ydcC7z03vOCl5J-SREwZhkbIvs8YKVmWTFeDvlqZ0N_V2yH8IzY6zIWblH3s4tmHXQgbqOTm30brWmt961vYra2aF6sVzqoHRjkF5plQTOgKdgW3qNr9FZDZbOTK_bkIJ7pXHhXT9fUKCTBViL5oxOuw5VHMweFuiXYOgdtBo-XhiMrmBuMWpFZxpNe0h2OjABjz7jAXmcTR8m_7LLm78Xk_PLTElexKwaM-xy2TQjEIqPuEhZVfKyVCihhLbgAiuEUVe2DcMGueKQI2uxUlAJ0ckD8mfju_LupccQ62fX-7SPUEsxykVR8bxKqvFGlb4egseuVjp-jB49aFNzVg8XqH9cIJH8G7nyegl-_SsjNkxIWjtH_zXT_6F32n6bSw |
| CitedBy_id | crossref_primary_10_1080_23324309_2024_2413187 crossref_primary_10_1002_zamm_202300635 crossref_primary_10_1016_j_icheatmasstransfer_2024_108118 crossref_primary_10_1016_j_icheatmasstransfer_2025_108846 crossref_primary_10_1007_s41939_025_00859_3 crossref_primary_10_1002_zamm_70080 crossref_primary_10_1016_j_jrras_2025_101367 crossref_primary_10_1016_j_aej_2024_06_075 crossref_primary_10_1016_j_cjph_2025_07_028 crossref_primary_10_1007_s41939_025_00978_x crossref_primary_10_1140_epjp_s13360_023_04357_8 crossref_primary_10_1177_09544089231218977 crossref_primary_10_3390_app151810183 |
| Cites_doi | 10.1063/1.1724410 10.1007/978-1-4612-0641-5 10.1016/j.icheatmasstransfer.2022.105954 10.1155/2011/132302 10.1007/978-3-7091-2720-9 10.1016/j.jestch.2014.05.004 10.1016/j.ijheatmasstransfer.2013.11.058 10.1109/TPS.1986.4316600 10.1038/s41598-021-99269-x 10.1007/s00231-004-0565-x 10.1109/TPS.1979.4317226 10.1017/S0022112062000889 10.2514/8.9412 10.1002/9781119245964 10.1007/s00231-011-0815-7 10.3390/e13091595 10.1016/j.ijheatmasstransfer.2012.01.051 10.1016/j.icheatmasstransfer.2011.03.006 10.1002/9781118671627 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2023. ISSN 1061-933X, Colloid Journal, 2023, Vol. 85, No. 1, pp. 95–113. © Pleiades Publishing, Ltd., 2023. ISSN 1061-933X, Colloid Journal, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Kolloidnyi Zhurnal, 2023, Vol. 85, No. 1, pp. 101–121. Pleiades Publishing, Ltd. 2023. |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2023. ISSN 1061-933X, Colloid Journal, 2023, Vol. 85, No. 1, pp. 95–113. © Pleiades Publishing, Ltd., 2023. ISSN 1061-933X, Colloid Journal, 2023. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Kolloidnyi Zhurnal, 2023, Vol. 85, No. 1, pp. 101–121. – notice: Pleiades Publishing, Ltd. 2023. |
| DBID | AAYXX CITATION 7XB 8FE 8FG ABJCF AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1134/S1061933X22600300 |
| DatabaseName | CrossRef ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Materials Science Collection ProQuest Central Student Technology Collection ProQuest Central Basic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Materials Science Collection |
| Database_xml | – sequence: 1 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| EISSN | 1608-3067 |
| EndPage | 113 |
| ExternalDocumentID | 10_1134_S1061933X22600300 |
| GroupedDBID | -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 408 409 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- ML- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P9N PF0 PT4 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 XU3 YLTOR Z5O Z7V Z7W Z7Y Z85 ZMTXR ~8M ~A9 AAPKM AAYXX ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ KB. M2P PDBOC PHGZM PHGZT PQGLB 7XB 8FE 8FG D1I PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c316t-970ef43bb5a2c1512bb598188ce3a8ad612e9ea5f8db0ebe1c1a4e0de9ca922f3 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000936427900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1061-933X |
| IngestDate | Sat Sep 27 04:21:55 EDT 2025 Sat Nov 29 04:49:24 EST 2025 Tue Nov 18 21:29:41 EST 2025 Fri Feb 21 02:43:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | inclined magnetic field entropy production number Bejan number micropolar fluid immiscible fluids thermal radiation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-970ef43bb5a2c1512bb598188ce3a8ad612e9ea5f8db0ebe1c1a4e0de9ca922f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3254269149 |
| PQPubID | 2043575 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_3254269149 crossref_citationtrail_10_1134_S1061933X22600300 crossref_primary_10_1134_S1061933X22600300 springer_journals_10_1134_S1061933X22600300 |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | Moscow |
| PublicationPlace_xml | – name: Moscow – name: New York |
| PublicationTitle | Colloid journal of the Russian Academy of Sciences |
| PublicationTitleAbbrev | Colloid J |
| PublicationYear | 2023 |
| Publisher | Pleiades Publishing Springer Nature B.V |
| Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
| References | NowackiW.Theory of Micropolar Elasticity1970WienSpringer–Verlag10.1007/978-3-7091-2720-9 KamışlıF.ÖztopH. F.Second law analysis of the 2D laminar flow of two-immiscible, incompressible viscous fluids in a channel, Heat Mass Transfer200844751761 MurthyJ.R.SrinivasJ.Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel, Int. J. Heat Mass Transfer201365254264 HappelJ.BrennerH.Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media2012 ArimanT.CakmakA.S.Some basic viscous flows in micropolar fluids, Rheol. Acta19687236242 JenaS.K.MathurM.Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci.198119143114391:CAS:528:DyaL3MXlvV2htLY%3D BejanA.Advanced Engineering Thermodynamics201610.1002/9781119245964 NikodijevićD.StamenkovićZ.MilenkovićD.BlagojevićB.NikodijevicJ.Math. Probl. Eng.2011201113230210.1155/2011/132302 UmavathiJ.C.ChamkhaA.J.MateenA.Al–MudhafA.Heat Mass Transfer20054281901:CAS:528:DC%2BD2MXhtlemurnM10.1007/s00231-004-0565-x SrinivasacharyaD.BinduK.H.Entropy generation in a micropolar fluid flow through an inclined channel, AlexandriaEng. J.201655973982 EringenA.C.Microcontinuum Field Theories: II. Fluent Media2001 ArimanT.TurkM.SylvesterN.Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci.197412273293 EringenA.C.Simple microfluids, Int. J. Eng. Sci.19642205217 GorlaR.S.R.Second law analysis of mixed convection in a laminar, non-Newtonian fluid flow through a vertical channel, ISRNApplied Mathematics20112011287691 BejanA.Convection Heat Transfer201310.1002/9781118671627 OahimireJ.OlajuwonB.Effect of hall current and thermal radiation on heat and mass transfer of a chemically reacting MHD flow of a micropolar fluid through a porous medium, J. King Saud Univ.–Eng. Sci.201426112121 JangiliS.AdesanyaS.FaladeJ.GajjelaN.Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non-Darcian porous medium, Int. J. Appl. Comput. Math.2017337593782 SrinivasJ.MurthyJ.R.ChamkhaA.J.Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using ham, Int. J. Numer. Methods Heat Fluid Flow.20162610271049 YadavP.K.JaiswalS.SharmaB.Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel, Appl. Math. Mech.2018399931006 BitlaP.IyengarT.Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field, European J. Mech.–B/Fluids201448174182 SrinivasJ.MurthyJ.R.BégO.A.Entropy generation analysis of radiative heat transfer effects on channel flow of two immiscible couple stress fluids, J. Braz. Soc. Mech. Sci. Eng.201739219122021:CAS:528:DC%2BC2sXksVCmtbg%3D DarA.A.ElangovanK.Influence of an inclined magnetic field on heat and mass transfer of the peristaltic flow of a couple stress fluid in an inclined channel, WorldJ. Eng.2017147181:CAS:528:DC%2BC1cXlsVait7Y%3D BlumE.L.ZaksM.V.IvanovU.I.MikhailovY.A.Heat Exchange and Mass Exchange in Magnetic Field1967RigaZinatne KhanukaevaD.Yu.FilippovA.N.Isothermal Flows of Micropolar Liquids: Formulation of Problems and Analytical Solutions, Colloid J.20188014361:CAS:528:DC%2BC1cXjsFSlsb0%3D DesoukyaA.ElIsmaila, H.N.A., Abourabiab, A.M., Hammada, D., and Ahmeda, N.AAnalysis of entropy generation of MHD micropolar fluid through a rectangular duct with effect of induced magnetic field and slip boundary conditions, International Journal of Advances in Applied Mathematics and Mechanics202073142 NikodijevicD.MilenkovicD.StamenkovicZ.Heat Mass Transfer201147152515351:CAS:528:DC%2BC3MXhsVSqtrfM10.1007/s00231-011-0815-7 BejanA.Second law analysis in heat transfer, Energy19805720732 MagyariE.PantokratorasA.Int. Commun. Heat Mass Transfer20113855455610.1016/j.icheatmasstransfer.2011.03.006 BhattacharyyaK.MukhopadhyayS.LayekG.PopI.Int. J. Heat Mass Transfer201255294529521:CAS:528:DC%2BC38XlsFyhurk%3D10.1016/j.ijheatmasstransfer.2012.01.051 ShahN.A.AlrabaiahH.VieruD.YookS.Sci. Rep.20221211410.1038/s41598-021-99269-x MuthurajR.SrinivasS.Fully developed MHD flow of a micropolar and viscous fluids in a vertical porous space using ham, InternationalJournal of Applied Mathematics and Mechanics201065578 SunR.HuW.JiaoB.QiC.Heat transfer characteristics and entropy generation of electroosmotic flow in a rotating rectangular microchannel, Int. J. Therm. Sci.2019140238254 SoundalgekarV.VighnesamN.TakharH.IEEE Trans. Plasma Sci.1979717818210.1109/TPS.1979.4317226 EringenA.C.Theory of micropolar fluids, J. Math. Mech.196616118 SparrowE.M.Radiation Heat Transfer2018 ChenC.K.YangY.T.ChangK.H.Entropy2011131595161010.3390/e13091595 SoundalgekarV.UplekarA.IEEE Trans. Plasma Sci.19861457958310.1109/TPS.1986.4316600 GlobeS.Phys. Fluids1959240440710.1063/1.1724410 JaiswalS.YadavP.K.A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field, Phys. Fluids201931071901 RashidiM.KavyaniN.AbelmanS.Int. J. Heat Mass Transfer20147089291710.1016/j.ijheatmasstransfer.2013.11.058 SrinivasJ.MurthyJ.R.Second law analysis of the flow of two immiscible micropolar fluids between two porous beds, J. Engin. Thermophys.2016251261421:CAS:528:DC%2BC28Xjt1Wmu7w%3D JangiliS.MurthyJ.Thermodynamic analysis for the MHD flow of two immiscible micropolar fluids between two parallel plates, Front.Heat Mass Transfer201561 GoldR.R.J. Fluid Mech.19621350551210.1017/S0022112062000889 ReesD.A.S.BassomA.P.The Blasius boundary-layer flow of a micropolar fluid, Int. J. Eng. Sci.1996341131241:CAS:528:DyaK28XmtlGhtA%3D%3D PaolettiS.RispoliF.SciubbaE.Calculation of exergetic losses in compact heat exchanger passages, ASME AES1989102129 HartmannJ.LazarusF.Hg–Dynamics1937CopenhagenLevin & Munksgaard LukaszewiczGMicropolar Fluids: Theory and Applications199910.1007/978-1-4612-0641-5 Olajuwon, B., Oahimire, J., and Ferdow, M., Effect of thermal radiation and hall current on heat and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium, Engineering Science and Technology, an International Journal, 2014, vol. 17, no. 4, pp. 185–193. YadavP.K.JaiswalS.Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium, Can. J. Phys.201896101610281:CAS:528:DC%2BC1cXhsF2ns7nJ DeoS.MauryaD.K.FilippovA.N.Effect of Magnetic Field on Hydrodynamic Permeability of Biporous Membrane Relative to Micropolar Liquid Flow, Colloid J.202183662675 YadavP.K.KumarA.An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit, Int. Commun. Heat Mass Transfer2021124105266 SrinivasS.MuthurajR.Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation20101520982108 NezhadA.ShahriM.Entropy generation case studies of two-immiscible fluids under the influence of a uniform magnetic field in an inclined channel, J. Mech.2016327497571:CAS:528:DC%2BC1cXkvVSqs70%3D TaniI.Aerosp. Sci.19622929730510.2514/8.9412 AhmadiG.Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci.197614639646 KumawatC.SharmaB.K.Al–MdallalQ.M.Rahimi–GorjiM.Int. Commun. Heat Mass Transfer20221331059541:CAS:528:DC%2BB38XhtVOqtrrP10.1016/j.icheatmasstransfer.2022.105954 Sandeep, P. and Deshpande, M., A Note on the No-Slip Boundary Condition, Nat. Aerosp. Lab. Rept. PD-CF-0304, Bangalore, India, 2003. ChenX.JianY.Entropy generation minimization analysis of two immiscible fluids, Int. J. Mol. Sci.2022171107210 YadavP.K.KumarA.El–SapaS.ChamkhaA.J.Impact of thermal radiation and oriented magnetic field on the flow of two immiscible fluids through porous media with different porosity, Waves in Random and Complex Media202232133 KhanA.KhanI.AlkanhalT.A.AliF.KhanD.NisarK.S.Entropy generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis, Entropy2019213591:CAS:528:DC%2BC1MXhsFGmt73L33267073 PrakashD.MuthtamilselvanM.Ain ShamsEngineering Journal2014512771286 GuptaV.JainA.JhaA.K.Convective effects on MHD flow and heat transfer between vertical plates moving in opposite direction and partially filled with a porous medium, J. Math. Phys.20164341358 AfridiM.I.QasimM.HussananA.Second law analysis of dissipative flow over a riga plate with non-linear Rosseland thermal radiation and variable transport properties, Entropy201820615 T. Ariman (8377_CR50) 1968; 7 A. Khan (8377_CR41) 2019; 21 A. Bejan (8377_CR57) 2016 E. Magyari (8377_CR13) 2011; 38 8377_CR15 J. Happel (8377_CR48) 2012 A. Desoukya (8377_CR24) 2020; 7 D.A.S. Rees (8377_CR54) 1996; 34 8377_CR56 T. Ariman (8377_CR51) 1974; 12 C. Kumawat (8377_CR32) 2022; 133 A. Nezhad (8377_CR22) 2016; 32 J. Hartmann (8377_CR2) 1937 A.C. Eringen (8377_CR34) 1966; 16 A. Bejan (8377_CR18) 1980; 5 P.K. Yadav (8377_CR27) 2021; 124 E.M. Sparrow (8377_CR45) 2018 D. Prakash (8377_CR14) 2014; 5 S. Paoletti (8377_CR58) 1989; 10 D. Nikodijevic (8377_CR9) 2011; 47 A.C. Eringen (8377_CR46) 2001 P.K. Yadav (8377_CR35) 2018; 39 N.A. Shah (8377_CR10) 2022; 12 G. Ahmadi (8377_CR47) 1976; 14 J. Srinivas (8377_CR21) 2016; 26 S. Srinivas (8377_CR11) 2010; 15 R. Muthuraj (8377_CR30) 2010; 6 A.A. Dar (8377_CR59) 2017; 14 D.Yu. Khanukaeva (8377_CR62) 2018; 80 S. Globe (8377_CR3) 1959; 2 F. Kamışlı (8377_CR23) 2008; 44 R. Sun (8377_CR26) 2019; 140 J. Srinivas (8377_CR31) 2016; 25 D. Nikodijević (8377_CR8) 2011; 2011 E.L. Blum (8377_CR1) 1967 S. Jaiswal (8377_CR39) 2019; 31 A. Bejan (8377_CR19) 2013 J. Srinivas (8377_CR17) 2017; 39 I. Tani (8377_CR5) 1962; 29 J.R. Murthy (8377_CR29) 2013; 65 V. Gupta (8377_CR42) 2016; 4 X. Chen (8377_CR25) 2022; 171 M. Rashidi (8377_CR43) 2014; 70 P. Bitla (8377_CR60) 2014; 48 R.R. Gold (8377_CR4) 1962; 13 S. Deo (8377_CR40) 2021; 83 V. Soundalgekar (8377_CR6) 1979; 7 R.S.R. Gorla (8377_CR61) 2011; 2011 S.K. Jena (8377_CR53) 1981; 19 J. Oahimire (8377_CR37) 2014; 26 W. Nowacki (8377_CR63) 1970 V. Soundalgekar (8377_CR7) 1986; 14 C.K. Chen (8377_CR12) 2011; 13 S. Jangili (8377_CR20) 2015; 6 D. Srinivasacharya (8377_CR38) 2016; 55 J.C. Umavathi (8377_CR44) 2005; 42 A.C. Eringen (8377_CR33) 1964; 2 M.I. Afridi (8377_CR49) 2018; 20 G Lukaszewicz (8377_CR52) 1999 S. Jangili (8377_CR16) 2017; 3 P.K. Yadav (8377_CR36) 2018; 96 K. Bhattacharyya (8377_CR55) 2012; 55 P.K. Yadav (8377_CR28) 2022; 32 |
| References_xml | – reference: BhattacharyyaK.MukhopadhyayS.LayekG.PopI.Int. J. Heat Mass Transfer201255294529521:CAS:528:DC%2BC38XlsFyhurk%3D10.1016/j.ijheatmasstransfer.2012.01.051 – reference: EringenA.C.Microcontinuum Field Theories: II. Fluent Media2001 – reference: PrakashD.MuthtamilselvanM.Ain ShamsEngineering Journal2014512771286 – reference: BitlaP.IyengarT.Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field, European J. Mech.–B/Fluids201448174182 – reference: SoundalgekarV.VighnesamN.TakharH.IEEE Trans. Plasma Sci.1979717818210.1109/TPS.1979.4317226 – reference: RashidiM.KavyaniN.AbelmanS.Int. J. Heat Mass Transfer20147089291710.1016/j.ijheatmasstransfer.2013.11.058 – reference: ShahN.A.AlrabaiahH.VieruD.YookS.Sci. Rep.20221211410.1038/s41598-021-99269-x – reference: EringenA.C.Theory of micropolar fluids, J. Math. Mech.196616118 – reference: YadavP.K.JaiswalS.Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium, Can. J. Phys.201896101610281:CAS:528:DC%2BC1cXhsF2ns7nJ – reference: LukaszewiczGMicropolar Fluids: Theory and Applications199910.1007/978-1-4612-0641-5 – reference: MuthurajR.SrinivasS.Fully developed MHD flow of a micropolar and viscous fluids in a vertical porous space using ham, InternationalJournal of Applied Mathematics and Mechanics201065578 – reference: JaiswalS.YadavP.K.A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field, Phys. Fluids201931071901 – reference: DeoS.MauryaD.K.FilippovA.N.Effect of Magnetic Field on Hydrodynamic Permeability of Biporous Membrane Relative to Micropolar Liquid Flow, Colloid J.202183662675 – reference: NowackiW.Theory of Micropolar Elasticity1970WienSpringer–Verlag10.1007/978-3-7091-2720-9 – reference: SrinivasS.MuthurajR.Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation20101520982108 – reference: ChenX.JianY.Entropy generation minimization analysis of two immiscible fluids, Int. J. Mol. Sci.2022171107210 – reference: NikodijevićD.StamenkovićZ.MilenkovićD.BlagojevićB.NikodijevicJ.Math. Probl. Eng.2011201113230210.1155/2011/132302 – reference: GlobeS.Phys. Fluids1959240440710.1063/1.1724410 – reference: Olajuwon, B., Oahimire, J., and Ferdow, M., Effect of thermal radiation and hall current on heat and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium, Engineering Science and Technology, an International Journal, 2014, vol. 17, no. 4, pp. 185–193. – reference: NikodijevicD.MilenkovicD.StamenkovicZ.Heat Mass Transfer201147152515351:CAS:528:DC%2BC3MXhsVSqtrfM10.1007/s00231-011-0815-7 – reference: KamışlıF.ÖztopH. F.Second law analysis of the 2D laminar flow of two-immiscible, incompressible viscous fluids in a channel, Heat Mass Transfer200844751761 – reference: GuptaV.JainA.JhaA.K.Convective effects on MHD flow and heat transfer between vertical plates moving in opposite direction and partially filled with a porous medium, J. Math. Phys.20164341358 – reference: ArimanT.CakmakA.S.Some basic viscous flows in micropolar fluids, Rheol. Acta19687236242 – reference: KumawatC.SharmaB.K.Al–MdallalQ.M.Rahimi–GorjiM.Int. Commun. Heat Mass Transfer20221331059541:CAS:528:DC%2BB38XhtVOqtrrP10.1016/j.icheatmasstransfer.2022.105954 – reference: YadavP.K.JaiswalS.SharmaB.Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel, Appl. Math. Mech.2018399931006 – reference: AfridiM.I.QasimM.HussananA.Second law analysis of dissipative flow over a riga plate with non-linear Rosseland thermal radiation and variable transport properties, Entropy201820615 – reference: HartmannJ.LazarusF.Hg–Dynamics1937CopenhagenLevin & Munksgaard – reference: ChenC.K.YangY.T.ChangK.H.Entropy2011131595161010.3390/e13091595 – reference: JangiliS.AdesanyaS.FaladeJ.GajjelaN.Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non-Darcian porous medium, Int. J. Appl. Comput. Math.2017337593782 – reference: HappelJ.BrennerH.Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media2012 – reference: SoundalgekarV.UplekarA.IEEE Trans. Plasma Sci.19861457958310.1109/TPS.1986.4316600 – reference: ReesD.A.S.BassomA.P.The Blasius boundary-layer flow of a micropolar fluid, Int. J. Eng. Sci.1996341131241:CAS:528:DyaK28XmtlGhtA%3D%3D – reference: SparrowE.M.Radiation Heat Transfer2018 – reference: MurthyJ.R.SrinivasJ.Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel, Int. J. Heat Mass Transfer201365254264 – reference: BejanA.Convection Heat Transfer201310.1002/9781118671627 – reference: TaniI.Aerosp. Sci.19622929730510.2514/8.9412 – reference: YadavP.K.KumarA.El–SapaS.ChamkhaA.J.Impact of thermal radiation and oriented magnetic field on the flow of two immiscible fluids through porous media with different porosity, Waves in Random and Complex Media202232133 – reference: AhmadiG.Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci.197614639646 – reference: NezhadA.ShahriM.Entropy generation case studies of two-immiscible fluids under the influence of a uniform magnetic field in an inclined channel, J. Mech.2016327497571:CAS:528:DC%2BC1cXkvVSqs70%3D – reference: OahimireJ.OlajuwonB.Effect of hall current and thermal radiation on heat and mass transfer of a chemically reacting MHD flow of a micropolar fluid through a porous medium, J. King Saud Univ.–Eng. Sci.201426112121 – reference: KhanA.KhanI.AlkanhalT.A.AliF.KhanD.NisarK.S.Entropy generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis, Entropy2019213591:CAS:528:DC%2BC1MXhsFGmt73L33267073 – reference: YadavP.K.KumarA.An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit, Int. Commun. Heat Mass Transfer2021124105266 – reference: EringenA.C.Simple microfluids, Int. J. Eng. Sci.19642205217 – reference: SrinivasacharyaD.BinduK.H.Entropy generation in a micropolar fluid flow through an inclined channel, AlexandriaEng. J.201655973982 – reference: PaolettiS.RispoliF.SciubbaE.Calculation of exergetic losses in compact heat exchanger passages, ASME AES1989102129 – reference: Sandeep, P. and Deshpande, M., A Note on the No-Slip Boundary Condition, Nat. Aerosp. Lab. Rept. PD-CF-0304, Bangalore, India, 2003. – reference: BlumE.L.ZaksM.V.IvanovU.I.MikhailovY.A.Heat Exchange and Mass Exchange in Magnetic Field1967RigaZinatne – reference: ArimanT.TurkM.SylvesterN.Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci.197412273293 – reference: MagyariE.PantokratorasA.Int. Commun. Heat Mass Transfer20113855455610.1016/j.icheatmasstransfer.2011.03.006 – reference: SrinivasJ.MurthyJ.R.Second law analysis of the flow of two immiscible micropolar fluids between two porous beds, J. Engin. Thermophys.2016251261421:CAS:528:DC%2BC28Xjt1Wmu7w%3D – reference: SrinivasJ.MurthyJ.R.BégO.A.Entropy generation analysis of radiative heat transfer effects on channel flow of two immiscible couple stress fluids, J. Braz. Soc. Mech. Sci. Eng.201739219122021:CAS:528:DC%2BC2sXksVCmtbg%3D – reference: SrinivasJ.MurthyJ.R.ChamkhaA.J.Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using ham, Int. J. Numer. Methods Heat Fluid Flow.20162610271049 – reference: GoldR.R.J. Fluid Mech.19621350551210.1017/S0022112062000889 – reference: UmavathiJ.C.ChamkhaA.J.MateenA.Al–MudhafA.Heat Mass Transfer20054281901:CAS:528:DC%2BD2MXhtlemurnM10.1007/s00231-004-0565-x – reference: DarA.A.ElangovanK.Influence of an inclined magnetic field on heat and mass transfer of the peristaltic flow of a couple stress fluid in an inclined channel, WorldJ. Eng.2017147181:CAS:528:DC%2BC1cXlsVait7Y%3D – reference: DesoukyaA.ElIsmaila, H.N.A., Abourabiab, A.M., Hammada, D., and Ahmeda, N.AAnalysis of entropy generation of MHD micropolar fluid through a rectangular duct with effect of induced magnetic field and slip boundary conditions, International Journal of Advances in Applied Mathematics and Mechanics202073142 – reference: GorlaR.S.R.Second law analysis of mixed convection in a laminar, non-Newtonian fluid flow through a vertical channel, ISRNApplied Mathematics20112011287691 – reference: SunR.HuW.JiaoB.QiC.Heat transfer characteristics and entropy generation of electroosmotic flow in a rotating rectangular microchannel, Int. J. Therm. Sci.2019140238254 – reference: BejanA.Advanced Engineering Thermodynamics201610.1002/9781119245964 – reference: JenaS.K.MathurM.Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci.198119143114391:CAS:528:DyaL3MXlvV2htLY%3D – reference: KhanukaevaD.Yu.FilippovA.N.Isothermal Flows of Micropolar Liquids: Formulation of Problems and Analytical Solutions, Colloid J.20188014361:CAS:528:DC%2BC1cXjsFSlsb0%3D – reference: BejanA.Second law analysis in heat transfer, Energy19805720732 – reference: JangiliS.MurthyJ.Thermodynamic analysis for the MHD flow of two immiscible micropolar fluids between two parallel plates, Front.Heat Mass Transfer201561 – volume: 39 start-page: 993 year: 2018 ident: 8377_CR35 publication-title: Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel, Appl. Math. Mech. – volume: 96 start-page: 1016 year: 2018 ident: 8377_CR36 publication-title: Influence of an inclined magnetic field on the Poiseuille flow of immiscible micropolar–Newtonian fluids in a porous medium, Can. J. Phys. – volume: 2 start-page: 404 year: 1959 ident: 8377_CR3 publication-title: Phys. Fluids doi: 10.1063/1.1724410 – volume: 34 start-page: 113 year: 1996 ident: 8377_CR54 publication-title: The Blasius boundary-layer flow of a micropolar fluid, Int. J. Eng. Sci. – volume-title: Micropolar Fluids: Theory and Applications year: 1999 ident: 8377_CR52 doi: 10.1007/978-1-4612-0641-5 – volume: 133 start-page: 105954 year: 2022 ident: 8377_CR32 publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.105954 – volume: 14 start-page: 639 year: 1976 ident: 8377_CR47 publication-title: Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. – volume: 4 start-page: 341 year: 2016 ident: 8377_CR42 publication-title: Convective effects on MHD flow and heat transfer between vertical plates moving in opposite direction and partially filled with a porous medium, J. Math. Phys. – volume-title: Heat Exchange and Mass Exchange in Magnetic Field year: 1967 ident: 8377_CR1 – volume: 2011 start-page: 132302 year: 2011 ident: 8377_CR8 publication-title: Math. Probl. Eng. doi: 10.1155/2011/132302 – volume: 39 start-page: 2191 year: 2017 ident: 8377_CR17 publication-title: Entropy generation analysis of radiative heat transfer effects on channel flow of two immiscible couple stress fluids, J. Braz. Soc. Mech. Sci. Eng. – volume: 25 start-page: 126 year: 2016 ident: 8377_CR31 publication-title: Second law analysis of the flow of two immiscible micropolar fluids between two porous beds, J. Engin. Thermophys. – volume-title: Theory of Micropolar Elasticity year: 1970 ident: 8377_CR63 doi: 10.1007/978-3-7091-2720-9 – ident: 8377_CR15 doi: 10.1016/j.jestch.2014.05.004 – volume: 5 start-page: 720 year: 1980 ident: 8377_CR18 publication-title: Second law analysis in heat transfer, Energy – volume: 7 start-page: 236 year: 1968 ident: 8377_CR50 publication-title: Some basic viscous flows in micropolar fluids, Rheol. Acta – volume: 70 start-page: 892 year: 2014 ident: 8377_CR43 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2013.11.058 – volume: 14 start-page: 579 year: 1986 ident: 8377_CR7 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1986.4316600 – volume: 83 start-page: 662 year: 2021 ident: 8377_CR40 publication-title: Effect of Magnetic Field on Hydrodynamic Permeability of Biporous Membrane Relative to Micropolar Liquid Flow, Colloid J. – volume: 12 start-page: 1 year: 2022 ident: 8377_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-021-99269-x – volume: 6 start-page: 55 year: 2010 ident: 8377_CR30 publication-title: Journal of Applied Mathematics and Mechanics – volume: 42 start-page: 81 year: 2005 ident: 8377_CR44 publication-title: Heat Mass Transfer doi: 10.1007/s00231-004-0565-x – volume: 26 start-page: 1027 year: 2016 ident: 8377_CR21 publication-title: Analysis of entropy generation in an inclined channel flow containing two immiscible micropolar fluids using ham, Int. J. Numer. Methods Heat Fluid Flow. – volume: 55 start-page: 973 year: 2016 ident: 8377_CR38 publication-title: Eng. J. – ident: 8377_CR56 – volume: 20 start-page: 615 year: 2018 ident: 8377_CR49 publication-title: Second law analysis of dissipative flow over a riga plate with non-linear Rosseland thermal radiation and variable transport properties, Entropy – volume: 65 start-page: 254 year: 2013 ident: 8377_CR29 publication-title: Second law analysis for Poiseuille flow of immiscible micropolar fluids in a channel, Int. J. Heat Mass Transfer – volume: 7 start-page: 178 year: 1979 ident: 8377_CR6 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.1979.4317226 – volume: 19 start-page: 1431 year: 1981 ident: 8377_CR53 publication-title: Similarity solutions for laminar free convection flow of a thermomicropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci. – volume: 3 start-page: 3759 year: 2017 ident: 8377_CR16 publication-title: Entropy generation analysis for a radiative micropolar fluid flow through a vertical channel saturated with non-Darcian porous medium, Int. J. Appl. Comput. Math. – volume: 12 start-page: 273 year: 1974 ident: 8377_CR51 publication-title: Applications of microcontinuum fluid mechanics, Int. J. Eng. Sci. – volume: 44 start-page: 751 year: 2008 ident: 8377_CR23 publication-title: Second law analysis of the 2D laminar flow of two-immiscible, incompressible viscous fluids in a channel, Heat Mass Transfer – volume-title: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media year: 2012 ident: 8377_CR48 – volume: 171 start-page: 107210 year: 2022 ident: 8377_CR25 publication-title: Entropy generation minimization analysis of two immiscible fluids, Int. J. Mol. Sci. – volume: 48 start-page: 174 year: 2014 ident: 8377_CR60 publication-title: Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field, European J. Mech.–B/Fluids – volume: 13 start-page: 505 year: 1962 ident: 8377_CR4 publication-title: J. Fluid Mech. doi: 10.1017/S0022112062000889 – volume: 29 start-page: 297 year: 1962 ident: 8377_CR5 publication-title: Aerosp. Sci. doi: 10.2514/8.9412 – volume-title: Advanced Engineering Thermodynamics year: 2016 ident: 8377_CR57 doi: 10.1002/9781119245964 – volume: 47 start-page: 1525 year: 2011 ident: 8377_CR9 publication-title: Heat Mass Transfer doi: 10.1007/s00231-011-0815-7 – volume: 21 start-page: 359 year: 2019 ident: 8377_CR41 publication-title: Entropy generation in MHD conjugate flow with wall shear stress over an infinite plate: Exact analysis, Entropy – volume: 13 start-page: 1595 year: 2011 ident: 8377_CR12 publication-title: Entropy doi: 10.3390/e13091595 – volume-title: Hg–Dynamics year: 1937 ident: 8377_CR2 – volume: 6 start-page: 1 year: 2015 ident: 8377_CR20 publication-title: Heat Mass Transfer – volume: 2011 start-page: 287691 year: 2011 ident: 8377_CR61 publication-title: Applied Mathematics – volume: 55 start-page: 2945 year: 2012 ident: 8377_CR55 publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.01.051 – volume: 15 start-page: 2098 year: 2010 ident: 8377_CR11 publication-title: Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method, Communications in Nonlinear Science and Numerical Simulation – volume: 14 start-page: 7 year: 2017 ident: 8377_CR59 publication-title: J. Eng. – volume: 124 start-page: 105266 year: 2021 ident: 8377_CR27 publication-title: An inclined magnetic field effect on entropy production of non-miscible Newtonian and micropolar fluid in a rectangular conduit, Int. Commun. Heat Mass Transfer – volume: 16 start-page: 1 year: 1966 ident: 8377_CR34 publication-title: Theory of micropolar fluids, J. Math. Mech. – volume-title: Microcontinuum Field Theories: II. Fluent Media year: 2001 ident: 8377_CR46 – volume: 80 start-page: 14 year: 2018 ident: 8377_CR62 publication-title: Isothermal Flows of Micropolar Liquids: Formulation of Problems and Analytical Solutions, Colloid J. – volume: 32 start-page: 749 year: 2016 ident: 8377_CR22 publication-title: Entropy generation case studies of two-immiscible fluids under the influence of a uniform magnetic field in an inclined channel, J. Mech. – volume: 7 start-page: 31 year: 2020 ident: 8377_CR24 publication-title: Analysis of entropy generation of MHD micropolar fluid through a rectangular duct with effect of induced magnetic field and slip boundary conditions, International Journal of Advances in Applied Mathematics and Mechanics – volume: 2 start-page: 205 year: 1964 ident: 8377_CR33 publication-title: Simple microfluids, Int. J. Eng. Sci. – volume: 10 start-page: 21 year: 1989 ident: 8377_CR58 publication-title: Calculation of exergetic losses in compact heat exchanger passages, ASME AES – volume: 5 start-page: 1277 year: 2014 ident: 8377_CR14 publication-title: Engineering Journal – volume: 140 start-page: 238 year: 2019 ident: 8377_CR26 publication-title: Heat transfer characteristics and entropy generation of electroosmotic flow in a rotating rectangular microchannel, Int. J. Therm. Sci. – volume: 32 start-page: 1 year: 2022 ident: 8377_CR28 publication-title: Impact of thermal radiation and oriented magnetic field on the flow of two immiscible fluids through porous media with different porosity, Waves in Random and Complex Media – volume-title: Radiation Heat Transfer year: 2018 ident: 8377_CR45 – volume: 31 start-page: 071901 year: 2019 ident: 8377_CR39 publication-title: A micropolar-Newtonian blood flow model through a porous layered artery in the presence of a magnetic field, Phys. Fluids – volume: 26 start-page: 112 year: 2014 ident: 8377_CR37 publication-title: Eng. Sci. – volume: 38 start-page: 554 year: 2011 ident: 8377_CR13 publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2011.03.006 – volume-title: Convection Heat Transfer year: 2013 ident: 8377_CR19 doi: 10.1002/9781118671627 |
| SSID | ssj0006408 |
| Score | 2.374152 |
| Snippet | This paper aims to analyze the thermal characteristics, entropy production, flow velocity and Bejan number profile for immiscible nature of micropolar and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 95 |
| SubjectTerms | Approximation Boundary conditions Chemistry Chemistry and Materials Science Dissipation Electric fields Electromagnetism Entropy Exact solutions Flow characteristics Flow velocity Fluid flow Hartmann number Heat flux Heat transfer Inclination angle Incompressible flow Investigations Magnetic fields Mathematical analysis Mathematical models Miscibility Newtonian fluids Non-Newtonian fluids Parameters Polymer Sciences Radiation Researchers Reynolds number Shear stress Surfaces and Interfaces Thermal energy Thermal radiation Thin Films Viscous fluids |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8RADA7igfrgsSquF_Pgk1JsZ8a245uIi4KKeLFvZTqdilC7i10Vf4d_2KSHt4I-tbTTtJA0ycck-QDWrfUTIQLuxAFiE6kT39FuGDsxTz2eKiW9knnu6ig4OQm7XXVa93EXTbV7syVZeuqKd0RunRN4Qfjd5TRTXbiI00cw2oXE13B2fvXqfn3pVv1vvufQ8nor81sRH4PRW4b5aVO0jDWd6X995QxM1akl261sYRaGbN6C8b2G0a0Fk--GD7ZgrCz-NMUcPDeTSVgvZftUut5_YqfVKFhUG109vL2l9t04s-yYSvj6hIiZzhOGXhLTRzQy1snub5ICD71HVtP_MM2ofSG32Q6r5iSTMDRNDAcZO6O5COUbSNCxvs6po5J1qKhuHi47-xd7B05N1uAY4fkDRwWuTaWI423NDaUReKYwGwiNFTpEG_C4VVZvp2ESu2g5nvG0tG5ildGK81QswHDey-0iMOFbtO8EvUlqJZehkkZrHsTGM4rywza4jdYiU08yJ0KNLCoRjZDRFy20YeP1kX41xuO3xSuNKUT1H11EApE09xUCyjZsNqp_u_2jsKU_rV6GCeKzr8rCV2B4cHdvV2HUPAxuiru10tBfADY39p8 priority: 102 providerName: Springer Nature |
| Title | Analysis of Entropy Production of Immiscible Micropolar and Newtonian Fluids Flow through a Channel: Effect of Thermal Radiation and Magnetic Field |
| URI | https://link.springer.com/article/10.1134/S1061933X22600300 https://www.proquest.com/docview/3254269149 |
| Volume | 85 |
| WOSCitedRecordID | wos000936427900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1608-3067 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0006408 issn: 1061-933X databaseCode: KB. dateStart: 20230201 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1608-3067 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0006408 issn: 1061-933X databaseCode: BENPR dateStart: 20230201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1608-3067 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0006408 issn: 1061-933X databaseCode: M2P dateStart: 20230201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature - Connect here FIRST to enable access customDbUrl: eissn: 1608-3067 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006408 issn: 1061-933X databaseCode: RSV dateStart: 20001101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RFkQ58EhBBEq0B04gU--jtpcLolUiECSKUqhys9brNarkOqFOW_V38IeZsddNBaIXLra1tseW5vPsN955ALx2LsqljEWQxeibKJNHgQmTLMhEwUWhteJN57njr_Fkkszneup_uNU-rLKziY2hzheW_pHvSfRkRKSR0H9Y_gyoaxStrvoWGhuwhcyGU0jXWEyvLXGkwjYVLuIBOu5zv6rJpdo7okEaE1ShXVKC2815aU02_1gfbaad0aP_feHH8NATTvaxRcgTuOOqHtw_7Pq89eDBjZKEPbjXhITaegd-dfVK2KJgQwpoX16xaVsgFpVJo59PTympNysdG1Ng35L8ZGaqnKHtRFKJ0GOj8vwkr3G3uGS-KRAzjJIaKle-Z231ZBKGgMVJomQzqpbQPIEEjc2PivIs2YhC7Z7C99Hw2-GnwLdwCKzk0SrQcegKJbNs3whL5AKPNHKExDppEkQGF047s18keRYinrjlRrkwd9oaLUQhn8Fmtajcc2Aycoj6HG1M4ZRQiVbWGBFnlltNrLEPYafA1Pr65tRmo0wbP0eq9C-d9-HN9S3LtrjHbRfvdnpO_Xdep2sl9-Fth5T16X8Ke3G7sJewTW3t2-jwXdhcnZ27V3DXXqxO6rMBbB0MJ9PZADa-HLwbNJDH7ezo-DcaNAVU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VAmo58AigBgrsAS4gq95HbS8SqqrSqFGTKIKCcnPX6zWq5DqhTqn6O_o_-huZ8aOpQPTWAydba3v8mufuzDcAb50LUilD4SUhxibKpIFn_CjxEpFxkWmteNV57vsgHI2iyUSPl-CyrYWhtMpWJ1aKOp1amiPfkBjJiECjQ781--lR1yhaXW1baNRsse_OzzBkKz_1P-P_fSdEb_dgZ89rugp4VvJg7unQd5mSSbJphCV7h3sazVZknTQRPiwXTjuzmUVp4uMrcsuNcn7qtDVaiEwi3TtwVxGyGKUKivGV5g-UX5feBdzTUk6aVVQu1cZXGqQxQYjwkgrqrtvBhXP7x3psZeZ6j_63D_QYHjYONduuJeAJLLmiAys7bR-7Djy4BrnYgftVyqstn8JFi8fCphnbpYT92Tkb1wC4yKw02j8-pqLlJHdsSImLM5oHYKZIGdoGdJpRtFgvPz1KS9xMz1jT9IgZRkUbhcs_shodmoihQKIRzNkXQoOo7kCEhuZHQXWkrEephM_g2618q-ewXEwLtwZMBg6lOkUdmjklVKSVNUaEieVWk1fcBb9lmNg2-O3URiSPqzhOqvgvHuvC-6tLZjV4yU0nr7d8FTd6rIwXTNWFDy1nLg7_k9iLm4m9gZW9g-EgHvRH-y9hVaDjWGfCr8Py_OTUvYJ79tf8qDx5XQkYg8PbZtjfrFBhjw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB0hCpQe-FhasZQWHziBIhLbJDG3ihIVAasVULS3yHGcCilkV2Qp4nfwh5nJB5SPIiFOiRLHieQXe5488x7AurV-KkTAnSRAbiJ16jvaDRMn4ZnHM6WkVznPnR0GvV44GKh-43Nattnu7ZZkXdNAKk3FeGuUZo0Hidw6ISKDVHzASV9duMjZP0jKoye6fnJ2PxX70q1r4XzPoebNtuaLXTxemB6izScbpNW6E82_-4sXYK4JOdmPGiOLMGGLDnzcbZ3eOvDpH1HCDkxXSaGmXILbVrGEDTO2RyntoxvWryVicTjp6v7FBZX1JrllR5TaNyKmzHSRMpw9MaxE8LEovzpPSzwMr1ljC8Q0o7KGwuY7rNZPps4QsrhM5OyY9BKqN1BHR_pPQZWWLKJku8_wO9o73f3lNCYOjhGeP3ZU4NpMiiTZ1txQeIFnCqOE0FihQ8SGx62yejsL08RFRHnG09K6qVVGK84z8QUmi2Fhl4EJ3yLuU5xlMiu5DJU0WvMgMZ5RFDd2wW1HMDaNwjkZbeRxxXSEjJ-NQhc27h8Z1fIerzVebWERN396GQtk2NxXSDS7sNnC4OH2fztbeVPrNZjp_4ziw_3ewVeYJcv7OnN8FSbHl1f2G0yZv-Pz8vJ7hf8756oCdg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Entropy+Production+of+Immiscible+Micropolar+and+Newtonian+Fluids+Flow+through+a+Channel%3A+Effect+of+Thermal+Radiation+and+Magnetic+Field&rft.jtitle=Colloid+journal+of+the+Russian+Academy+of+Sciences&rft.au=Pramod+Kumar+Yadav&rft.au=Kumar%2C+Ankit&rft.au=Filippov%2C+A.+N.&rft.date=2023-02-01&rft.issn=1061-933X&rft.eissn=1608-3067&rft.volume=85&rft.issue=1&rft.spage=95&rft.epage=113&rft_id=info:doi/10.1134%2FS1061933X22600300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1061933X22600300 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-933X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-933X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-933X&client=summon |