Numerical Solutions of Fractional Systems of Two-Point BVPs by Using the Iterative Reproducing Kernel Algorithm

We propose an efficient computational method, namely, the iterative reproducing kernel method for the approximate solution of fractional-order systems of two-point time boundary-value problems in the Caputo sense. Two extended inner-product spaces are constructed in which the boundary conditions are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal Jg. 70; H. 5; S. 687 - 701
Hauptverfasser: Altawallbeh, Z., Al-Smadi, M., Komashynska, I., Ateiwi, A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.10.2018
Springer Nature B.V
Schlagworte:
ISSN:0041-5995, 1573-9376
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an efficient computational method, namely, the iterative reproducing kernel method for the approximate solution of fractional-order systems of two-point time boundary-value problems in the Caputo sense. Two extended inner-product spaces are constructed in which the boundary conditions are satisfied for the analyzed systems. The reproducing kernel functions are constructed to get an accurate algorithm for the investigation of fractional systems. The developed procedure is based on generating the orthonormal basis with an aim to formulate the solution via the evolution of the algorithm. The analytic solution is represented in the form of a series in the reproducing kernel Hilbert space with readily computed components. In this connection, some numerical examples are presented to show the good performance and applicability of the developed algorithm. The numerical results indicate that the proposed algorithm is a powerful tool for the solution of fractional models encountered in various fields of sciences and engineering.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-018-1526-8