Decompositions of n-qubit Toffoli Gates with Linear Circuit Complexity

Toffoli gates are natural elements for the circuit model based quantum computation. We investigate general resource requirements for arbitrary n -qubit Toffoli gate. These resources consist of the nontrivial Clifford gate (CNOT), non-Clifford gate ( T gate), ancillary qubits, and circuit depth. To i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of theoretical physics Vol. 56; no. 7; pp. 2350 - 2361
Main Authors: He, Yong, Luo, Ming-Xing, Zhang, E., Wang, Hong-Ke, Wang, Xiao-Feng
Format: Journal Article
Language:English
Published: New York Springer US 01.07.2017
Springer Nature B.V
Subjects:
ISSN:0020-7748, 1572-9575
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Toffoli gates are natural elements for the circuit model based quantum computation. We investigate general resource requirements for arbitrary n -qubit Toffoli gate. These resources consist of the nontrivial Clifford gate (CNOT), non-Clifford gate ( T gate), ancillary qubits, and circuit depth. To implement n -qubit Toffoli gates, we consider two cases: only one auxiliary qubit and unlimited auxiliary qubits. The key of the first case is to decompose an n -qubit Toffoli gate into the reduced Toffoli gate modulo phase shift using the Clifford gates and one ancillary qubit. With this construction, it only requires O ( n ) number of general resources for an n -qubit Toffoli gate. For the second case, an approximate Toffoli gate is constructed to obtain efficient decomposition of a Toffoli gate. The new decomposition can further reduce general resources except auxiliary qubits.
AbstractList Toffoli gates are natural elements for the circuit model based quantum computation. We investigate general resource requirements for arbitrary n-qubit Toffoli gate. These resources consist of the nontrivial Clifford gate (CNOT), non-Clifford gate (T gate), ancillary qubits, and circuit depth. To implement n-qubit Toffoli gates, we consider two cases: only one auxiliary qubit and unlimited auxiliary qubits. The key of the first case is to decompose an n-qubit Toffoli gate into the reduced Toffoli gate modulo phase shift using the Clifford gates and one ancillary qubit. With this construction, it only requires O(n) number of general resources for an n-qubit Toffoli gate. For the second case, an approximate Toffoli gate is constructed to obtain efficient decomposition of a Toffoli gate. The new decomposition can further reduce general resources except auxiliary qubits.
Toffoli gates are natural elements for the circuit model based quantum computation. We investigate general resource requirements for arbitrary n -qubit Toffoli gate. These resources consist of the nontrivial Clifford gate (CNOT), non-Clifford gate ( T gate), ancillary qubits, and circuit depth. To implement n -qubit Toffoli gates, we consider two cases: only one auxiliary qubit and unlimited auxiliary qubits. The key of the first case is to decompose an n -qubit Toffoli gate into the reduced Toffoli gate modulo phase shift using the Clifford gates and one ancillary qubit. With this construction, it only requires O ( n ) number of general resources for an n -qubit Toffoli gate. For the second case, an approximate Toffoli gate is constructed to obtain efficient decomposition of a Toffoli gate. The new decomposition can further reduce general resources except auxiliary qubits.
Author Wang, Hong-Ke
Luo, Ming-Xing
Zhang, E.
He, Yong
Wang, Xiao-Feng
Author_xml – sequence: 1
  givenname: Yong
  surname: He
  fullname: He, Yong
  email: heyongmath@163.com
  organization: Department of Mathematics and Physics, Chongqing University of Science and Technology
– sequence: 2
  givenname: Ming-Xing
  surname: Luo
  fullname: Luo, Ming-Xing
  organization: Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Department of Physics, University of Michigan
– sequence: 3
  givenname: E.
  surname: Zhang
  fullname: Zhang, E.
  organization: Department of Mathematics and Physics, Chongqing University of Science and Technology
– sequence: 4
  givenname: Hong-Ke
  surname: Wang
  fullname: Wang, Hong-Ke
  organization: Department of Mathematics and Physics, Chongqing University of Science and Technology
– sequence: 5
  givenname: Xiao-Feng
  surname: Wang
  fullname: Wang, Xiao-Feng
  organization: Department of Mathematics and Physics, Chongqing University of Science and Technology
BookMark eNp9kD1PwzAQhi1UJNrCD2CLxGw45-uSEQVakCqxlNlyHRtcpXFru4L-exyFASHBdDe8z308MzLpba8IuWZwywDwzjNAzCgwpFlW1TQ_I1NWYErrAosJmQKkQBHz6oLMvN8CQA15NSWLByXtbm-9Ccb2PrE66enhuDEhWVutbWeSpQjKJx8mvCcr0yvhksY4eYyJJpKd-jThdEnOtei8uvquc_K6eFw3T3T1snxu7ldUZqwMtM7ztIYNQqmYllgLliNUsmKtqmWhZI0latgUKWtLGRstiyxvKy2wVZlOi2xObsa5e2cPR-UD39qj6-NKzoaHEBmDmGJjSjrrvVOa753ZCXfiDPigi4-6eNTFB108jwz-YqQJYpASnDDdv2Q6kj5u6d-U-3HTn9AX1yyAcw
CitedBy_id crossref_primary_10_1038_s41534_023_00697_6
crossref_primary_10_1038_s41598_023_41086_5
crossref_primary_10_1088_2058_9565_ad3d7f
crossref_primary_10_1103_PRXQuantum_5_010345
crossref_primary_10_1109_TQE_2020_3030609
crossref_primary_10_1109_MM_2020_2985976
crossref_primary_10_1007_s10773_023_05339_3
crossref_primary_10_1103_PhysRevResearch_6_043227
crossref_primary_10_1103_9xpz_62cw
crossref_primary_10_1002_widm_1553
crossref_primary_10_1145_3673242
crossref_primary_10_1088_1674_1056_ad02e5
crossref_primary_10_1103_t8wt_mp2l
crossref_primary_10_3390_sym13061025
crossref_primary_10_1002_qute_202300370
crossref_primary_10_1109_TCAD_2023_3327102
crossref_primary_10_1002_qute_202300302
crossref_primary_10_1088_2058_9565_ad33ac
crossref_primary_10_1109_ACCESS_2023_3243798
crossref_primary_10_1145_3744646
crossref_primary_10_1109_TQE_2022_3210705
crossref_primary_10_62056_ay11zo_3y
crossref_primary_10_1007_s11128_024_04369_y
crossref_primary_10_1007_s11128_020_02938_5
crossref_primary_10_1016_j_optcom_2025_131520
crossref_primary_10_1109_TCAD_2024_3471905
crossref_primary_10_1088_1367_2630_ab8830
crossref_primary_10_3390_math13183005
crossref_primary_10_1007_s11128_023_03857_x
crossref_primary_10_1103_vs78_kwgz
crossref_primary_10_1002_qute_202400337
crossref_primary_10_1103_PhysRevA_110_062407
crossref_primary_10_1007_s11227_025_07684_y
crossref_primary_10_1007_s11227_021_03870_w
crossref_primary_10_1038_s41467_024_50065_x
crossref_primary_10_1088_1367_2630_abf1b3
crossref_primary_10_1103_RevModPhys_97_021003
crossref_primary_10_1109_TQE_2021_3057908
crossref_primary_10_22331_q_2025_03_20_1663
crossref_primary_10_2478_qic_2025_0012
crossref_primary_10_1103_m32k_7nq2
crossref_primary_10_1007_s42979_022_01638_4
crossref_primary_10_1145_3406309
crossref_primary_10_1038_s41598_025_95283_5
Cites_doi 10.1137/S0097539795293172
10.1145/2431211.2431220
10.1038/nature10713
10.1103/PhysRevA.87.042305
10.1103/PhysRevA.87.042302
10.1098/rspa.1992.0167
10.1103/PhysRevA.84.012314
10.1126/science.1057726
10.1103/PhysRevLett.91.027903
10.1103/PhysRevLett.92.177902
10.1103/PhysRevB.85.054504
10.1103/PhysRevA.52.3457
10.1103/PhysRevA.54.4741
10.1103/PhysRevLett.102.040501
10.1103/PhysRevA.88.010304
10.1103/PhysRevA.71.022316
10.1103/PhysRevA.87.032332
10.1038/nphys3029
10.1103/PhysRevA.54.1862
10.1109/TCAD.2014.2341953
10.1103/PhysRevA.54.1098
10.1103/PhysRevLett.79.325
10.1098/rspa.1989.0099
10.1038/srep00260
10.1103/PhysRevLett.103.150502
10.1103/PhysRevA.75.022313
10.1007/BF02650179
10.1017/CBO9781139020411
10.1109/TCAD.2005.855930
10.1103/PhysRevA.87.062318
10.1145/1646353.1646375
10.1103/PhysRevA.87.022328
10.1103/PhysRevA.52.R2493
10.1103/PhysRevA.93.022311
10.1038/nphys1150
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s10773-017-3389-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1572-9575
EndPage 2361
ExternalDocumentID 10_1007_s10773_017_3389_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61303039
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: the Science and Technology Research Project of Chongqiong Education Commission
  grantid: KJ1713339
GroupedDBID -54
-5F
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ3
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XJT
YLTOR
Z45
Z7R
Z7U
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ABUFD
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c316t-944290b706e1fc79a14708c81de9c5ec9767f0b521d6cf0bfc534d8fa7de3f253
IEDL.DBID RSV
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405095100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7748
IngestDate Wed Sep 17 13:50:30 EDT 2025
Sat Nov 29 06:31:00 EST 2025
Tue Nov 18 22:32:03 EST 2025
Fri Feb 21 02:34:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords circuit complexity
Toffoli gate
Quantum circuit
Clifford gates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-944290b706e1fc79a14708c81de9c5ec9767f0b521d6cf0bfc534d8fa7de3f253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1904877110
PQPubID 2043554
PageCount 12
ParticipantIDs proquest_journals_1904877110
crossref_primary_10_1007_s10773_017_3389_4
crossref_citationtrail_10_1007_s10773_017_3389_4
springer_journals_10_1007_s10773_017_3389_4
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of theoretical physics
PublicationTitleAbbrev Int J Theor Phys
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DeutschDJozsaRProc. R. Soc. London, Ser. A19924395535581992RSPSA.439..553D10.1098/rspa.1992.0167
ZhangJValaJSastrySWhaleyKBPhys. Rev. Lett.2003910279032003PhRvL..91b7903Z10.1103/PhysRevLett.91.027903
FarhiEGoldstoneJGutmannSLapanJLundgrenAPredaDScience20012924724752001Sci...292..472F183876110.1126/science.1057726
KliuchnikovVMaslovDMoscaMQuantum Info. & Comput.201313607630
SaeediMMarkovILACM Comput. Surv.2013452110.1145/2431211.2431220
SaeediMPedramMPhys. Rev. A2013870623182013PhRvA..87f2318S10.1103/PhysRevA.87.062318
DeutschDQuantum computational networksProc. R. Soc. Lond. A198942573901989RSPSA.425...73D101928810.1098/rspa.1989.00990691.68054
AmyMMaslovDMoscaMIEEE Trans. CAD201433101476148910.1109/TCAD.2014.2341953
ShorPWSIAM J. Comput.19972614841509147199010.1137/S0097539795293172
Horn, R.A., Johnson, R.: Matrix Analysis, 2nd Edition. Cambridge University Press (2012)
HarrowAWHassidimALloydSPhys. Rev. Lett.20091031505022009PhRvL.103o0502H255168810.1103/PhysRevLett.103.150502
LloydSMohseniMRebentrostPNature Phys.2014106316332014NatPh..10..631L10.1038/nphys3029
SteaneAMPhys. Rev. A19965447411996PhRvA..54.4741S142956610.1103/PhysRevA.54.4741
LinJPengXDuJSuterDSci. Rep.201222602012NatSR...2E.260L
GroverLKPhys. Rev .Lett.1997793253281997PhRvL..79..325G10.1103/PhysRevLett.79.325
SelingerPQuantum Info. & Comput.201515159180
YuNDuanRYingMPhys. Rev. A2013880103042013PhRvA..88a0304Y10.1103/PhysRevA.88.010304
GilesBSelingerPPhys. Rev. A2013870323322013PhRvA..87c2332G10.1103/PhysRevA.87.032332
CalderbankARShorPWPhys. Rev. A19965410981996PhRvA..54.1098C10.1103/PhysRevA.54.1098
MaslovDPhys. Rev. A2016930223112016PhRvA..93b2311M10.1103/PhysRevA.93.022311
RalphTCReschKJGilchristAPhys. Rev. A2007750223132007PhRvA..75b2313R10.1103/PhysRevA.75.022313
FeynmanRInt. J. Theor. Phys.19822146748810.1007/BF02650179
JonesCPhys. Rev. A2013870423052013PhRvA..87d2305J10.1103/PhysRevA.87.042305
ShendeVBullockSSMarkovILIEEE Tran. Comput. AID Design2006261000101010.1109/TCAD.2005.855930
BaconDvan DamWCommun. ACM201053849310.1145/1646353.1646375
ShorPWPhys. Rev. A19955224931995PhRvA..52.2493S10.1103/PhysRevA.52.R2493
VartiainenJJMöttönenMSalomaaMMPhys. Rev. Lett.2004921779022004PhRvL..92q7902V10.1103/PhysRevLett.92.177902
StojanovicVMFedorovAWallraffABruderCPhys. Rev. B2012850545042012PhRvB..85e4504S10.1103/PhysRevB.85.054504
DawsonCMNielsenMAQuantum Info. & Comput.200668195
MonzTKimKHänselWRiebeMVillarASSchindlerPChwallaMHennrichMBlattRPhys. Rev. Lett.20091020405012009PhRvL.102d0501M10.1103/PhysRevLett.102.040501
SaeediMArabzadehMSaheb ZamaniMSedighiMQuantum Inf. & Comput.2011112622772791988
BorrelliMMazzolaLPaternostroMManiscalcoSPhys. Rev. A2011840123142011PhRvA..84a2314B10.1103/PhysRevA.84.012314
LanyonBPBarbieriMAlmeidaMPJenneweinTRalphTCReschKJPrydeGJO’BrienJLGilchristAWhiteAGNature Phys.200851341402009NatPh...5..134L10.1038/nphys1150
FedorovASteffenLBaurMda SilvaMPWallraffANature20124811702012Natur.481..170F10.1038/nature10713
ShiYQuantum Info. & Comput.200338492
JonesCPhys. Rev. A2013870223282013PhRvA..87b2328J10.1103/PhysRevA.87.022328
BravyiSKitaevAPhys. Rev. A2005710223162005PhRvA..71b2316B213868710.1103/PhysRevA.71.022316
SelingerPPhys. Rev. A2013870423022013PhRvA..87d2302S10.1103/PhysRevA.87.042302
BarencoABennettCHCleveRDiVincenzoDPMargolusNShorPWSleatorTSmolinJAWeinfurterHPhys. Rev. A19955234571995PhRvA..52.3457B10.1103/PhysRevA.52.3457
GottesmanDPhys. Rev. A19965418621996PhRvA..54.1862G145056710.1103/PhysRevA.54.1862
P Selinger (3389_CR34) 2013; 87
M Saeedi (3389_CR33) 2013; 45
C Jones (3389_CR37) 2013; 87
LK Grover (3389_CR3) 1997; 79
N Yu (3389_CR28) 2013; 88
V Kliuchnikov (3389_CR29) 2013; 13
J Zhang (3389_CR13) 2003; 91
M Saeedi (3389_CR38) 2011; 11
B Giles (3389_CR35) 2013; 87
D Gottesman (3389_CR19) 1996; 54
CM Dawson (3389_CR27) 2006; 6
D Deutsch (3389_CR9) 1989; 425
JJ Vartiainen (3389_CR14) 2004; 92
M Borrelli (3389_CR24) 2011; 84
VM Stojanovic (3389_CR22) 2012; 85
T Monz (3389_CR23) 2009; 102
C Jones (3389_CR32) 2013; 87
3389_CR11
M Saeedi (3389_CR36) 2013; 87
E Farhi (3389_CR4) 2001; 292
P Selinger (3389_CR30) 2015; 15
AW Harrow (3389_CR5) 2009; 103
A Fedorov (3389_CR21) 2012; 481
PW Shor (3389_CR16) 1995; 52
J Lin (3389_CR7) 2012; 2
A Barenco (3389_CR12) 1995; 52
AM Steane (3389_CR18) 1996; 54
BP Lanyon (3389_CR26) 2008; 5
M Amy (3389_CR40) 2014; 33
R Feynman (3389_CR1) 1982; 21
AR Calderbank (3389_CR17) 1996; 54
S Bravyi (3389_CR31) 2005; 71
Y Shi (3389_CR20) 2003; 3
TC Ralph (3389_CR25) 2007; 75
V Shende (3389_CR15) 2006; 26
D Bacon (3389_CR6) 2010; 53
PW Shor (3389_CR2) 1997; 26
S Lloyd (3389_CR8) 2014; 10
D Deutsch (3389_CR10) 1992; 439
D Maslov (3389_CR39) 2016; 93
References_xml – reference: GroverLKPhys. Rev .Lett.1997793253281997PhRvL..79..325G10.1103/PhysRevLett.79.325
– reference: FeynmanRInt. J. Theor. Phys.19822146748810.1007/BF02650179
– reference: SelingerPPhys. Rev. A2013870423022013PhRvA..87d2302S10.1103/PhysRevA.87.042302
– reference: ShorPWSIAM J. Comput.19972614841509147199010.1137/S0097539795293172
– reference: StojanovicVMFedorovAWallraffABruderCPhys. Rev. B2012850545042012PhRvB..85e4504S10.1103/PhysRevB.85.054504
– reference: LinJPengXDuJSuterDSci. Rep.201222602012NatSR...2E.260L
– reference: BarencoABennettCHCleveRDiVincenzoDPMargolusNShorPWSleatorTSmolinJAWeinfurterHPhys. Rev. A19955234571995PhRvA..52.3457B10.1103/PhysRevA.52.3457
– reference: SaeediMMarkovILACM Comput. Surv.2013452110.1145/2431211.2431220
– reference: BorrelliMMazzolaLPaternostroMManiscalcoSPhys. Rev. A2011840123142011PhRvA..84a2314B10.1103/PhysRevA.84.012314
– reference: KliuchnikovVMaslovDMoscaMQuantum Info. & Comput.201313607630
– reference: SelingerPQuantum Info. & Comput.201515159180
– reference: BravyiSKitaevAPhys. Rev. A2005710223162005PhRvA..71b2316B213868710.1103/PhysRevA.71.022316
– reference: HarrowAWHassidimALloydSPhys. Rev. Lett.20091031505022009PhRvL.103o0502H255168810.1103/PhysRevLett.103.150502
– reference: FarhiEGoldstoneJGutmannSLapanJLundgrenAPredaDScience20012924724752001Sci...292..472F183876110.1126/science.1057726
– reference: LanyonBPBarbieriMAlmeidaMPJenneweinTRalphTCReschKJPrydeGJO’BrienJLGilchristAWhiteAGNature Phys.200851341402009NatPh...5..134L10.1038/nphys1150
– reference: CalderbankARShorPWPhys. Rev. A19965410981996PhRvA..54.1098C10.1103/PhysRevA.54.1098
– reference: GilesBSelingerPPhys. Rev. A2013870323322013PhRvA..87c2332G10.1103/PhysRevA.87.032332
– reference: LloydSMohseniMRebentrostPNature Phys.2014106316332014NatPh..10..631L10.1038/nphys3029
– reference: YuNDuanRYingMPhys. Rev. A2013880103042013PhRvA..88a0304Y10.1103/PhysRevA.88.010304
– reference: BaconDvan DamWCommun. ACM201053849310.1145/1646353.1646375
– reference: DeutschDJozsaRProc. R. Soc. London, Ser. A19924395535581992RSPSA.439..553D10.1098/rspa.1992.0167
– reference: AmyMMaslovDMoscaMIEEE Trans. CAD201433101476148910.1109/TCAD.2014.2341953
– reference: SteaneAMPhys. Rev. A19965447411996PhRvA..54.4741S142956610.1103/PhysRevA.54.4741
– reference: JonesCPhys. Rev. A2013870223282013PhRvA..87b2328J10.1103/PhysRevA.87.022328
– reference: Horn, R.A., Johnson, R.: Matrix Analysis, 2nd Edition. Cambridge University Press (2012)
– reference: MonzTKimKHänselWRiebeMVillarASSchindlerPChwallaMHennrichMBlattRPhys. Rev. Lett.20091020405012009PhRvL.102d0501M10.1103/PhysRevLett.102.040501
– reference: VartiainenJJMöttönenMSalomaaMMPhys. Rev. Lett.2004921779022004PhRvL..92q7902V10.1103/PhysRevLett.92.177902
– reference: SaeediMPedramMPhys. Rev. A2013870623182013PhRvA..87f2318S10.1103/PhysRevA.87.062318
– reference: GottesmanDPhys. Rev. A19965418621996PhRvA..54.1862G145056710.1103/PhysRevA.54.1862
– reference: JonesCPhys. Rev. A2013870423052013PhRvA..87d2305J10.1103/PhysRevA.87.042305
– reference: FedorovASteffenLBaurMda SilvaMPWallraffANature20124811702012Natur.481..170F10.1038/nature10713
– reference: DeutschDQuantum computational networksProc. R. Soc. Lond. A198942573901989RSPSA.425...73D101928810.1098/rspa.1989.00990691.68054
– reference: ZhangJValaJSastrySWhaleyKBPhys. Rev. Lett.2003910279032003PhRvL..91b7903Z10.1103/PhysRevLett.91.027903
– reference: RalphTCReschKJGilchristAPhys. Rev. A2007750223132007PhRvA..75b2313R10.1103/PhysRevA.75.022313
– reference: DawsonCMNielsenMAQuantum Info. & Comput.200668195
– reference: MaslovDPhys. Rev. A2016930223112016PhRvA..93b2311M10.1103/PhysRevA.93.022311
– reference: ShiYQuantum Info. & Comput.200338492
– reference: ShorPWPhys. Rev. A19955224931995PhRvA..52.2493S10.1103/PhysRevA.52.R2493
– reference: ShendeVBullockSSMarkovILIEEE Tran. Comput. AID Design2006261000101010.1109/TCAD.2005.855930
– reference: SaeediMArabzadehMSaheb ZamaniMSedighiMQuantum Inf. & Comput.2011112622772791988
– volume: 26
  start-page: 1484
  year: 1997
  ident: 3389_CR2
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539795293172
– volume: 45
  start-page: 21
  year: 2013
  ident: 3389_CR33
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2431211.2431220
– volume: 481
  start-page: 170
  year: 2012
  ident: 3389_CR21
  publication-title: Nature
  doi: 10.1038/nature10713
– volume: 87
  start-page: 042305
  year: 2013
  ident: 3389_CR32
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.042305
– volume: 87
  start-page: 042302
  year: 2013
  ident: 3389_CR34
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.042302
– volume: 6
  start-page: 81
  year: 2006
  ident: 3389_CR27
  publication-title: Quantum Info. & Comput.
– volume: 439
  start-page: 553
  year: 1992
  ident: 3389_CR10
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1992.0167
– volume: 84
  start-page: 012314
  year: 2011
  ident: 3389_CR24
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.84.012314
– volume: 292
  start-page: 472
  year: 2001
  ident: 3389_CR4
  publication-title: Science
  doi: 10.1126/science.1057726
– volume: 91
  start-page: 027903
  year: 2003
  ident: 3389_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.027903
– volume: 92
  start-page: 177902
  year: 2004
  ident: 3389_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.177902
– volume: 85
  start-page: 054504
  year: 2012
  ident: 3389_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.054504
– volume: 52
  start-page: 3457
  year: 1995
  ident: 3389_CR12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.3457
– volume: 54
  start-page: 4741
  year: 1996
  ident: 3389_CR18
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.4741
– volume: 102
  start-page: 040501
  year: 2009
  ident: 3389_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.040501
– volume: 88
  start-page: 010304
  year: 2013
  ident: 3389_CR28
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.010304
– volume: 15
  start-page: 159
  year: 2015
  ident: 3389_CR30
  publication-title: Quantum Info. & Comput.
– volume: 71
  start-page: 022316
  year: 2005
  ident: 3389_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.022316
– volume: 87
  start-page: 032332
  year: 2013
  ident: 3389_CR35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.032332
– volume: 10
  start-page: 631
  year: 2014
  ident: 3389_CR8
  publication-title: Nature Phys.
  doi: 10.1038/nphys3029
– volume: 54
  start-page: 1862
  year: 1996
  ident: 3389_CR19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.1862
– volume: 33
  start-page: 1476
  issue: 10
  year: 2014
  ident: 3389_CR40
  publication-title: IEEE Trans. CAD
  doi: 10.1109/TCAD.2014.2341953
– volume: 54
  start-page: 1098
  year: 1996
  ident: 3389_CR17
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.1098
– volume: 79
  start-page: 325
  year: 1997
  ident: 3389_CR3
  publication-title: Phys. Rev .Lett.
  doi: 10.1103/PhysRevLett.79.325
– volume: 425
  start-page: 73
  year: 1989
  ident: 3389_CR9
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1989.0099
– volume: 2
  start-page: 260
  year: 2012
  ident: 3389_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/srep00260
– volume: 103
  start-page: 150502
  year: 2009
  ident: 3389_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.150502
– volume: 75
  start-page: 022313
  year: 2007
  ident: 3389_CR25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.022313
– volume: 3
  start-page: 84
  year: 2003
  ident: 3389_CR20
  publication-title: Quantum Info. & Comput.
– volume: 11
  start-page: 262
  year: 2011
  ident: 3389_CR38
  publication-title: Quantum Inf. & Comput.
– volume: 21
  start-page: 467
  year: 1982
  ident: 3389_CR1
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/BF02650179
– ident: 3389_CR11
  doi: 10.1017/CBO9781139020411
– volume: 13
  start-page: 607
  year: 2013
  ident: 3389_CR29
  publication-title: Quantum Info. & Comput.
– volume: 26
  start-page: 1000
  year: 2006
  ident: 3389_CR15
  publication-title: IEEE Tran. Comput. AID Design
  doi: 10.1109/TCAD.2005.855930
– volume: 87
  start-page: 062318
  year: 2013
  ident: 3389_CR36
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.062318
– volume: 53
  start-page: 84
  year: 2010
  ident: 3389_CR6
  publication-title: Commun. ACM
  doi: 10.1145/1646353.1646375
– volume: 87
  start-page: 022328
  year: 2013
  ident: 3389_CR37
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.87.022328
– volume: 52
  start-page: 2493
  year: 1995
  ident: 3389_CR16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.52.R2493
– volume: 93
  start-page: 022311
  year: 2016
  ident: 3389_CR39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.022311
– volume: 5
  start-page: 134
  year: 2008
  ident: 3389_CR26
  publication-title: Nature Phys.
  doi: 10.1038/nphys1150
SSID ssj0009048
Score 2.4051063
Snippet Toffoli gates are natural elements for the circuit model based quantum computation. We investigate general resource requirements for arbitrary n -qubit Toffoli...
Toffoli gates are natural elements for the circuit model based quantum computation. We investigate general resource requirements for arbitrary n-qubit Toffoli...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2350
SubjectTerms Circuits
Complexity
Computation
Decomposition
Elementary Particles
Gates
Gates (circuits)
Mathematical and Computational Physics
Phase shift
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Qubits (quantum computing)
Theoretical
Title Decompositions of n-qubit Toffoli Gates with Linear Circuit Complexity
URI https://link.springer.com/article/10.1007/s10773-017-3389-4
https://www.proquest.com/docview/1904877110
Volume 56
WOSCitedRecordID wos000405095100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1572-9575
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009048
  issn: 0020-7748
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA46FXzxtzidkgeflEDSpE36KNPhgwzROfZW2jSBwlh17QT_ey9d66aooG-FXtJyl-T7krvcIXSulQlCoyxJPCOI0EIRZbklLJCpZwNpaHUrbXgn-301GoX39T3uool2b1yS1Uq9dNlNShf7A5MCUJaIVbQGaKdcvYaHx-Ei0y4V8-UX9kXAbVTjyvyui89gtGCYX5yiFdb0tv_1lztoq6aW-Go-FnbRipnsoY0qxFMX-6h3bVz8eBOkhXOLJ-RllmQlHuTW5uMMu6O0ArujWQx7VJgDuJtN9Qwk3LLhUmeWbwfoqXcz6N6SuooC0ZwFJQkFQA5NJA0Ms1qGMROSKg081YTaNxr4iLQ0ARhPAw0PVvtcpMrGMjXcej4_RK1JPjFHCFNmgH7EmnmxAeIRJin3oUPJleaBZKyNaKPOSNcpxl2li3G0SI7s1BOBeiKnnki00cVHk-d5fo3fhDuNjaJ6qhURcwaX8HXaRpeNTZZe_9TZ8Z-kT9Cm54xaBep2UKuczswpWtevZVZMz6oR-A4EWtOQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED_8RF_8FqdT8-CTEkjarEkfZToU5xCd4ltZ0wQKY9O1E_zvvXStU1FB3wpNruUud_dL7iMAR1qZIDTK0tgzggotFFXWt5QHMvFsIA0rqtIe2rLTUY-P4U1Zx51V2e5VSLKw1B-K3aR0uT-oFOhlqZiFeYEOyzXMv717mHbaZWJifnFfhNhGVaHM70h8dkZThPklKFr4mtbqv_5yDVZKaElOJ2thHWbMYAMWixRPnW1C68y4_PEqSYsMLRnQ53Gc5qQ7tHbYT4k7SsuIO5oluEdFHSDNdKTHOMKZDdc6M3_dgvvWebd5QctbFKj2eZDTUKDLYbFkgeFWy7DHhWRKI041oW4YjXhEWhajG08CjQ9WN3yRKNuTifGt1_C3YW4wHJgdIIwbhB89zb2eQeARxonfQILSV9oPJOc1YBU7I122GHc3XfSjaXNkx54I2RM59kSiBsfvU54m_TV-G1yvZBSVqpZF3Alc4tdZDU4qmXx4_ROx3T-NPoSli-51O2pfdq72YNlzAi6Sduswl4_GZh8W9EueZqODYjW-Afgy1nQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90fuCL3-L8zINPSjBpsyZ9lOlQHENwDt_KmiYwkE7XTvC_99K1booK4luhSVrucrlfcr_cAZxoZYLQKEtjzwgqtFBUWd9SHsjEs4E0rLiV1mvLTkc9PoZ3ZZ3TrGK7VyHJyZ0Gl6Upzc-fE3s-c_FNSscDQgNBj0vFPCwIx6N32_X73jTrLhOTpRj3SIhzVBXW_G6Iz45pija_BEgLv9Na-_cfr8NqCTnJxWSObMCcSTdhqaB-6mwLWpfG8cor8hYZWpLSl3E8yEl3aO3waUDcEVtG3JEtwb0r2gZpDkZ6jC3ccuJSauZv2_DQuuo2r2lZXYFqnwc5DQW6IhZLFhhutQz7XEimNOJXE-qG0YhTpGUxuvck0PhgdcMXibJ9mRjfeg1_B2rpMDW7QBg3CEv6mnt9g4AkjBO_gQNKX2k_kJzXgVWijXSZetxVwHiKpkmTnXgiFE_kxBOJOpx-dHme5N34rfFBpa-oNMEs4k75Er_O6nBW6Wfm9U-D7f2p9TEs3122ovZN53YfVjyn34LLewC1fDQ2h7CoX_NBNjoqJuY7hAffWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decompositions+of+n-qubit+Toffoli+Gates+with+Linear+Circuit+Complexity&rft.jtitle=International+journal+of+theoretical+physics&rft.au=He%2C+Yong&rft.au=Luo%2C+Ming-Xing&rft.au=Zhang%2C+E.&rft.au=Wang%2C+Hong-Ke&rft.date=2017-07-01&rft.pub=Springer+US&rft.issn=0020-7748&rft.eissn=1572-9575&rft.volume=56&rft.issue=7&rft.spage=2350&rft.epage=2361&rft_id=info:doi/10.1007%2Fs10773-017-3389-4&rft.externalDocID=10_1007_s10773_017_3389_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7748&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7748&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7748&client=summon