An optimal text compression algorithm based on frequent pattern mining

Data Compression as a research area has been explored in depth over the years resulting in Huffman Encoding, LZ77, LZW, GZip, RAR, etc. Much of the research has been focused on conventional character/word based mechanism without looking at the larger perspective of pattern retrieval from dense and l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing Jg. 9; H. 3; S. 803 - 822
Hauptverfasser: Oswald, C., Sivaselvan, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018
Springer Nature B.V
Schlagworte:
ISSN:1868-5137, 1868-5145
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Data Compression as a research area has been explored in depth over the years resulting in Huffman Encoding, LZ77, LZW, GZip, RAR, etc. Much of the research has been focused on conventional character/word based mechanism without looking at the larger perspective of pattern retrieval from dense and large datasets. We explore the compression perspective of Data Mining suggested by Naren Ramakrishnan et al. where in Huffman Encoding is enhanced through frequent pattern mining (FPM) a non-trivial phase in Association Rule Mining (ARM) technique. The paper proposes a novel frequent pattern mining based Huffman Encoding algorithm for Text data and employs a Hash table in the process of Frequent Pattern counting. The proposed algorithm operates on pruned set of frequent patterns and also is efficient in terms of database scan and storage space by reducing the code table size. Optimal (pruned) set of patterns is employed in the encoding process instead of character based approach of Conventional Huffman. Simulation results over 18 benchmark corpora demonstrate the betterment in compression ratio ranging from 18.49% over sparse datasets to 751% over dense datasets. It is also demonstrated that the proposed algorithm achieves pattern space reduction ranging from 5% over sparse datasets to 502% in dense corpus.
AbstractList Data Compression as a research area has been explored in depth over the years resulting in Huffman Encoding, LZ77, LZW, GZip, RAR, etc. Much of the research has been focused on conventional character/word based mechanism without looking at the larger perspective of pattern retrieval from dense and large datasets. We explore the compression perspective of Data Mining suggested by Naren Ramakrishnan et al. where in Huffman Encoding is enhanced through frequent pattern mining (FPM) a non-trivial phase in Association Rule Mining (ARM) technique. The paper proposes a novel frequent pattern mining based Huffman Encoding algorithm for Text data and employs a Hash table in the process of Frequent Pattern counting. The proposed algorithm operates on pruned set of frequent patterns and also is efficient in terms of database scan and storage space by reducing the code table size. Optimal (pruned) set of patterns is employed in the encoding process instead of character based approach of Conventional Huffman. Simulation results over 18 benchmark corpora demonstrate the betterment in compression ratio ranging from 18.49% over sparse datasets to 751% over dense datasets. It is also demonstrated that the proposed algorithm achieves pattern space reduction ranging from 5% over sparse datasets to 502% in dense corpus.
Author Oswald, C.
Sivaselvan, B.
Author_xml – sequence: 1
  givenname: C.
  orcidid: 0000-0002-1251-1495
  surname: Oswald
  fullname: Oswald, C.
  email: oswald.mecse@gmail.com
  organization: Department of Computer Engineering, Indian Institute of Information Technology, Design and Manufacturing Kancheepuram
– sequence: 2
  givenname: B.
  surname: Sivaselvan
  fullname: Sivaselvan, B.
  organization: Department of Computer Engineering, Indian Institute of Information Technology, Design and Manufacturing Kancheepuram
BookMark eNp9kE9LBCEYhyUK2rb9AN2EzlO-6vzxuCxtBQtd6iyOo9ssszqpC_Xtc5koCEoPvsrv0dfnAp067wxCV0BugJD6NgKtSloQqAtSclLQEzSDpmqKEnh5-l2z-hwtYtyRPJhgADBD66XDfkz9Xg04mfeEtd-PwcTYe4fVsPWhT6973KpoOpyPbDBvB-MSHlVKJji8713vtpfozKohmsXXOkcv67vn1UOxebp_XC03hWZQpUIw3dRc2EZUbZVL2hphDQewneZM5G1DW8KMtR0vO93kKdpOMN7WqtK0ZXN0Pd07Bp_7iEnu_CG4_KSkAgQXgtc0p-oppYOPMRgrdZ9Uyl9KQfWDBCKP3uTkTWZv8uhNHkn4RY4huwkf_zJ0YmLOuq0JPz39DX0CMgiB_g
CitedBy_id crossref_primary_10_1007_s12652_018_1082_y
crossref_primary_10_1007_s12652_018_1017_7
crossref_primary_10_1007_s12652_018_0681_y
crossref_primary_10_1142_S0219649222500174
crossref_primary_10_1007_s42979_020_00397_4
crossref_primary_10_3390_s22176393
crossref_primary_10_1007_s12652_020_02237_y
crossref_primary_10_1145_3484717
crossref_primary_10_1002_cpe_6185
crossref_primary_10_1007_s11042_019_08361_y
crossref_primary_10_3390_sym12101654
Cites_doi 10.1016/j.ins.2014.02.060
10.1109/40.7773
10.1145/1133905.1133914
10.1145/956750.956788
10.1109/DCC.2016.30
10.1023/B:DAMI.0000005258.31418.83
10.1007/BF01936138
10.1007/s10618-006-0059-1
10.1145/322344.322346
10.1109/69.846291
10.1016/j.eswa.2014.01.025
10.1002/widm.1074
10.1145/775047.775081
10.1145/1133905.1133916
10.1145/214762.214771
10.1007/978-3-319-26832-3_53
10.1145/322234.322237
10.1145/5684.5688
10.1109/TIT.1978.1055934
10.1109/TIT.1977.1055714
10.1109/DCC.2016.60
10.1109/2.781632
10.1145/568271.223813
10.1109/DCC.2016.38
10.1016/j.jda.2017.04.001
10.1109/DCC.2016.24
10.1145/380995.381017
10.1109/DCC.2017.35
10.1109/26.61469
10.1109/TIT.1966.1053907
10.1145/253262.253325
10.1016/j.eswa.2015.03.004
10.4108/eai.27-2-2017.152268
10.1145/31846.42227
10.1109/DCC.2017.73
10.1007/978-3-642-82456-2_9
10.1145/584091.584093
10.1109/SPCOM.2016.7746651
10.1109/DCC.2016.70
10.1109/DCC.1991.213344
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany 2017
Springer-Verlag GmbH Germany 2017.
Copyright_xml – notice: Springer-Verlag GmbH Germany 2017
– notice: Springer-Verlag GmbH Germany 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12652-017-0540-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1868-5145
EndPage 822
ExternalDocumentID 10_1007_s12652_017_0540_2
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
QOS
R89
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z45
Z5O
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-93c8749f896b6c872be9fe411fdc4392be82b03effd45dc8c8c9bd934b7a6c2b3
IEDL.DBID P5Z
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434911600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-5137
IngestDate Wed Nov 05 02:11:24 EST 2025
Sat Nov 29 03:41:17 EST 2025
Tue Nov 18 22:41:11 EST 2025
Fri Feb 21 02:34:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Apriori algorithm
Frequent pattern mining
Lossless compression
Huffman encoding
Compression ratio
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-93c8749f896b6c872be9fe411fdc4392be82b03effd45dc8c8c9bd934b7a6c2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1251-1495
PQID 2919499472
PQPubID 2043913
PageCount 20
ParticipantIDs proquest_journals_2919499472
crossref_citationtrail_10_1007_s12652_017_0540_2
crossref_primary_10_1007_s12652_017_0540_2
springer_journals_10_1007_s12652_017_0540_2
PublicationCentury 2000
PublicationDate 20180600
2018-6-00
20180601
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 6
  year: 2018
  text: 20180600
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of ambient intelligence and humanized computing
PublicationTitleAbbrev J Ambient Intell Human Comput
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References ToivonenHSampling large databases for association rulesVLDB199696134145
RamakrishnanNGramaAData mining: From serendipity to science—guest editors’ introductionIEEE Comput1999328343710.1109/2.781632
(1989) Calgary and canterbury compression corpus datasets. http://corpus.canterbury.ac.nz/descriptions/. Accessed 12 Jan 2017
Park JS, Chen Ms, Yu PS (1995) An effective hash-based algorithm for mining association rules, vol 24. ACM
Pratas D, Pinho AJ, Ferreira PJ (2016) Efficient compression of genomic sequences. In: Data Compression Conference (DCC), 2016, IEEE, pp 231–240
Uno T, Kiyomi M, Arimura H (2005) Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, ACM, pp 77–86
Köppl D, Sadakane K (2016) Lempel-ziv computation in compressed space (lz-cics). In: Data Compression Conference (DCC), 2016, IEEE, pp 3–12
Savasere A, Omicinski ER, Navathe SB (1995) An efficient algorithm for mining association rules in large databases
Decaroli G, Gagie T, Manzini G (2017) A compact index for order-preserving pattern matching. In: Data Compression Conference (DCC), 2017, IEEE, pp 72–81
Li W, Yao Y (2016) Accelerate data compression in file system. In: Data Compression Conference (DCC), 2016, IEEE, pp 615–615
BorgeltCFrequent item set miningWiley Interdiscip Rev Data Min Knowl Discov20122643745610.1002/widm.1074
Liu J, Pan Y, Wang K, Han J (2002) Mining frequent item sets by opportunistic projection. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 229–238
RamabadranTVGaitondeSSA tutorial on crc computationsIEEE Micro19884627510.1109/40.7773
Bledsoe RE (1987) Data communication with modified Huffman coding
Deorowicz S (2003) Universal lossless data compression algorithms. Philosophy Dissertation Thesis, Gliwice
(2014) Amazon reviews dataset. http://jmcauley.ucsd.edu/data/amazon/. Accessed 03 June 2017
NelsonMRLzw data compressionDr Dobb’s J198914102936
Oswald C, Ghosh AI, Sivaselvan B (2015) An efficient text compression algorithm-data mining perspective. In: Mining Intelligence and Knowledge Exploration, Springer, pp 563–575
ShannonCEA mathematical theory of communicationACM SIGMOBILE Mobile Comput Commun Rev20015135555211910.1145/584091.584093
LabeitJShunJBlellochGEParallel lightweight wavelet tree, suffix array and fm-index constructionJ Disc Algorithms201743217363895710.1016/j.jda.2017.04.00106723733
Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12(3):372–390. http://dblp.uni-trier.de/db/journals/tkde/tkde12.htmlZaki00
(1987) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Census+Income. Accessed 14 Jan 2017
Kempa D, Kosolobov D (2017) Lz-end parsing in compressed space. In: Data Compression Conference (DCC), 2017, IEEE, pp 350–359
Miller VS, Wegman MN (1985) Variations on a theme by ziv and lempel. In: Combinatorial algorithms on words, Springer, pp 131–140
ZivJLempelACompression of individual sequences via variable-rate codingIEEE Trans Inf Theory197824553053650746510.1109/TIT.1978.10559340392.94004
Basu S, Chaturvedi S, Hegde RM (2016) Text compression using lexicographic permutation of binary strings. In: 2016 International Conference on Signal Processing and Communications (SPCOM), IEEE, pp 1–5
RodehMPrattVREvenSLinear algorithm for data compression via string matchingJ ACM (JACM)1981281162460318010.1145/322234.3222370462.94015
Williams RN (1991) An extremely fast ziv-lempel data compression algorithm. In: Data Compression Conference, 1991. DCC’91., IEEE, pp 362–371
(2006) Rar compression algorithm. http://www.rarlab.com/. Accessed 12 Jan 2017
(2008) PAQ. http://www.cs.fit.edu/~mmahoney/compression. Accessed 02 June 2017
Borgelt C (2005) Keeping things simple: finding frequent item sets by recursive elimination. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, ACM, pp 66–70
OswaldCSrinidhiSVishnuKSVishalTSivaselvanBHash based frequent pattern mining approach to text compressionEAI2017
Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression algorithm
Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 326–335
BentleyJLSleatorDDTarjanREWeiVKA locally adaptive data compression schemeCommun ACM198629432033083504410.1145/5684.56880648.94007
BastideYTaouilRPasquierNStummeGLakhalLMining frequent patterns with counting inferenceACM SIGKDD Explor Newslett200022667510.1145/380995.3810170983.68511
Bastide Y, Taouil R, Pasquier N, Stumme G, Lakhal L (2000a) Mining frequent patterns with counting inference. SIGKDD Explor Newsl 2(2):66–75. doi:10.1145/380995.381017
HanJChengHXinDYanXFrequent pattern mining: current status and future directionsData Min Knowl Discov20071515586238077710.1007/s10618-006-0059-1
DengZHLvSLPrepost+: an efficient n-lists-based algorithm for mining frequent itemsets via children–parent equivalence pruningExpert Syst Appl201542135424543210.1016/j.eswa.2015.03.004
(2013) Silesia dataset. http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia. Accessed 12 Jan 2017
Goethals B (2003) Survey on frequent pattern mining, manuscript
ZivJLempelAA universal algorithm for sequential data compressionIEEE Trans Inf Theory197723333734353021510.1109/TIT.1977.10557140379.94010
Storer JA (1988) Data compression: methods and theory. Computer Science Press, Inc
Pei J, Han J, Lu H, Nishio S, Tang S, Yang D (2001) H-mine: Hyper-structure mining of frequent patterns in large databases. In: Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on, IEEE, pp 441–448
JakobssonMCompression of character strings by an adaptive dictionaryBIT Num Math198525459360310.1007/BF01936138
Agarwal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C (eds) VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases, September 12–15, 1994. Morgan Kaufmann, Santiago de Chile, Chile, pp 487–499
PountainDRun-length encodingByte1987126317319
VitterJSDesign and analysis of dynamic huffman codesJ ACM (JACM)198734482584591384410.1145/31846.422270637.94002
(2005) TREC genomics track data. http://skynet.ohsu.edu/trec-gen/data/2004/. Accessed 12 Jan 2017
StorerJASzymanskiTGData compression via textual substitutionJ ACM (JACM)198229492895167425210.1145/322344.3223460489.68041
Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann
Golomb S (2006) Run-length encodings (corresp.). IEEE Trans Inf Theor 12(3):399–401. doi:10.1109/TIT.1966.1053907
HanJPeiJYinYMaoRMining frequent patterns without candidate generation: a frequent-pattern tree approachData Min Knowl Discov2004815387203783110.1023/B:DAMI.0000005258.31418.83
DavidA H (1952) A method for the construction of minimum redundancy codes. Proc IRE 40(9):1098–1101
(2013) Debruijn sequence data. http://bioinf.spbau.ru/en/spadesmanual. Accessed 03 June 2017
BrinSMotwaniRUllmanJDTsurSDynamic itemset counting and implication rules for market basket dataACM SIGMOD Record ACM19972625526410.1145/253262.253325
DengZHLvSLFast mining frequent itemsets using nodesetsExpert Syst Appld201441104505451210.1016/j.eswa.2014.01.025
Feigenblat G, Porat E, Shiftan A (2016) Linear time succinct indexable dictionary construction with applications. In: Data Compression Conference (DCC), 2016, IEEE, pp 13–22
BrentRPA linear algorithm for data compressionAust Comput J198719264680641.68029
(2003) Deflate compression algorithm. http://www.pkware.com. Accessed 12 Jan 2017
David S (2004) Data compression: the complete reference, 2nd edn. http://www.ecs.csun.edu/~dxs/DC3advertis/Dcomp3Ad.html
WittenIHNealRMClearyJGArithmetic coding for data compressionCommun ACM198730652054010.1145/214762.214771
LinKCLiaoIEChangTPLinSFA frequent itemset mining algorithm based on the principle of inclusion–exclusion and transaction mappingInf Sci201427627828910.1016/j.ins.2014.02.060
Policriti A, Prezza N (2016) Computing lz77 in run-compressed space. In: Data Compression Conference (DCC), 2016, IEEE, pp 23–32
MoffatAImplementing the ppm data compression schemeIEEE Trans Commun199038111917192110.1109/26.61469
540_CR37
540_CR39
M Rodeh (540_CR52) 1981; 28
540_CR43
540_CR46
540_CR45
M Jakobsson (540_CR33) 1985; 25
540_CR40
540_CR29
J Han (540_CR32) 2007; 15
540_CR26
540_CR28
540_CR27
C Borgelt (540_CR17) 2012; 2
A Moffat (540_CR41) 1990; 38
Y Bastide (540_CR12) 2000; 2
C Oswald (540_CR44) 2017
540_CR35
J Ziv (540_CR64) 1977; 23
540_CR34
CE Shannon (540_CR54) 2001; 5
ZH Deng (540_CR24) 2014; 41
H Toivonen (540_CR57) 1996; 96
540_CR30
RP Brent (540_CR18) 1987; 19
540_CR15
540_CR58
540_CR16
J Han (540_CR31) 2004; 8
J Ziv (540_CR65) 1978; 24
N Ramakrishnan (540_CR51) 1999; 32
JS Vitter (540_CR59) 1987; 34
540_CR60
540_CR22
540_CR21
540_CR23
JL Bentley (540_CR14) 1986; 29
IH Witten (540_CR61) 1987; 30
540_CR62
MR Nelson (540_CR42) 1989; 14
D Pountain (540_CR48) 1987; 12
540_CR20
540_CR63
540_CR3
540_CR4
540_CR1
540_CR2
J Labeit (540_CR36) 2017; 43
540_CR47
540_CR49
KC Lin (540_CR38) 2014; 276
540_CR9
540_CR7
540_CR8
540_CR5
540_CR6
ZH Deng (540_CR25) 2015; 42
540_CR11
540_CR55
540_CR10
540_CR13
JA Storer (540_CR56) 1982; 29
S Brin (540_CR19) 1997; 26
TV Ramabadran (540_CR50) 1988; 4
540_CR53
References_xml – reference: BrinSMotwaniRUllmanJDTsurSDynamic itemset counting and implication rules for market basket dataACM SIGMOD Record ACM19972625526410.1145/253262.253325
– reference: (1989) Calgary and canterbury compression corpus datasets. http://corpus.canterbury.ac.nz/descriptions/. Accessed 12 Jan 2017
– reference: Williams RN (1991) An extremely fast ziv-lempel data compression algorithm. In: Data Compression Conference, 1991. DCC’91., IEEE, pp 362–371
– reference: Park JS, Chen Ms, Yu PS (1995) An effective hash-based algorithm for mining association rules, vol 24. ACM
– reference: Storer JA (1988) Data compression: methods and theory. Computer Science Press, Inc
– reference: (1987) UCI machine learning repository. https://archive.ics.uci.edu/ml/datasets/Census+Income. Accessed 14 Jan 2017
– reference: WittenIHNealRMClearyJGArithmetic coding for data compressionCommun ACM198730652054010.1145/214762.214771
– reference: Feigenblat G, Porat E, Shiftan A (2016) Linear time succinct indexable dictionary construction with applications. In: Data Compression Conference (DCC), 2016, IEEE, pp 13–22
– reference: RamakrishnanNGramaAData mining: From serendipity to science—guest editors’ introductionIEEE Comput1999328343710.1109/2.781632
– reference: LabeitJShunJBlellochGEParallel lightweight wavelet tree, suffix array and fm-index constructionJ Disc Algorithms201743217363895710.1016/j.jda.2017.04.00106723733
– reference: ShannonCEA mathematical theory of communicationACM SIGMOBILE Mobile Comput Commun Rev20015135555211910.1145/584091.584093
– reference: ZivJLempelAA universal algorithm for sequential data compressionIEEE Trans Inf Theory197723333734353021510.1109/TIT.1977.10557140379.94010
– reference: Kempa D, Kosolobov D (2017) Lz-end parsing in compressed space. In: Data Compression Conference (DCC), 2017, IEEE, pp 350–359
– reference: VitterJSDesign and analysis of dynamic huffman codesJ ACM (JACM)198734482584591384410.1145/31846.422270637.94002
– reference: Köppl D, Sadakane K (2016) Lempel-ziv computation in compressed space (lz-cics). In: Data Compression Conference (DCC), 2016, IEEE, pp 3–12
– reference: RamabadranTVGaitondeSSA tutorial on crc computationsIEEE Micro19884627510.1109/40.7773
– reference: Pei J, Han J, Lu H, Nishio S, Tang S, Yang D (2001) H-mine: Hyper-structure mining of frequent patterns in large databases. In: Data Mining, 2001. ICDM 2001, Proceedings IEEE International Conference on, IEEE, pp 441–448
– reference: DengZHLvSLPrepost+: an efficient n-lists-based algorithm for mining frequent itemsets via children–parent equivalence pruningExpert Syst Appl201542135424543210.1016/j.eswa.2015.03.004
– reference: BentleyJLSleatorDDTarjanREWeiVKA locally adaptive data compression schemeCommun ACM198629432033083504410.1145/5684.56880648.94007
– reference: OswaldCSrinidhiSVishnuKSVishalTSivaselvanBHash based frequent pattern mining approach to text compressionEAI2017
– reference: ZivJLempelACompression of individual sequences via variable-rate codingIEEE Trans Inf Theory197824553053650746510.1109/TIT.1978.10559340392.94004
– reference: Li W, Yao Y (2016) Accelerate data compression in file system. In: Data Compression Conference (DCC), 2016, IEEE, pp 615–615
– reference: Miller VS, Wegman MN (1985) Variations on a theme by ziv and lempel. In: Combinatorial algorithms on words, Springer, pp 131–140
– reference: StorerJASzymanskiTGData compression via textual substitutionJ ACM (JACM)198229492895167425210.1145/322344.3223460489.68041
– reference: Liu J, Pan Y, Wang K, Han J (2002) Mining frequent item sets by opportunistic projection. In: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 229–238
– reference: NelsonMRLzw data compressionDr Dobb’s J198914102936
– reference: BorgeltCFrequent item set miningWiley Interdiscip Rev Data Min Knowl Discov20122643745610.1002/widm.1074
– reference: DengZHLvSLFast mining frequent itemsets using nodesetsExpert Syst Appld201441104505451210.1016/j.eswa.2014.01.025
– reference: Agarwal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In: Bocca JB, Jarke M, Zaniolo C (eds) VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases, September 12–15, 1994. Morgan Kaufmann, Santiago de Chile, Chile, pp 487–499
– reference: (2006) Rar compression algorithm. http://www.rarlab.com/. Accessed 12 Jan 2017
– reference: Zaki MJ, Gouda K (2003) Fast vertical mining using diffsets. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 326–335
– reference: JakobssonMCompression of character strings by an adaptive dictionaryBIT Num Math198525459360310.1007/BF01936138
– reference: (2003) Deflate compression algorithm. http://www.pkware.com. Accessed 12 Jan 2017
– reference: ToivonenHSampling large databases for association rulesVLDB199696134145
– reference: Deorowicz S (2003) Universal lossless data compression algorithms. Philosophy Dissertation Thesis, Gliwice
– reference: PountainDRun-length encodingByte1987126317319
– reference: Savasere A, Omicinski ER, Navathe SB (1995) An efficient algorithm for mining association rules in large databases
– reference: MoffatAImplementing the ppm data compression schemeIEEE Trans Commun199038111917192110.1109/26.61469
– reference: BastideYTaouilRPasquierNStummeGLakhalLMining frequent patterns with counting inferenceACM SIGKDD Explor Newslett200022667510.1145/380995.3810170983.68511
– reference: Borgelt C (2005) Keeping things simple: finding frequent item sets by recursive elimination. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, ACM, pp 66–70
– reference: Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann
– reference: Bledsoe RE (1987) Data communication with modified Huffman coding
– reference: (2014) Amazon reviews dataset. http://jmcauley.ucsd.edu/data/amazon/. Accessed 03 June 2017
– reference: Burrows M, Wheeler DJ (1994) A block-sorting lossless data compression algorithm
– reference: David S (2004) Data compression: the complete reference, 2nd edn. http://www.ecs.csun.edu/~dxs/DC3advertis/Dcomp3Ad.html
– reference: Decaroli G, Gagie T, Manzini G (2017) A compact index for order-preserving pattern matching. In: Data Compression Conference (DCC), 2017, IEEE, pp 72–81
– reference: BrentRPA linear algorithm for data compressionAust Comput J198719264680641.68029
– reference: HanJPeiJYinYMaoRMining frequent patterns without candidate generation: a frequent-pattern tree approachData Min Knowl Discov2004815387203783110.1023/B:DAMI.0000005258.31418.83
– reference: Goethals B (2003) Survey on frequent pattern mining, manuscript
– reference: RodehMPrattVREvenSLinear algorithm for data compression via string matchingJ ACM (JACM)1981281162460318010.1145/322234.3222370462.94015
– reference: Bastide Y, Taouil R, Pasquier N, Stumme G, Lakhal L (2000a) Mining frequent patterns with counting inference. SIGKDD Explor Newsl 2(2):66–75. doi:10.1145/380995.381017
– reference: Pratas D, Pinho AJ, Ferreira PJ (2016) Efficient compression of genomic sequences. In: Data Compression Conference (DCC), 2016, IEEE, pp 231–240
– reference: (2005) TREC genomics track data. http://skynet.ohsu.edu/trec-gen/data/2004/. Accessed 12 Jan 2017
– reference: (2013) Silesia dataset. http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia. Accessed 12 Jan 2017
– reference: DavidA H (1952) A method for the construction of minimum redundancy codes. Proc IRE 40(9):1098–1101
– reference: (2008) PAQ. http://www.cs.fit.edu/~mmahoney/compression. Accessed 02 June 2017
– reference: (2013) Debruijn sequence data. http://bioinf.spbau.ru/en/spadesmanual. Accessed 03 June 2017
– reference: Golomb S (2006) Run-length encodings (corresp.). IEEE Trans Inf Theor 12(3):399–401. doi:10.1109/TIT.1966.1053907
– reference: Oswald C, Ghosh AI, Sivaselvan B (2015) An efficient text compression algorithm-data mining perspective. In: Mining Intelligence and Knowledge Exploration, Springer, pp 563–575
– reference: Basu S, Chaturvedi S, Hegde RM (2016) Text compression using lexicographic permutation of binary strings. In: 2016 International Conference on Signal Processing and Communications (SPCOM), IEEE, pp 1–5
– reference: Zaki MJ (2000) Scalable algorithms for association mining. IEEE Trans Knowl Data Eng 12(3):372–390. http://dblp.uni-trier.de/db/journals/tkde/tkde12.htmlZaki00
– reference: Policriti A, Prezza N (2016) Computing lz77 in run-compressed space. In: Data Compression Conference (DCC), 2016, IEEE, pp 23–32
– reference: HanJChengHXinDYanXFrequent pattern mining: current status and future directionsData Min Knowl Discov20071515586238077710.1007/s10618-006-0059-1
– reference: LinKCLiaoIEChangTPLinSFA frequent itemset mining algorithm based on the principle of inclusion–exclusion and transaction mappingInf Sci201427627828910.1016/j.ins.2014.02.060
– reference: Uno T, Kiyomi M, Arimura H (2005) Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations, ACM, pp 77–86
– volume: 276
  start-page: 278
  year: 2014
  ident: 540_CR38
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.060
– volume: 4
  start-page: 62
  year: 1988
  ident: 540_CR50
  publication-title: IEEE Micro
  doi: 10.1109/40.7773
– ident: 540_CR9
– ident: 540_CR16
  doi: 10.1145/1133905.1133914
– ident: 540_CR63
  doi: 10.1145/956750.956788
– ident: 540_CR5
– volume: 19
  start-page: 64
  issue: 2
  year: 1987
  ident: 540_CR18
  publication-title: Aust Comput J
– volume: 14
  start-page: 29
  issue: 10
  year: 1989
  ident: 540_CR42
  publication-title: Dr Dobb’s J
– ident: 540_CR47
  doi: 10.1109/DCC.2016.30
– volume: 8
  start-page: 53
  issue: 1
  year: 2004
  ident: 540_CR31
  publication-title: Data Min Knowl Discov
  doi: 10.1023/B:DAMI.0000005258.31418.83
– volume: 25
  start-page: 593
  issue: 4
  year: 1985
  ident: 540_CR33
  publication-title: BIT Num Math
  doi: 10.1007/BF01936138
– ident: 540_CR55
– volume: 15
  start-page: 55
  issue: 1
  year: 2007
  ident: 540_CR32
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-006-0059-1
– ident: 540_CR2
– ident: 540_CR46
– volume: 12
  start-page: 317
  issue: 6
  year: 1987
  ident: 540_CR48
  publication-title: Byte
– volume: 29
  start-page: 928
  issue: 4
  year: 1982
  ident: 540_CR56
  publication-title: J ACM (JACM)
  doi: 10.1145/322344.322346
– ident: 540_CR62
  doi: 10.1109/69.846291
– volume: 41
  start-page: 4505
  issue: 10
  year: 2014
  ident: 540_CR24
  publication-title: Expert Syst Appld
  doi: 10.1016/j.eswa.2014.01.025
– ident: 540_CR8
– volume: 2
  start-page: 437
  issue: 6
  year: 2012
  ident: 540_CR17
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1074
– ident: 540_CR39
  doi: 10.1145/775047.775081
– ident: 540_CR4
– ident: 540_CR58
  doi: 10.1145/1133905.1133916
– volume: 30
  start-page: 520
  issue: 6
  year: 1987
  ident: 540_CR61
  publication-title: Commun ACM
  doi: 10.1145/214762.214771
– ident: 540_CR43
  doi: 10.1007/978-3-319-26832-3_53
– ident: 540_CR20
– volume: 28
  start-page: 16
  issue: 1
  year: 1981
  ident: 540_CR52
  publication-title: J ACM (JACM)
  doi: 10.1145/322234.322237
– volume: 29
  start-page: 320
  issue: 4
  year: 1986
  ident: 540_CR14
  publication-title: Commun ACM
  doi: 10.1145/5684.5688
– volume: 24
  start-page: 530
  issue: 5
  year: 1978
  ident: 540_CR65
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1978.1055934
– ident: 540_CR1
– ident: 540_CR28
– volume: 23
  start-page: 337
  issue: 3
  year: 1977
  ident: 540_CR64
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1977.1055714
– ident: 540_CR10
– volume: 96
  start-page: 134
  year: 1996
  ident: 540_CR57
  publication-title: VLDB
– ident: 540_CR15
– ident: 540_CR7
– ident: 540_CR49
  doi: 10.1109/DCC.2016.60
– volume: 32
  start-page: 34
  issue: 8
  year: 1999
  ident: 540_CR51
  publication-title: IEEE Comput
  doi: 10.1109/2.781632
– ident: 540_CR3
– ident: 540_CR21
– ident: 540_CR45
  doi: 10.1145/568271.223813
– ident: 540_CR35
  doi: 10.1109/DCC.2016.38
– volume: 43
  start-page: 2
  year: 2017
  ident: 540_CR36
  publication-title: J Disc Algorithms
  doi: 10.1016/j.jda.2017.04.001
– ident: 540_CR37
  doi: 10.1109/DCC.2016.24
– volume: 2
  start-page: 66
  issue: 2
  year: 2000
  ident: 540_CR12
  publication-title: ACM SIGKDD Explor Newslett
  doi: 10.1145/380995.381017
– ident: 540_CR30
– ident: 540_CR53
– ident: 540_CR23
  doi: 10.1109/DCC.2017.35
– volume: 38
  start-page: 1917
  issue: 11
  year: 1990
  ident: 540_CR41
  publication-title: IEEE Trans Commun
  doi: 10.1109/26.61469
– ident: 540_CR29
  doi: 10.1109/TIT.1966.1053907
– volume: 26
  start-page: 255
  year: 1997
  ident: 540_CR19
  publication-title: ACM SIGMOD Record ACM
  doi: 10.1145/253262.253325
– ident: 540_CR6
– volume: 42
  start-page: 5424
  issue: 13
  year: 2015
  ident: 540_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.03.004
– ident: 540_CR22
– year: 2017
  ident: 540_CR44
  publication-title: EAI
  doi: 10.4108/eai.27-2-2017.152268
– volume: 34
  start-page: 825
  issue: 4
  year: 1987
  ident: 540_CR59
  publication-title: J ACM (JACM)
  doi: 10.1145/31846.42227
– ident: 540_CR34
  doi: 10.1109/DCC.2017.73
– ident: 540_CR40
  doi: 10.1007/978-3-642-82456-2_9
– volume: 5
  start-page: 3
  issue: 1
  year: 2001
  ident: 540_CR54
  publication-title: ACM SIGMOBILE Mobile Comput Commun Rev
  doi: 10.1145/584091.584093
– ident: 540_CR13
  doi: 10.1109/SPCOM.2016.7746651
– ident: 540_CR26
– ident: 540_CR11
  doi: 10.1145/380995.381017
– ident: 540_CR27
  doi: 10.1109/DCC.2016.70
– ident: 540_CR60
  doi: 10.1109/DCC.1991.213344
SSID ssj0000393111
Score 2.170757
Snippet Data Compression as a research area has been explored in depth over the years resulting in Huffman Encoding, LZ77, LZW, GZip, RAR, etc. Much of the research...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 803
SubjectTerms Algorithms
Artificial Intelligence
Codes
Coding
Compression ratio
Computational Intelligence
Data compression
Data integrity
Data mining
Datasets
Dictionaries
Engineering
Entropy
Huffman codes
Original Research
Pattern analysis
Robotics and Automation
Tables (data)
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: SpringerLink Contemporary
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yPejBb3E6JQdPSqBJ2iY5DnF4kCF-sVto0kYHWze66t9vkrarigpKL23zEspL-t5r83u_B8CZCLghKbWfJTqNUZhogkRsEqQooYkwSRAoX7Xkhg2HfDQSt3Ue96JBuzdbkt5St8luJI4cjIAhF2Yga3dXrbfjrl7D3f3T8seKSzbFvu6uY4JHEaas2c38bpTP_qgNMr_si3p3M9j614Nug806uoT9ajnsgJUs3wUbHzgH98Cgn8OZtRNTK-dQH9CByiswbA6TyfOsGJcvU-i8WwrtLVN4sHUJ556JM4dTX1JiHzwOrh4ur1FdTAFpiuMSCao5C4XhIlaxPSUqEyYLMTaptkGJveREBTQzJg2jVHN7CJUKGiqWxJooegA6-SzPDgHMmIoMpSpgJgq162gig4lOCOM4MLQLgkalUtdM467gxUS2HMlORdKqSDoVSdIF58su84pm4zfhXjNPsn7jFpII7Hh2QmabL5p5aZt_HOzoT9LHYN1GTLzCivVApyxesxOwpt_K8aI49QvxHcTT1z4
  priority: 102
  providerName: Springer Nature
Title An optimal text compression algorithm based on frequent pattern mining
URI https://link.springer.com/article/10.1007/s12652-017-0540-2
https://www.proquest.com/docview/2919499472
Volume 9
WOSCitedRecordID wos000434911600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: P5Z
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: K7-
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-5145
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000393111
  issn: 1868-5137
  databaseCode: RSV
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFH449eDFH6g4nSMHT0qwTdqmOYmKQ1DGmD8QL6VJGxW2bm7Vv9-8rHUouIsUSts0oeSleS_Jl-8DOJJebFjG7bBEZxENUs2ojExKFWc8lSb1POVUS25Ftxs_PcleNeE2rWCVdZ_oOupspHGO_JRJH3lUAsHOxu8UVaNwdbWS0GjACrIkoHRDL3z-nmPBfae-k-BFUnga-lzUC5tu9xyLQsQlCIpxC2U_XdM83vy1ROo8T2fjv9-8CetVzEnOZ41kC5byYhs65wUZ2f5iaFMQ_UEQXD4DxRYkHbzYcsrXIUEvlxH7yEwc6LokY8fIWZChk5bYgYfO1f3lNa1EFajmflRSyXUsAmliGanIXjKVS5MHvm8ybYMTexsz5fHcmCwIMx3bQ6pM8kCJNNJM8V1YLkZFvgckFyo0nCtPmDDQmNGExmc6ZSL2PcOb4NX1meiKcRyFLwbJnCsZTZBYEyRogoQ14fg7y3hGt7Ho5VZd7Un1502TeZ034aQ23Dz5z8L2Fxd2AGs2VIpnILEWLJeTj_wQVvVn-TadtGHl4qrb67ehcSNo2zVCe-7fPX4B7YvhLA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9swFH4ChsQu_BAgCt3wgV2GLBI7ie0Dmiq2CtSu2gEkbiF2YkCiadcG0P6p_Y34OQ0VSOPGYcoliWPLynt-79n-_D6AAxVIy3LupiUmT2iUGUZVYjOqOeOZslkQaM9a0heDgby8VL8W4G9zFgZhlY1N9IY6HxlcIz9iKsQ8KpFg38a_KbJG4e5qQ6FRq0Wv-PPopmzT47PvTr5fGOv-OD85pTNWAWp4mFRUcSNFpKxUiU7cLdOFskUUhjY3zju7R8l0wAtr8yjOjXSX0rnikRZZYpjmrt1F-BBxKXBc9QR9XtPBc66hp_zFJPQ0DrloNlL9aT2WxIiDEBTjJMpeusJ5fPtqS9Z7uu7a__aP1mF1FlOTTj0INmChKDeh2ynJyNnDoStBdAtB8HwN-i1Jdnft-l3dDAl68Zy4V3biQeUVGfuMoyUZeuqMLbh4l65vw1I5KosdIIXQseVcB8LGkcGKNrYhMxkTMgwsb0HQyC81s4zqSOxxl85zQaPIUyfyFEWeshZ8fa4yrtOJvPVxuxFzOrMs03Qu4xYcNooyL_5nY7tvN7YPK6fnP_tp_2zQ24OPLiyUNSCuDUvV5L74BMvmobqdTj57lSdw9d768wTr7zyq
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yRfTBuzidmgeflLAmaZvmcahDcYyBF_ZWmqTRwdaNrvr7TXpZVVQQ6UvbnIRykuacJN_5DgBn3Ak0UdQsS6TykRtJgrivIyQooRHXkeOIPGtJj_X7wXDIB2We03mFdq-OJIuYBsvSlGTtmdLtOvCN-J6FFDBkXQ5k5uBl1-Lo7XL9_mmxyWIDT3Geg9eywiMPU1adbH7XymfbVDucX85Ic9PT3fz3R2-BjdLrhJ1imGyDpTjZAesfuAh3QbeTwKmZPyZGzqJBoAWbFyDZBEbj52k6yl4m0Fo9Bc0rneYg7AzOcobOBE7yVBN74LF7_XB5g8okC0hS7GeIUxkwl-uA-8I3t0TEXMcuxlpJ46yYx4AIh8ZaK9dTMjAXF4pTV7DIl0TQfdBIpkl8AGDMhKcpFQ7TnittRe1pTGREWIAdTZvAqdQbypKB3CbCGIc1d7JVUWhUFFoVhaQJzhdVZgX9xm_CrarPwvJPnIeEY8u_4zJTfFH1UV38Y2OHf5I-BauDq27Yu-3fHYE141QFBZysBRpZ-hofgxX5lo3m6Uk-Pt8BpW7jBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+text+compression+algorithm+based+on+frequent+pattern+mining&rft.jtitle=Journal+of+ambient+intelligence+and+humanized+computing&rft.au=Oswald%2C+C&rft.au=Sivaselvan%2C+B&rft.date=2018-06-01&rft.pub=Springer+Nature+B.V&rft.issn=1868-5137&rft.eissn=1868-5145&rft.volume=9&rft.issue=3&rft.spage=803&rft.epage=822&rft_id=info:doi/10.1007%2Fs12652-017-0540-2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-5137&client=summon