A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows
In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018 . https://doi.org/10.1007/s10915-018-0852-1 ) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient condit...
Gespeichert in:
| Veröffentlicht in: | Journal of scientific computing Jg. 79; H. 2; S. 1015 - 1056 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.05.2019
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we extend our previous work in Huang and Shu (J Sci Comput,
2018
.
https://doi.org/10.1007/s10915-018-0852-1
) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient conditions for the method to be of third-order accuracy are derived. With the same approach as Huang and Shu (
2018
), this time integration method is then generalized to solve a class of ODEs arising from semi-discrete schemes for PDEs and coupled with the positivity-preserving finite difference weighted essentially non-oscillatory schemes for non-equilibrium flows. Numerical experiments are provided to demonstrate the performance of our proposed scheme. |
|---|---|
| AbstractList | In this paper, we extend our previous work in Huang and Shu (J Sci Comput,
2018
.
https://doi.org/10.1007/s10915-018-0852-1
) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient conditions for the method to be of third-order accuracy are derived. With the same approach as Huang and Shu (
2018
), this time integration method is then generalized to solve a class of ODEs arising from semi-discrete schemes for PDEs and coupled with the positivity-preserving finite difference weighted essentially non-oscillatory schemes for non-equilibrium flows. Numerical experiments are provided to demonstrate the performance of our proposed scheme. In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018. https://doi.org/10.1007/s10915-018-0852-1) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient conditions for the method to be of third-order accuracy are derived. With the same approach as Huang and Shu (2018), this time integration method is then generalized to solve a class of ODEs arising from semi-discrete schemes for PDEs and coupled with the positivity-preserving finite difference weighted essentially non-oscillatory schemes for non-equilibrium flows. Numerical experiments are provided to demonstrate the performance of our proposed scheme. |
| Author | Zhao, Weifeng Shu, Chi-Wang Huang, Juntao |
| Author_xml | – sequence: 1 givenname: Juntao surname: Huang fullname: Huang, Juntao email: huangj75@msu.edu organization: Department of Mathematics, Michigan State University – sequence: 2 givenname: Weifeng surname: Zhao fullname: Zhao, Weifeng organization: Department of Applied Mathematics, University of Science and Technology Beijing – sequence: 3 givenname: Chi-Wang surname: Shu fullname: Shu, Chi-Wang organization: Division of Applied Mathematics, Brown University |
| BookMark | eNp9kMtKHEEUhotgIKPmAbIrcF1ap-9nOXgNiA6o66K6utop6emaOdWtzC4PkF3eME-SGlsICLo6F_7vXP59ttf73jL2A-QxSFmeBJAIuZBQCVlVIPALm0FepqIsEPbYLDZzUWZl9o3th_AkpcQKkxn7Pef3S0eNuKXGEn_oje8bNzjf667b8oUPsXh2w1YsyAZLz65_5HdmaVeWt574gnwzmp3-768_ZzYMNFX8fDPqXRL4ixuWfL5ed868dQbPb3wv7GZ0navJjSt-0fmXcMi-troL9vtbPGAPF-f3p1fi-vby5-n8WpgUikFgUtnWyiLJ6lrnJkszbMomxTRHjTpJta0RWgnaQJvlia0QaqkRtS5kkiGkB-xomrsmvxnj0erJjxQ_DipBqFKII4uogkllyIdAtlVrcitNWwVS7UxXk-kqmq52piuMTPmOMW54_Xog7bpPyWQiQ9zSP1r6f9PH0D-HLJxZ |
| CitedBy_id | crossref_primary_10_1016_j_cam_2020_113350 crossref_primary_10_1016_j_jcp_2024_112881 crossref_primary_10_1007_s42967_020_00117_y crossref_primary_10_1016_j_apnum_2021_10_017 crossref_primary_10_1016_j_jcp_2020_109828 crossref_primary_10_1090_mcom_3721 crossref_primary_10_1016_j_jcp_2019_06_040 crossref_primary_10_1007_s11075_024_01770_7 crossref_primary_10_1016_j_cja_2023_06_030 crossref_primary_10_1016_j_jcp_2023_112708 crossref_primary_10_2140_camcos_2025_20_29 crossref_primary_10_21105_joss_08130 crossref_primary_10_1016_j_jcp_2022_111548 crossref_primary_10_1137_22M1492210 crossref_primary_10_1007_s42967_022_00231_z crossref_primary_10_1016_j_apnum_2023_07_014 crossref_primary_10_1007_s10915_023_02217_2 crossref_primary_10_1016_j_apnum_2022_07_014 crossref_primary_10_1016_j_jcp_2021_110477 crossref_primary_10_1016_j_jcp_2025_113746 crossref_primary_10_1016_j_apnum_2022_12_010 crossref_primary_10_1007_s10915_025_02804_5 crossref_primary_10_1137_22M1480318 |
| Cites_doi | 10.1137/151005798 10.1016/j.jcp.2018.01.051 10.1016/S0168-9274(03)00101-6 10.1016/j.jcp.2010.08.016 10.1016/0021-9991(88)90177-5 10.1016/j.jcp.2010.10.036 10.1007/978-3-642-05221-7 10.1137/17M1144362 10.1007/s10915-018-0852-1 10.1016/j.jcp.2011.10.002 10.1142/S0218202517500099 10.1016/j.jcp.2011.11.020 10.1007/s10543-018-0705-1 10.1016/j.jcp.2009.05.028 10.1006/jcph.1996.0130 10.1017/CBO9780511624100 10.1137/S003614450036757X 10.1007/978-3-319-57397-7_1 10.1016/j.apnum.2017.09.004 10.1016/j.jcp.2009.12.030 10.1002/fld.4023 10.1137/18M1226774 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018. |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.1007/s10915-018-0881-9 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: P5Z name: Advanced Technologies & Aerospace Database url: https://search.proquest.com/hightechjournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1573-7691 |
| EndPage | 1056 |
| ExternalDocumentID | 10_1007_s10915_018_0881_9 |
| GrantInformation_xml | – fundername: Army Research Office grantid: W911NF-16-1-0103 funderid: http://dx.doi.org/10.13039/100000183 – fundername: National Science Foundation grantid: DMS-1719410 funderid: http://dx.doi.org/10.13039/100000001 |
| GroupedDBID | -52 -5D -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF- PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF EJD HF~ H~9 KOW N2Q NDZJH O9- OVD PHGZM PHGZT PQGLB R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI VH1 ZWQNP 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c316t-928efe0624bba5c4349d7d39359a9a23aeb91f01ac1f452e891b0a99aa6024913 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464896500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-7474 |
| IngestDate | Wed Nov 05 08:28:51 EST 2025 Sat Nov 29 01:56:25 EST 2025 Tue Nov 18 22:23:48 EST 2025 Fri Feb 21 02:36:44 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Production–destruction equations Finite difference Chemical reactions Positivity-preserving Compressible Euler equations Third-order accuracy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c316t-928efe0624bba5c4349d7d39359a9a23aeb91f01ac1f452e891b0a99aa6024913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2918314346 |
| PQPubID | 2043771 |
| PageCount | 42 |
| ParticipantIDs | proquest_journals_2918314346 crossref_primary_10_1007_s10915_018_0881_9 crossref_citationtrail_10_1007_s10915_018_0881_9 springer_journals_10_1007_s10915_018_0881_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Journal of scientific computing |
| PublicationTitleAbbrev | J Sci Comput |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | ChertockACuiSKurganovAWuTWell-balanced positivity preserving central-upwind scheme for the shallow water system with friction termsInt. J. Numer. Methods Fluids2015786355383335017810.1002/fld.4023 KopeczSMeisterAOn order conditions for modified Patankar–Runge–Kutta schemesAppl. Numer. Math.2018123159179371199610.1016/j.apnum.2017.09.0041377.65089 HuangJShuC-WBound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source termsJ. Comput. Phys.2018361111135377117810.1016/j.jcp.2018.01.05106882515 GottliebSShuC-WTadmorEStrong stability-preserving high-order time discretization methodsSIAM Rev.200143189112185464710.1137/S003614450036757X0967.65098 ZhangXShuC-WOn maximum-principle-satisfying high order schemes for scalar conservation lawsJ. Comput. Phys.2010229930913120260109110.1016/j.jcp.2009.12.0301187.65096 ZhangXShuC-WOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshesJ. Comput. Phys.20102292389188934272538010.1016/j.jcp.2010.08.0161282.76128 AxelssonOIterative Solution Methods1994CambridgeCambridge University Press10.1017/CBO97805116241000795.65014 Huang, J., Shu, C.-W.: Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0852-1 WangWShuC-WYeeHSjögreenBHigh-order well-balanced schemes and applications to non-equilibrium flowJ. Comput. Phys.20092281866826702256786810.1016/j.jcp.2009.05.0281261.76024 ShuC-WOsherSEfficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.198977243947110.1016/0021-9991(88)90177-50653.65072 HuangJShuC-WA second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye modelMath. Mod. Methods Appl. Sci.20172703549579362133710.1142/S02182025175000991360.65235 ZhangXShuC-WPositivity-preserving high order finite difference WENO schemes for compressible Euler equationsJ. Comput. Phys.2012231522452258287663610.1016/j.jcp.2011.11.02006036596 JiangG-SShuC-WEfficient implementation of weighted ENO schemesJ. Comput. Phys.19961261202228139162710.1006/jcph.1996.01300877.65065 HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067 WangCZhangXShuC-WNingJRobust high order discontinuous Galerkin schemes for two-dimensional gaseous detonationsJ. Comput. Phys.20122312653665287209610.1016/j.jcp.2011.10.0021243.80011 Shu, C.-W.: Bound-preserving high order finite volume schemes for conservation laws and convection-diffusion equations. In: Cances, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Proceedings of the Eighth Conference on Finite Volumes for Complex Applications (FVCA8), Springer Proceedings in Mathematics and Statistics, vol. 199, pp. 3–14. Springer, Switzerland (2017) ZhangXShuC-WPositivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source termsJ. Comput. Phys.2011230412381248275335910.1016/j.jcp.2010.10.0361391.76375 HuJShuRZhangXAsymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equationSIAM J. Numer. Anal.2018562942973378411510.1137/17M11443621388.82023 Hu, J., Shu, R.: A second-order asymptotic-preserving and positivity-preserving exponential Runge–Kutta method for a class of stiff kinetic equations. arXiv:1807.03728 (2018) XuZZhangXBound-preserving high-order schemesHandb. Numer. Anal.2017188110236453891368.65149 BurchardHDeleersnijderEMeisterAA high-order conservative Patankar-type discretisation for stiff systems of production-destruction equationsAppl. Numer. Math.2003471130200314410.1016/S0168-9274(03)00101-61028.80008 ChertockACuiSKurganovAWuTSteady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping termSIAM J. Numer. Anal.201553420082029338483510.1137/1510057981327.65128 HairerENørsettSPWannerGSolving Ordinary Differential Equations I: Nonstiff Problems1993BerlinSpringer0789.65048 KopeczSMeisterAUnconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production-destruction systemsBIT Numer. Math.201858691728385568810.1007/s10543-018-0705-11397.65102 X Zhang (881_CR23) 2011; 230 J Huang (881_CR11) 2018; 361 C-W Shu (881_CR17) 1989; 77 S Kopecz (881_CR15) 2018; 123 X Zhang (881_CR24) 2012; 231 881_CR12 S Kopecz (881_CR14) 2018; 58 X Zhang (881_CR21) 2010; 229 A Chertock (881_CR3) 2015; 53 E Hairer (881_CR6) 1993 O Axelsson (881_CR1) 1994 S Gottlieb (881_CR5) 2001; 43 881_CR8 J Huang (881_CR10) 2017; 27 J Hu (881_CR9) 2018; 56 C Wang (881_CR18) 2012; 231 W Wang (881_CR19) 2009; 228 881_CR16 E Hairer (881_CR7) 1996 X Zhang (881_CR22) 2010; 229 H Burchard (881_CR2) 2003; 47 A Chertock (881_CR4) 2015; 78 G-S Jiang (881_CR13) 1996; 126 Z Xu (881_CR20) 2017; 18 |
| References_xml | – reference: KopeczSMeisterAOn order conditions for modified Patankar–Runge–Kutta schemesAppl. Numer. Math.2018123159179371199610.1016/j.apnum.2017.09.0041377.65089 – reference: AxelssonOIterative Solution Methods1994CambridgeCambridge University Press10.1017/CBO97805116241000795.65014 – reference: ZhangXShuC-WOn maximum-principle-satisfying high order schemes for scalar conservation lawsJ. Comput. Phys.2010229930913120260109110.1016/j.jcp.2009.12.0301187.65096 – reference: ZhangXShuC-WPositivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source termsJ. Comput. Phys.2011230412381248275335910.1016/j.jcp.2010.10.0361391.76375 – reference: ShuC-WOsherSEfficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.198977243947110.1016/0021-9991(88)90177-50653.65072 – reference: GottliebSShuC-WTadmorEStrong stability-preserving high-order time discretization methodsSIAM Rev.200143189112185464710.1137/S003614450036757X0967.65098 – reference: JiangG-SShuC-WEfficient implementation of weighted ENO schemesJ. Comput. Phys.19961261202228139162710.1006/jcph.1996.01300877.65065 – reference: ChertockACuiSKurganovAWuTWell-balanced positivity preserving central-upwind scheme for the shallow water system with friction termsInt. J. Numer. Methods Fluids2015786355383335017810.1002/fld.4023 – reference: HairerENørsettSPWannerGSolving Ordinary Differential Equations I: Nonstiff Problems1993BerlinSpringer0789.65048 – reference: KopeczSMeisterAUnconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production-destruction systemsBIT Numer. Math.201858691728385568810.1007/s10543-018-0705-11397.65102 – reference: Shu, C.-W.: Bound-preserving high order finite volume schemes for conservation laws and convection-diffusion equations. In: Cances, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Proceedings of the Eighth Conference on Finite Volumes for Complex Applications (FVCA8), Springer Proceedings in Mathematics and Statistics, vol. 199, pp. 3–14. Springer, Switzerland (2017) – reference: BurchardHDeleersnijderEMeisterAA high-order conservative Patankar-type discretisation for stiff systems of production-destruction equationsAppl. Numer. Math.2003471130200314410.1016/S0168-9274(03)00101-61028.80008 – reference: Hu, J., Shu, R.: A second-order asymptotic-preserving and positivity-preserving exponential Runge–Kutta method for a class of stiff kinetic equations. arXiv:1807.03728 (2018) – reference: HuJShuRZhangXAsymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equationSIAM J. Numer. Anal.2018562942973378411510.1137/17M11443621388.82023 – reference: Huang, J., Shu, C.-W.: Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0852-1 – reference: WangWShuC-WYeeHSjögreenBHigh-order well-balanced schemes and applications to non-equilibrium flowJ. Comput. Phys.20092281866826702256786810.1016/j.jcp.2009.05.0281261.76024 – reference: ChertockACuiSKurganovAWuTSteady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping termSIAM J. Numer. Anal.201553420082029338483510.1137/1510057981327.65128 – reference: WangCZhangXShuC-WNingJRobust high order discontinuous Galerkin schemes for two-dimensional gaseous detonationsJ. Comput. Phys.20122312653665287209610.1016/j.jcp.2011.10.0021243.80011 – reference: ZhangXShuC-WPositivity-preserving high order finite difference WENO schemes for compressible Euler equationsJ. Comput. Phys.2012231522452258287663610.1016/j.jcp.2011.11.02006036596 – reference: HuangJShuC-WBound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source termsJ. Comput. Phys.2018361111135377117810.1016/j.jcp.2018.01.05106882515 – reference: ZhangXShuC-WOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshesJ. Comput. Phys.20102292389188934272538010.1016/j.jcp.2010.08.0161282.76128 – reference: HuangJShuC-WA second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye modelMath. Mod. Methods Appl. Sci.20172703549579362133710.1142/S02182025175000991360.65235 – reference: HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067 – reference: XuZZhangXBound-preserving high-order schemesHandb. Numer. Anal.2017188110236453891368.65149 – volume: 53 start-page: 2008 issue: 4 year: 2015 ident: 881_CR3 publication-title: SIAM J. Numer. Anal. doi: 10.1137/151005798 – volume: 361 start-page: 111 year: 2018 ident: 881_CR11 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.01.051 – volume: 47 start-page: 1 issue: 1 year: 2003 ident: 881_CR2 publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(03)00101-6 – volume: 229 start-page: 8918 issue: 23 year: 2010 ident: 881_CR22 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.08.016 – volume: 77 start-page: 439 issue: 2 year: 1989 ident: 881_CR17 publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90177-5 – volume: 230 start-page: 1238 issue: 4 year: 2011 ident: 881_CR23 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.10.036 – volume-title: Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems year: 1996 ident: 881_CR7 doi: 10.1007/978-3-642-05221-7 – volume: 56 start-page: 942 issue: 2 year: 2018 ident: 881_CR9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1144362 – ident: 881_CR12 doi: 10.1007/s10915-018-0852-1 – volume: 231 start-page: 653 issue: 2 year: 2012 ident: 881_CR18 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.10.002 – volume-title: Solving Ordinary Differential Equations I: Nonstiff Problems year: 1993 ident: 881_CR6 – volume: 27 start-page: 549 issue: 03 year: 2017 ident: 881_CR10 publication-title: Math. Mod. Methods Appl. Sci. doi: 10.1142/S0218202517500099 – volume: 18 start-page: 81 year: 2017 ident: 881_CR20 publication-title: Handb. Numer. Anal. – volume: 231 start-page: 2245 issue: 5 year: 2012 ident: 881_CR24 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.11.020 – volume: 58 start-page: 691 year: 2018 ident: 881_CR14 publication-title: BIT Numer. Math. doi: 10.1007/s10543-018-0705-1 – volume: 228 start-page: 6682 issue: 18 year: 2009 ident: 881_CR19 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.05.028 – volume: 126 start-page: 202 issue: 1 year: 1996 ident: 881_CR13 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.0130 – volume-title: Iterative Solution Methods year: 1994 ident: 881_CR1 doi: 10.1017/CBO9780511624100 – volume: 43 start-page: 89 issue: 1 year: 2001 ident: 881_CR5 publication-title: SIAM Rev. doi: 10.1137/S003614450036757X – ident: 881_CR16 doi: 10.1007/978-3-319-57397-7_1 – volume: 123 start-page: 159 year: 2018 ident: 881_CR15 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2017.09.004 – volume: 229 start-page: 3091 issue: 9 year: 2010 ident: 881_CR21 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.12.030 – volume: 78 start-page: 355 issue: 6 year: 2015 ident: 881_CR4 publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.4023 – ident: 881_CR8 doi: 10.1137/18M1226774 |
| SSID | ssj0009892 |
| Score | 2.3515291 |
| Snippet | In this paper, we extend our previous work in Huang and Shu (J Sci Comput,
2018
.
https://doi.org/10.1007/s10915-018-0852-1
) and develop a third-order... In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018. https://doi.org/10.1007/s10915-018-0852-1) and develop a third-order... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1015 |
| SubjectTerms | Algorithms Chemical reactions Computational Mathematics and Numerical Analysis Equilibrium Essentially non-oscillatory schemes Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Nonequilibrium flow Numerical analysis Runge-Kutta method Theoretical Time integration |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMAAtIB4FOSBgYcs1YnT2mOFqBigVPShbpHjOFCpTWlTQGz8ADb-Ib-Ecx60IECCMcrZinz23efc3XcIHShtQLESpEKlJszTPpEAC-CRORw8oOfE0fPORaVe592uaKR13FGW7Z6FJGNLPVPsJqhJNDOMypwSMY8WwNtx06_hutmZMu3yuBMyyDgEsDLLQpnfTfHZGU0R5pegaOxraqv_-so1tJJCS1xN9kIezemwgJYvP3hZowLKp0c5wocp3_TROnqp4tZtb-yTK0PDidshXJH9XvKPsP-EG3Fal2kxQUy-hrEt4Q1ugrIHGgPkxY2ENBbk355fzT02ZaTFZ6OERzzC5m8vrs7EyvFkiOvDkOjRfS-uOrgf4Fp_-BhtoHbtrHV6TtImDUTZtDwhwuI6AIVbzPOko5jNhF_x44JfKaRlS-0JGpSoVDRgjqW5oF5JCiFl2bAVUnsT5cJhqLcQ1nBN5wruyUIzBoaY-yWpA06VDLhNldhGpUxbrkoZzE0jjb475V42q-_C6rtm9V0Ycvwx5C6h7_hNuJhtATc9yZFrCTB6ACpZeRudZCqfvv5xsp0_Se-iJUBiIsmkLKIcaErvoUX1MOlF4_14g78DyAL3iA priority: 102 providerName: Springer Nature |
| Title | A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows |
| URI | https://link.springer.com/article/10.1007/s10915-018-0881-9 https://www.proquest.com/docview/2918314346 |
| Volume | 79 |
| WOSCitedRecordID | wos000464896500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: P5Z dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: K7- dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-7691 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7691 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009892 issn: 0885-7474 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH9iG4ddBgMm9ofKhx3YkEWdJq19QgW1QmLqonarKi6R4zisUpesSwfixgfYbd-QT8J7iUMAiV12iRTFtpL87PfH7_n3AA6NJaPYKN4T2nI_tgnXaBbgrR9I1IBxUEbPpye90UjOZip0G26FS6usZWIpqJPc0B75W0_h5EPl7nffXS05VY2i6KorobEGG8SSQKUbwuBzQ7ory6LIuJACjmazX0c1q6NzSlDaGvEzS8HV33qpMTb_iY-Wamf45KEv_BS2nMHJ-tUM2YZHNnsG225JF-y1450-eg63fXZ2Mb9O-CnRcbLzDF3lZF7tFS6-s7BM76JSE5zyNkjGZF_YBEG_tAxNXxZW5LHY_uePO_JnHTMtGywrPvGC0a4v6_8RM2ernI3yjNvlzbw8fXBzyYaL_FvxAs6Hg7MPH7kr1sBNR3RXXHnSpgi858exDgx-t0p6SXnwVyvtdbSNlUjbQhuR-oFnpRJxWyuldZdYC0VnB9azPLMvgVl016VBf1lZ30eBLJO2tqkURqf4R43ahXYNVWQckzkV1FhEDQczoRshuhGhG2GX499drioaj_saH9SIRm5FF1ED5y68qedE8_i_g-3dP9g-bKIJpqoUygNYR2jsK3hsvq7mxXULNt4PRuG4BWuferxVTm68jifTX3fzASM |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQXoPyIQgs-gMSPLOKss4kPVbWCrlrtsqzEFvWWOo7TrrRNus2WqjceoDfeg4fiSZhxEgJI9NYDxyi2FcXf_Ngz8w3Ac2PJKTaKh0JbLhObco1uAT7KIEILmAQuev55GI5G0d6eGi_B96YWhtIqG53oFHVaGLojf-srBB8ad9ndPJ5z6hpF0dWmhUYFi4E9P8MjW7mx8x7394Xv97cm77Z53VWAm47oLrjyI5vhF_oySXRgcEWVhqmrUNVK-x1tEyUyT2gjMhn4NlIi8bRSWneJXk90cN1rcF12opDkahDyluQ3ck2YUXADjm66bKKoVameEpQmR3zQkeDqTzvYOrd_xWOdmevf-d9-0F24XTvUrFdJwAos2fwerNQqq2Qva17tV_fhoscmh9OTlH8kulG2m5uC4vXuLnR2zsYufY1aaXDKSyEdmh-wTwjqI8vQtWfjihwXx__4-o3O6zXzLtuaV3zpJaNbbdb7LSeALQo2KnJu56dTV11xesT6s-KsfAC7V_JXHsJyXuT2ETAb4pnPeH6orJRocKLU0zaLhNEZ7qBRq-A10IhNzdRODUNmccsxTWiKEU0xoSnGKa9_TTmuaEouG7zWICiuNVYZt_BZhTcNBtvX_1zs8eWLPYOb25MPw3i4Mxo8gVvobqoqXXQNlnGb7DrcMF8W0_LkqRMlBvtXDc2f1kFZPg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHbHjAwcWWdSJ09rHCqhAQKnEIm6R4zhQqaRACogbH8CNP-RLGGehgAAJcYwydiJ7bL_xzLwBWNHGgmItaYUpQ3lgQqoQFuAj9wSegIGXes_PDir1ujg_l428zmlSRLsXLsksp8GyNMWdzesw2vyQ-CaZDTqz7MqCUdkL_dzG0Vtz_fisy7or0qrIKONRxM28cGt-18Xng6mLNr84SNNzpzb67z8eg5EccpJqpiPj0GPiCRg-fOdrTSZgPF_iCVnNeajXJuG5Sk4um7chPbL0nOQ0xi-GzezusPVIGmm4ly09QW0ch91z4gtyjEpwZQhCYdLIyGRR_vXpxdq3OVMt2bnJ-MUTYm-BSfWDD5102qTejqm5uWum2Qh3V6TWaj8kU3Ba2znZ2qV58QaqXVbuUOkIE6EiODwIlKe5y2VYCdNEYCWV4yoTSBaVmNIs4p5jhGRBSUmpVNmyGDJ3GvridmxmgBg034VG-1kaznGDFmFJmUgwrSLhMi1noVTMnK9zZnNbYKPldzmZ7ej7OPq-HX0fm6y_N7nOaD1-E14o1MHPV3jiOxI3QwSbvDwLG8X0d1__2Nncn6SXYbCxXfMP9ur78zCEYE1mwZYL0IeTZhZhQN93msntUqr3bzX_A18 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Third-Order+Unconditionally+Positivity-Preserving+Scheme+for+Production%E2%80%93Destruction+Equations+with+Applications+to+Non-equilibrium+Flows&rft.jtitle=Journal+of+scientific+computing&rft.au=Huang%2C+Juntao&rft.au=Zhao%2C+Weifeng&rft.au=Shu%2C+Chi-Wang&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=79&rft.issue=2&rft.spage=1015&rft.epage=1056&rft_id=info:doi/10.1007%2Fs10915-018-0881-9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |