A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows

In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018 . https://doi.org/10.1007/s10915-018-0852-1 ) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing Jg. 79; H. 2; S. 1015 - 1056
Hauptverfasser: Huang, Juntao, Zhao, Weifeng, Shu, Chi-Wang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2019
Springer Nature B.V
Schlagworte:
ISSN:0885-7474, 1573-7691
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018 . https://doi.org/10.1007/s10915-018-0852-1 ) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient conditions for the method to be of third-order accuracy are derived. With the same approach as Huang and Shu ( 2018 ), this time integration method is then generalized to solve a class of ODEs arising from semi-discrete schemes for PDEs and coupled with the positivity-preserving finite difference weighted essentially non-oscillatory schemes for non-equilibrium flows. Numerical experiments are provided to demonstrate the performance of our proposed scheme.
AbstractList In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018 . https://doi.org/10.1007/s10915-018-0852-1 ) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient conditions for the method to be of third-order accuracy are derived. With the same approach as Huang and Shu ( 2018 ), this time integration method is then generalized to solve a class of ODEs arising from semi-discrete schemes for PDEs and coupled with the positivity-preserving finite difference weighted essentially non-oscillatory schemes for non-equilibrium flows. Numerical experiments are provided to demonstrate the performance of our proposed scheme.
In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018. https://doi.org/10.1007/s10915-018-0852-1) and develop a third-order unconditionally positivity-preserving modified Patankar Runge–Kutta method for production–destruction equations. The necessary and sufficient conditions for the method to be of third-order accuracy are derived. With the same approach as Huang and Shu (2018), this time integration method is then generalized to solve a class of ODEs arising from semi-discrete schemes for PDEs and coupled with the positivity-preserving finite difference weighted essentially non-oscillatory schemes for non-equilibrium flows. Numerical experiments are provided to demonstrate the performance of our proposed scheme.
Author Zhao, Weifeng
Shu, Chi-Wang
Huang, Juntao
Author_xml – sequence: 1
  givenname: Juntao
  surname: Huang
  fullname: Huang, Juntao
  email: huangj75@msu.edu
  organization: Department of Mathematics, Michigan State University
– sequence: 2
  givenname: Weifeng
  surname: Zhao
  fullname: Zhao, Weifeng
  organization: Department of Applied Mathematics, University of Science and Technology Beijing
– sequence: 3
  givenname: Chi-Wang
  surname: Shu
  fullname: Shu, Chi-Wang
  organization: Division of Applied Mathematics, Brown University
BookMark eNp9kMtKHEEUhotgIKPmAbIrcF1ap-9nOXgNiA6o66K6utop6emaOdWtzC4PkF3eME-SGlsICLo6F_7vXP59ttf73jL2A-QxSFmeBJAIuZBQCVlVIPALm0FepqIsEPbYLDZzUWZl9o3th_AkpcQKkxn7Pef3S0eNuKXGEn_oje8bNzjf667b8oUPsXh2w1YsyAZLz65_5HdmaVeWt574gnwzmp3-768_ZzYMNFX8fDPqXRL4ixuWfL5ed868dQbPb3wv7GZ0navJjSt-0fmXcMi-troL9vtbPGAPF-f3p1fi-vby5-n8WpgUikFgUtnWyiLJ6lrnJkszbMomxTRHjTpJta0RWgnaQJvlia0QaqkRtS5kkiGkB-xomrsmvxnj0erJjxQ_DipBqFKII4uogkllyIdAtlVrcitNWwVS7UxXk-kqmq52piuMTPmOMW54_Xog7bpPyWQiQ9zSP1r6f9PH0D-HLJxZ
CitedBy_id crossref_primary_10_1016_j_cam_2020_113350
crossref_primary_10_1016_j_jcp_2024_112881
crossref_primary_10_1007_s42967_020_00117_y
crossref_primary_10_1016_j_apnum_2021_10_017
crossref_primary_10_1016_j_jcp_2020_109828
crossref_primary_10_1090_mcom_3721
crossref_primary_10_1016_j_jcp_2019_06_040
crossref_primary_10_1007_s11075_024_01770_7
crossref_primary_10_1016_j_cja_2023_06_030
crossref_primary_10_1016_j_jcp_2023_112708
crossref_primary_10_2140_camcos_2025_20_29
crossref_primary_10_21105_joss_08130
crossref_primary_10_1016_j_jcp_2022_111548
crossref_primary_10_1137_22M1492210
crossref_primary_10_1007_s42967_022_00231_z
crossref_primary_10_1016_j_apnum_2023_07_014
crossref_primary_10_1007_s10915_023_02217_2
crossref_primary_10_1016_j_apnum_2022_07_014
crossref_primary_10_1016_j_jcp_2021_110477
crossref_primary_10_1016_j_jcp_2025_113746
crossref_primary_10_1016_j_apnum_2022_12_010
crossref_primary_10_1007_s10915_025_02804_5
crossref_primary_10_1137_22M1480318
Cites_doi 10.1137/151005798
10.1016/j.jcp.2018.01.051
10.1016/S0168-9274(03)00101-6
10.1016/j.jcp.2010.08.016
10.1016/0021-9991(88)90177-5
10.1016/j.jcp.2010.10.036
10.1007/978-3-642-05221-7
10.1137/17M1144362
10.1007/s10915-018-0852-1
10.1016/j.jcp.2011.10.002
10.1142/S0218202517500099
10.1016/j.jcp.2011.11.020
10.1007/s10543-018-0705-1
10.1016/j.jcp.2009.05.028
10.1006/jcph.1996.0130
10.1017/CBO9780511624100
10.1137/S003614450036757X
10.1007/978-3-319-57397-7_1
10.1016/j.apnum.2017.09.004
10.1016/j.jcp.2009.12.030
10.1002/fld.4023
10.1137/18M1226774
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Springer Science+Business Media, LLC, part of Springer Nature 2018.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2018.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s10915-018-0881-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection
Database_xml – sequence: 1
  dbid: P5Z
  name: Advanced Technologies & Aerospace Database
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 1056
ExternalDocumentID 10_1007_s10915_018_0881_9
GrantInformation_xml – fundername: Army Research Office
  grantid: W911NF-16-1-0103
  funderid: http://dx.doi.org/10.13039/100000183
– fundername: National Science Foundation
  grantid: DMS-1719410
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -52
-5D
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
EJD
HF~
H~9
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
VH1
ZWQNP
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-928efe0624bba5c4349d7d39359a9a23aeb91f01ac1f452e891b0a99aa6024913
IEDL.DBID P5Z
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464896500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7474
IngestDate Wed Nov 05 08:28:51 EST 2025
Sat Nov 29 01:56:25 EST 2025
Tue Nov 18 22:23:48 EST 2025
Fri Feb 21 02:36:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Production–destruction equations
Finite difference
Chemical reactions
Positivity-preserving
Compressible Euler equations
Third-order accuracy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-928efe0624bba5c4349d7d39359a9a23aeb91f01ac1f452e891b0a99aa6024913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918314346
PQPubID 2043771
PageCount 42
ParticipantIDs proquest_journals_2918314346
crossref_primary_10_1007_s10915_018_0881_9
crossref_citationtrail_10_1007_s10915_018_0881_9
springer_journals_10_1007_s10915_018_0881_9
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ChertockACuiSKurganovAWuTWell-balanced positivity preserving central-upwind scheme for the shallow water system with friction termsInt. J. Numer. Methods Fluids2015786355383335017810.1002/fld.4023
KopeczSMeisterAOn order conditions for modified Patankar–Runge–Kutta schemesAppl. Numer. Math.2018123159179371199610.1016/j.apnum.2017.09.0041377.65089
HuangJShuC-WBound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source termsJ. Comput. Phys.2018361111135377117810.1016/j.jcp.2018.01.05106882515
GottliebSShuC-WTadmorEStrong stability-preserving high-order time discretization methodsSIAM Rev.200143189112185464710.1137/S003614450036757X0967.65098
ZhangXShuC-WOn maximum-principle-satisfying high order schemes for scalar conservation lawsJ. Comput. Phys.2010229930913120260109110.1016/j.jcp.2009.12.0301187.65096
ZhangXShuC-WOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshesJ. Comput. Phys.20102292389188934272538010.1016/j.jcp.2010.08.0161282.76128
AxelssonOIterative Solution Methods1994CambridgeCambridge University Press10.1017/CBO97805116241000795.65014
Huang, J., Shu, C.-W.: Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0852-1
WangWShuC-WYeeHSjögreenBHigh-order well-balanced schemes and applications to non-equilibrium flowJ. Comput. Phys.20092281866826702256786810.1016/j.jcp.2009.05.0281261.76024
ShuC-WOsherSEfficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.198977243947110.1016/0021-9991(88)90177-50653.65072
HuangJShuC-WA second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye modelMath. Mod. Methods Appl. Sci.20172703549579362133710.1142/S02182025175000991360.65235
ZhangXShuC-WPositivity-preserving high order finite difference WENO schemes for compressible Euler equationsJ. Comput. Phys.2012231522452258287663610.1016/j.jcp.2011.11.02006036596
JiangG-SShuC-WEfficient implementation of weighted ENO schemesJ. Comput. Phys.19961261202228139162710.1006/jcph.1996.01300877.65065
HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067
WangCZhangXShuC-WNingJRobust high order discontinuous Galerkin schemes for two-dimensional gaseous detonationsJ. Comput. Phys.20122312653665287209610.1016/j.jcp.2011.10.0021243.80011
Shu, C.-W.: Bound-preserving high order finite volume schemes for conservation laws and convection-diffusion equations. In: Cances, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Proceedings of the Eighth Conference on Finite Volumes for Complex Applications (FVCA8), Springer Proceedings in Mathematics and Statistics, vol. 199, pp. 3–14. Springer, Switzerland (2017)
ZhangXShuC-WPositivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source termsJ. Comput. Phys.2011230412381248275335910.1016/j.jcp.2010.10.0361391.76375
HuJShuRZhangXAsymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equationSIAM J. Numer. Anal.2018562942973378411510.1137/17M11443621388.82023
Hu, J., Shu, R.: A second-order asymptotic-preserving and positivity-preserving exponential Runge–Kutta method for a class of stiff kinetic equations. arXiv:1807.03728 (2018)
XuZZhangXBound-preserving high-order schemesHandb. Numer. Anal.2017188110236453891368.65149
BurchardHDeleersnijderEMeisterAA high-order conservative Patankar-type discretisation for stiff systems of production-destruction equationsAppl. Numer. Math.2003471130200314410.1016/S0168-9274(03)00101-61028.80008
ChertockACuiSKurganovAWuTSteady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping termSIAM J. Numer. Anal.201553420082029338483510.1137/1510057981327.65128
HairerENørsettSPWannerGSolving Ordinary Differential Equations I: Nonstiff Problems1993BerlinSpringer0789.65048
KopeczSMeisterAUnconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production-destruction systemsBIT Numer. Math.201858691728385568810.1007/s10543-018-0705-11397.65102
X Zhang (881_CR23) 2011; 230
J Huang (881_CR11) 2018; 361
C-W Shu (881_CR17) 1989; 77
S Kopecz (881_CR15) 2018; 123
X Zhang (881_CR24) 2012; 231
881_CR12
S Kopecz (881_CR14) 2018; 58
X Zhang (881_CR21) 2010; 229
A Chertock (881_CR3) 2015; 53
E Hairer (881_CR6) 1993
O Axelsson (881_CR1) 1994
S Gottlieb (881_CR5) 2001; 43
881_CR8
J Huang (881_CR10) 2017; 27
J Hu (881_CR9) 2018; 56
C Wang (881_CR18) 2012; 231
W Wang (881_CR19) 2009; 228
881_CR16
E Hairer (881_CR7) 1996
X Zhang (881_CR22) 2010; 229
H Burchard (881_CR2) 2003; 47
A Chertock (881_CR4) 2015; 78
G-S Jiang (881_CR13) 1996; 126
Z Xu (881_CR20) 2017; 18
References_xml – reference: KopeczSMeisterAOn order conditions for modified Patankar–Runge–Kutta schemesAppl. Numer. Math.2018123159179371199610.1016/j.apnum.2017.09.0041377.65089
– reference: AxelssonOIterative Solution Methods1994CambridgeCambridge University Press10.1017/CBO97805116241000795.65014
– reference: ZhangXShuC-WOn maximum-principle-satisfying high order schemes for scalar conservation lawsJ. Comput. Phys.2010229930913120260109110.1016/j.jcp.2009.12.0301187.65096
– reference: ZhangXShuC-WPositivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source termsJ. Comput. Phys.2011230412381248275335910.1016/j.jcp.2010.10.0361391.76375
– reference: ShuC-WOsherSEfficient implementation of essentially non-oscillatory shock-capturing schemesJ. Comput. Phys.198977243947110.1016/0021-9991(88)90177-50653.65072
– reference: GottliebSShuC-WTadmorEStrong stability-preserving high-order time discretization methodsSIAM Rev.200143189112185464710.1137/S003614450036757X0967.65098
– reference: JiangG-SShuC-WEfficient implementation of weighted ENO schemesJ. Comput. Phys.19961261202228139162710.1006/jcph.1996.01300877.65065
– reference: ChertockACuiSKurganovAWuTWell-balanced positivity preserving central-upwind scheme for the shallow water system with friction termsInt. J. Numer. Methods Fluids2015786355383335017810.1002/fld.4023
– reference: HairerENørsettSPWannerGSolving Ordinary Differential Equations I: Nonstiff Problems1993BerlinSpringer0789.65048
– reference: KopeczSMeisterAUnconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production-destruction systemsBIT Numer. Math.201858691728385568810.1007/s10543-018-0705-11397.65102
– reference: Shu, C.-W.: Bound-preserving high order finite volume schemes for conservation laws and convection-diffusion equations. In: Cances, C., Omnes, P. (eds.) Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Proceedings of the Eighth Conference on Finite Volumes for Complex Applications (FVCA8), Springer Proceedings in Mathematics and Statistics, vol. 199, pp. 3–14. Springer, Switzerland (2017)
– reference: BurchardHDeleersnijderEMeisterAA high-order conservative Patankar-type discretisation for stiff systems of production-destruction equationsAppl. Numer. Math.2003471130200314410.1016/S0168-9274(03)00101-61028.80008
– reference: Hu, J., Shu, R.: A second-order asymptotic-preserving and positivity-preserving exponential Runge–Kutta method for a class of stiff kinetic equations. arXiv:1807.03728 (2018)
– reference: HuJShuRZhangXAsymptotic-preserving and positivity-preserving implicit-explicit schemes for the stiff BGK equationSIAM J. Numer. Anal.2018562942973378411510.1137/17M11443621388.82023
– reference: Huang, J., Shu, C.-W.: Positivity-preserving time discretizations for production-destruction equations with applications to non-equilibrium flows. J. Sci. Comput. (2018). https://doi.org/10.1007/s10915-018-0852-1
– reference: WangWShuC-WYeeHSjögreenBHigh-order well-balanced schemes and applications to non-equilibrium flowJ. Comput. Phys.20092281866826702256786810.1016/j.jcp.2009.05.0281261.76024
– reference: ChertockACuiSKurganovAWuTSteady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping termSIAM J. Numer. Anal.201553420082029338483510.1137/1510057981327.65128
– reference: WangCZhangXShuC-WNingJRobust high order discontinuous Galerkin schemes for two-dimensional gaseous detonationsJ. Comput. Phys.20122312653665287209610.1016/j.jcp.2011.10.0021243.80011
– reference: ZhangXShuC-WPositivity-preserving high order finite difference WENO schemes for compressible Euler equationsJ. Comput. Phys.2012231522452258287663610.1016/j.jcp.2011.11.02006036596
– reference: HuangJShuC-WBound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source termsJ. Comput. Phys.2018361111135377117810.1016/j.jcp.2018.01.05106882515
– reference: ZhangXShuC-WOn positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshesJ. Comput. Phys.20102292389188934272538010.1016/j.jcp.2010.08.0161282.76128
– reference: HuangJShuC-WA second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye modelMath. Mod. Methods Appl. Sci.20172703549579362133710.1142/S02182025175000991360.65235
– reference: HairerEWannerGSolving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems1996BerlinSpringer10.1007/978-3-642-05221-70859.65067
– reference: XuZZhangXBound-preserving high-order schemesHandb. Numer. Anal.2017188110236453891368.65149
– volume: 53
  start-page: 2008
  issue: 4
  year: 2015
  ident: 881_CR3
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/151005798
– volume: 361
  start-page: 111
  year: 2018
  ident: 881_CR11
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.01.051
– volume: 47
  start-page: 1
  issue: 1
  year: 2003
  ident: 881_CR2
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(03)00101-6
– volume: 229
  start-page: 8918
  issue: 23
  year: 2010
  ident: 881_CR22
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.08.016
– volume: 77
  start-page: 439
  issue: 2
  year: 1989
  ident: 881_CR17
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90177-5
– volume: 230
  start-page: 1238
  issue: 4
  year: 2011
  ident: 881_CR23
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.10.036
– volume-title: Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems
  year: 1996
  ident: 881_CR7
  doi: 10.1007/978-3-642-05221-7
– volume: 56
  start-page: 942
  issue: 2
  year: 2018
  ident: 881_CR9
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1144362
– ident: 881_CR12
  doi: 10.1007/s10915-018-0852-1
– volume: 231
  start-page: 653
  issue: 2
  year: 2012
  ident: 881_CR18
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.10.002
– volume-title: Solving Ordinary Differential Equations I: Nonstiff Problems
  year: 1993
  ident: 881_CR6
– volume: 27
  start-page: 549
  issue: 03
  year: 2017
  ident: 881_CR10
  publication-title: Math. Mod. Methods Appl. Sci.
  doi: 10.1142/S0218202517500099
– volume: 18
  start-page: 81
  year: 2017
  ident: 881_CR20
  publication-title: Handb. Numer. Anal.
– volume: 231
  start-page: 2245
  issue: 5
  year: 2012
  ident: 881_CR24
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.11.020
– volume: 58
  start-page: 691
  year: 2018
  ident: 881_CR14
  publication-title: BIT Numer. Math.
  doi: 10.1007/s10543-018-0705-1
– volume: 228
  start-page: 6682
  issue: 18
  year: 2009
  ident: 881_CR19
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.05.028
– volume: 126
  start-page: 202
  issue: 1
  year: 1996
  ident: 881_CR13
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0130
– volume-title: Iterative Solution Methods
  year: 1994
  ident: 881_CR1
  doi: 10.1017/CBO9780511624100
– volume: 43
  start-page: 89
  issue: 1
  year: 2001
  ident: 881_CR5
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450036757X
– ident: 881_CR16
  doi: 10.1007/978-3-319-57397-7_1
– volume: 123
  start-page: 159
  year: 2018
  ident: 881_CR15
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2017.09.004
– volume: 229
  start-page: 3091
  issue: 9
  year: 2010
  ident: 881_CR21
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.12.030
– volume: 78
  start-page: 355
  issue: 6
  year: 2015
  ident: 881_CR4
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.4023
– ident: 881_CR8
  doi: 10.1137/18M1226774
SSID ssj0009892
Score 2.3515291
Snippet In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018 . https://doi.org/10.1007/s10915-018-0852-1 ) and develop a third-order...
In this paper, we extend our previous work in Huang and Shu (J Sci Comput, 2018. https://doi.org/10.1007/s10915-018-0852-1) and develop a third-order...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1015
SubjectTerms Algorithms
Chemical reactions
Computational Mathematics and Numerical Analysis
Equilibrium
Essentially non-oscillatory schemes
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Nonequilibrium flow
Numerical analysis
Runge-Kutta method
Theoretical
Time integration
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMAAtIB4FOSBgYcs1YnT2mOFqBigVPShbpHjOFCpTWlTQGz8ADb-Ib-Ecx60IECCMcrZinz23efc3XcIHShtQLESpEKlJszTPpEAC-CRORw8oOfE0fPORaVe592uaKR13FGW7Z6FJGNLPVPsJqhJNDOMypwSMY8WwNtx06_hutmZMu3yuBMyyDgEsDLLQpnfTfHZGU0R5pegaOxraqv_-so1tJJCS1xN9kIezemwgJYvP3hZowLKp0c5wocp3_TROnqp4tZtb-yTK0PDidshXJH9XvKPsP-EG3Fal2kxQUy-hrEt4Q1ugrIHGgPkxY2ENBbk355fzT02ZaTFZ6OERzzC5m8vrs7EyvFkiOvDkOjRfS-uOrgf4Fp_-BhtoHbtrHV6TtImDUTZtDwhwuI6AIVbzPOko5jNhF_x44JfKaRlS-0JGpSoVDRgjqW5oF5JCiFl2bAVUnsT5cJhqLcQ1nBN5wruyUIzBoaY-yWpA06VDLhNldhGpUxbrkoZzE0jjb475V42q-_C6rtm9V0Ycvwx5C6h7_hNuJhtATc9yZFrCTB6ACpZeRudZCqfvv5xsp0_Se-iJUBiIsmkLKIcaErvoUX1MOlF4_14g78DyAL3iA
  priority: 102
  providerName: Springer Nature
Title A Third-Order Unconditionally Positivity-Preserving Scheme for Production–Destruction Equations with Applications to Non-equilibrium Flows
URI https://link.springer.com/article/10.1007/s10915-018-0881-9
https://www.proquest.com/docview/2918314346
Volume 79
WOSCitedRecordID wos000464896500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: P5Z
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: K7-
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7691
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009892
  issn: 0885-7474
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFH9iG4ddBgMm9ofKhx3YkEWdJq19QgW1QmLqonarKi6R4zisUpesSwfixgfYbd-QT8J7iUMAiV12iRTFtpL87PfH7_n3AA6NJaPYKN4T2nI_tgnXaBbgrR9I1IBxUEbPpye90UjOZip0G26FS6usZWIpqJPc0B75W0_h5EPl7nffXS05VY2i6KorobEGG8SSQKUbwuBzQ7ory6LIuJACjmazX0c1q6NzSlDaGvEzS8HV33qpMTb_iY-Wamf45KEv_BS2nMHJ-tUM2YZHNnsG225JF-y1450-eg63fXZ2Mb9O-CnRcbLzDF3lZF7tFS6-s7BM76JSE5zyNkjGZF_YBEG_tAxNXxZW5LHY_uePO_JnHTMtGywrPvGC0a4v6_8RM2ernI3yjNvlzbw8fXBzyYaL_FvxAs6Hg7MPH7kr1sBNR3RXXHnSpgi858exDgx-t0p6SXnwVyvtdbSNlUjbQhuR-oFnpRJxWyuldZdYC0VnB9azPLMvgVl016VBf1lZ30eBLJO2tqkURqf4R43ahXYNVWQckzkV1FhEDQczoRshuhGhG2GX499drioaj_saH9SIRm5FF1ED5y68qedE8_i_g-3dP9g-bKIJpqoUygNYR2jsK3hsvq7mxXULNt4PRuG4BWuferxVTm68jifTX3fzASM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQXoPyIQgs-gMSPLOKss4kPVbWCrlrtsqzEFvWWOo7TrrRNus2WqjceoDfeg4fiSZhxEgJI9NYDxyi2FcXf_Ngz8w3Ac2PJKTaKh0JbLhObco1uAT7KIEILmAQuev55GI5G0d6eGi_B96YWhtIqG53oFHVaGLojf-srBB8ad9ndPJ5z6hpF0dWmhUYFi4E9P8MjW7mx8x7394Xv97cm77Z53VWAm47oLrjyI5vhF_oySXRgcEWVhqmrUNVK-x1tEyUyT2gjMhn4NlIi8bRSWneJXk90cN1rcF12opDkahDyluQ3ck2YUXADjm66bKKoVameEpQmR3zQkeDqTzvYOrd_xWOdmevf-d9-0F24XTvUrFdJwAos2fwerNQqq2Qva17tV_fhoscmh9OTlH8kulG2m5uC4vXuLnR2zsYufY1aaXDKSyEdmh-wTwjqI8vQtWfjihwXx__4-o3O6zXzLtuaV3zpJaNbbdb7LSeALQo2KnJu56dTV11xesT6s-KsfAC7V_JXHsJyXuT2ETAb4pnPeH6orJRocKLU0zaLhNEZ7qBRq-A10IhNzdRODUNmccsxTWiKEU0xoSnGKa9_TTmuaEouG7zWICiuNVYZt_BZhTcNBtvX_1zs8eWLPYOb25MPw3i4Mxo8gVvobqoqXXQNlnGb7DrcMF8W0_LkqRMlBvtXDc2f1kFZPg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHbHjAwcWWdSJ09rHCqhAQKnEIm6R4zhQqaRACogbH8CNP-RLGGehgAAJcYwydiJ7bL_xzLwBWNHGgmItaYUpQ3lgQqoQFuAj9wSegIGXes_PDir1ujg_l428zmlSRLsXLsksp8GyNMWdzesw2vyQ-CaZDTqz7MqCUdkL_dzG0Vtz_fisy7or0qrIKONRxM28cGt-18Xng6mLNr84SNNzpzb67z8eg5EccpJqpiPj0GPiCRg-fOdrTSZgPF_iCVnNeajXJuG5Sk4um7chPbL0nOQ0xi-GzezusPVIGmm4ly09QW0ch91z4gtyjEpwZQhCYdLIyGRR_vXpxdq3OVMt2bnJ-MUTYm-BSfWDD5102qTejqm5uWum2Qh3V6TWaj8kU3Ba2znZ2qV58QaqXVbuUOkIE6EiODwIlKe5y2VYCdNEYCWV4yoTSBaVmNIs4p5jhGRBSUmpVNmyGDJ3GvridmxmgBg034VG-1kaznGDFmFJmUgwrSLhMi1noVTMnK9zZnNbYKPldzmZ7ej7OPq-HX0fm6y_N7nOaD1-E14o1MHPV3jiOxI3QwSbvDwLG8X0d1__2Nncn6SXYbCxXfMP9ur78zCEYE1mwZYL0IeTZhZhQN93msntUqr3bzX_A18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Third-Order+Unconditionally+Positivity-Preserving+Scheme+for+Production%E2%80%93Destruction+Equations+with+Applications+to+Non-equilibrium+Flows&rft.jtitle=Journal+of+scientific+computing&rft.au=Huang%2C+Juntao&rft.au=Zhao%2C+Weifeng&rft.au=Shu%2C+Chi-Wang&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=79&rft.issue=2&rft.spage=1015&rft.epage=1056&rft_id=info:doi/10.1007%2Fs10915-018-0881-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon