HFIM: a Spark-based hybrid frequent itemset mining algorithm for big data processing

Frequent itemset mining is one of the data mining techniques applied to discover frequent patterns, used in prediction, association rule mining, classification, etc. Apriori algorithm is an iterative algorithm, which is used to find frequent itemsets from transactional dataset. It scans complete dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing Jg. 73; H. 8; S. 3652 - 3668
Hauptverfasser: Sethi, Krishan Kumar, Ramesh, Dharavath
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.08.2017
Springer Nature B.V
Schlagworte:
ISSN:0920-8542, 1573-0484
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Frequent itemset mining is one of the data mining techniques applied to discover frequent patterns, used in prediction, association rule mining, classification, etc. Apriori algorithm is an iterative algorithm, which is used to find frequent itemsets from transactional dataset. It scans complete dataset in each iteration to generate the large frequent itemsets of different cardinality, which seems better for small data but not feasible for big data. The MapReduce framework provides the distributed environment to run the Apriori on big transactional data. However, MapReduce is not suitable for iterative process and declines the performance. We introduce a novel algorithm named Hybrid Frequent Itemset Mining (HFIM), which utilizes the vertical layout of dataset to solve the problem of scanning the dataset in each iteration. Vertical dataset carries information to find support of each itemsets. Moreover, we also include some enhancements to reduce number of candidate itemsets. The proposed algorithm is implemented over Spark framework, which incorporates the concept of resilient distributed datasets and performs in-memory processing to optimize the execution time of operation. We compare the performance of HFIM with another Spark-based implementation of Apriori algorithm for various datasets. Experimental results show that the HFIM performs better in terms of execution time and space consumption.
AbstractList Frequent itemset mining is one of the data mining techniques applied to discover frequent patterns, used in prediction, association rule mining, classification, etc. Apriori algorithm is an iterative algorithm, which is used to find frequent itemsets from transactional dataset. It scans complete dataset in each iteration to generate the large frequent itemsets of different cardinality, which seems better for small data but not feasible for big data. The MapReduce framework provides the distributed environment to run the Apriori on big transactional data. However, MapReduce is not suitable for iterative process and declines the performance. We introduce a novel algorithm named Hybrid Frequent Itemset Mining (HFIM), which utilizes the vertical layout of dataset to solve the problem of scanning the dataset in each iteration. Vertical dataset carries information to find support of each itemsets. Moreover, we also include some enhancements to reduce number of candidate itemsets. The proposed algorithm is implemented over Spark framework, which incorporates the concept of resilient distributed datasets and performs in-memory processing to optimize the execution time of operation. We compare the performance of HFIM with another Spark-based implementation of Apriori algorithm for various datasets. Experimental results show that the HFIM performs better in terms of execution time and space consumption.
Author Ramesh, Dharavath
Sethi, Krishan Kumar
Author_xml – sequence: 1
  givenname: Krishan Kumar
  surname: Sethi
  fullname: Sethi, Krishan Kumar
  organization: Department of Computer Science and Engineering, Indian Institute of Technology (ISM)
– sequence: 2
  givenname: Dharavath
  orcidid: 0000-0003-3338-6520
  surname: Ramesh
  fullname: Ramesh, Dharavath
  email: ramesh.d.in@ieee.org
  organization: Department of Computer Science and Engineering, Indian Institute of Technology (ISM)
BookMark eNp9kMFOAjEQhhuDiYA-gLcmnqudtrttvRkiYoLxIJ6b7m4XirCLbTnw9pbgwZjoaS7fN__MP0KDru8cQtdAb4FSeRcBGJOEgiSgS07EGRpCITmhQokBGlLNKFGFYBdoFOOaUiq45EO0mE2fX-6xxW87Gz5IZaNr8OpQBd_gNrjPvesS9slto0t46zvfLbHdLPvg02qL2z7gyi9xY5PFu9DXLsZMXKLz1m6iu_qeY_Q-fVxMZmT--vQ8eZiTmkOZiGZKVAWVlebOKSgaLgttS16Xjpc1ZaUWDiRUulWKN1RJaKv8RqOaWqoGOB-jm9PeHJ0vjcms-33ocqQBzYCB0KrIlDxRdehjDK41tU82-b5LwfqNAWqOFZpThSZXaI4VGpFN-GXugt_acPjXYScnZrZbuvDjpj-lL3ZOg8o
CitedBy_id crossref_primary_10_1016_j_jksuci_2019_09_006
crossref_primary_10_1007_s10115_020_01464_1
crossref_primary_10_1016_j_patrec_2019_05_003
crossref_primary_10_1109_ACCESS_2022_3179592
crossref_primary_10_1007_s10586_018_2075_5
crossref_primary_10_1016_j_engappai_2020_103933
crossref_primary_10_1007_s11227_020_03253_7
crossref_primary_10_1007_s10586_018_2100_8
crossref_primary_10_1080_0144929X_2019_1626486
crossref_primary_10_1007_s11235_022_00882_6
crossref_primary_10_1016_j_engappai_2022_105480
crossref_primary_10_1007_s10586_024_04868_8
crossref_primary_10_1007_s12083_020_00980_9
crossref_primary_10_1155_2021_6688463
crossref_primary_10_3390_data7010011
crossref_primary_10_1016_j_jksuci_2020_09_010
crossref_primary_10_1007_s10586_018_1811_1
crossref_primary_10_1007_s10586_018_1812_0
crossref_primary_10_1007_s00530_020_00725_x
crossref_primary_10_1007_s11227_020_03247_5
crossref_primary_10_1007_s10586_018_2420_8
crossref_primary_10_1155_2024_8781318
crossref_primary_10_1007_s41870_019_00337_3
crossref_primary_10_1016_j_future_2019_09_041
crossref_primary_10_1007_s10586_022_03673_5
crossref_primary_10_1007_s10586_023_04014_w
Cites_doi 10.1016/j.is.2014.07.006
10.1007/s00371-013-0886-1
10.1145/276305.276313
10.1016/j.ins.2014.01.015
10.1109/MIS.2010.47
10.1145/1327452.1327492
10.1109/CSCWD.2015.7230970
10.1109/ICCAE.2010.5451977
10.1007/978-3-540-28633-2_131
10.1007/978-1-4615-5669-5_1
10.1109/ICICIS.2010.5534718
10.1145/2184751.2184842
10.1109/ICSESS.2014.6933531
10.1145/1272996.1273005
10.1109/ITNG.2008.33
10.1109/IPDPSW.2014.185
10.1109/BigData.6691742
10.1109/SNPD.2012.31
10.1109/FCST.2015.28
10.1049/cp.2014.1525
10.1145/2809890.2809893
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s11227-017-1963-4
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 3668
ExternalDocumentID 10_1007_s11227_017_1963_4
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
JQ2
ID FETCH-LOGICAL-c316t-9284b507b93ee815d3759a63c6e36c02694e171b9f883d0871fb920d8dc78d133
IEDL.DBID RSV
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406215500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Thu Sep 25 01:03:35 EDT 2025
Sat Nov 29 06:13:11 EST 2025
Tue Nov 18 21:34:56 EST 2025
Fri Feb 21 02:27:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Frequent pattern mining
Apriori algorithm
Big data
Apache Spark
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9284b507b93ee815d3759a63c6e36c02694e171b9f883d0871fb920d8dc78d133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3338-6520
PQID 1921214985
PQPubID 2043774
PageCount 17
ParticipantIDs proquest_journals_1921214985
crossref_citationtrail_10_1007_s11227_017_1963_4
crossref_primary_10_1007_s11227_017_1963_4
springer_journals_10_1007_s11227_017_1963_4
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Dean, Ghemawat (CR11) 2008; 51
Han, Kamber, Pei (CR3) 2011
CR19
CR18
CR39
CR38
Hashem, Yaqoob, Anuar, Mokhtar, Gani, Khan (CR1) 2015; 47
CR15
CR37
CR14
CR36
CR13
CR35
CR12
CR34
CR33
CR10
CR32
CR31
CR30
Bayardo (CR5) 1998; 27
Philip Chen, Zhang (CR2) 2014; 275
CR4
Jafri, Ali, Arabnia, Fatima (CR16) 2014; 30
CR8
CR7
CR29
CR28
CR9
CR27
Pacheco (CR6) 1997
CR26
CR25
CR24
CR23
CR21
CR20
Ye, Chiang (CR22) 2006; 2006
Arabnia, Fang, Lee, Zhang (CR17) 2010; 25
1963_CR38
1963_CR39
1963_CR14
1963_CR36
1963_CR15
1963_CR37
1963_CR12
1963_CR34
1963_CR13
1963_CR35
1963_CR10
1963_CR32
1963_CR33
1963_CR30
PS Pacheco (1963_CR6) 1997
1963_CR31
R Jafri (1963_CR16) 2014; 30
J Dean (1963_CR11) 2008; 51
IAT Hashem (1963_CR1) 2015; 47
CL Philip Chen (1963_CR2) 2014; 275
1963_CR18
1963_CR19
1963_CR27
J Han (1963_CR3) 2011
1963_CR28
1963_CR25
1963_CR26
1963_CR23
HR Arabnia (1963_CR17) 2010; 25
1963_CR24
1963_CR21
1963_CR20
Y Ye (1963_CR22) 2006; 2006
1963_CR9
1963_CR8
1963_CR7
1963_CR4
RJ Bayardo Jr (1963_CR5) 1998; 27
1963_CR29
References_xml – volume: 2006
  start-page: 87
  year: 2006
  end-page: 94
  ident: CR22
  article-title: A parallel Apriori algorithm for frequent itemsets mining
  publication-title: In Proceedings of Fourth International Conference Software Engineering Research Management and applications SERA
– ident: CR18
– ident: CR4
– ident: CR14
– ident: CR39
– volume: 47
  start-page: 98
  year: 2015
  end-page: 115
  ident: CR1
  article-title: The rise of “big data” on cloud computing: review and open research issues
  publication-title: Infor Syst
  doi: 10.1016/j.is.2014.07.006
– ident: CR37
– ident: CR12
– ident: CR30
– ident: CR10
– ident: CR33
– ident: CR35
– ident: CR29
– volume: 30
  start-page: 1197
  issue: 11
  year: 2014
  end-page: 1222
  ident: CR16
  article-title: Computer vision-based object recognition for the visually impaired in an indoors environment: a survey
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0886-1
– ident: CR8
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 27
  start-page: 85
  issue: 2
  year: 1998
  end-page: 93
  ident: CR5
  article-title: Efficiently mining long patterns from databases
  publication-title: ACM Sigmod Record
  doi: 10.1145/276305.276313
– volume: 275
  start-page: 314
  year: 2014
  end-page: 347
  ident: CR2
  article-title: Data-intensive applications, challenges, techniques and technologies: a survey on big data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.01.015
– ident: CR21
– ident: CR19
– ident: CR15
– ident: CR38
– ident: CR31
– ident: CR13
– volume: 25
  start-page: 10
  issue: 2
  year: 2010
  end-page: 11
  ident: CR17
  article-title: Context-aware middleware and intelligent agents for smart environments
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2010.47
– ident: CR9
– year: 1997
  ident: CR6
  publication-title: Parallel programming with MPI
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  end-page: 113
  ident: CR11
  article-title: MapReduce: simplified data processing on large clusters
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR7
– ident: CR28
– ident: CR26
– ident: CR24
– ident: CR20
– year: 2011
  ident: CR3
  publication-title: Data mining: concepts and techniques
– ident: 1963_CR34
  doi: 10.1109/CSCWD.2015.7230970
– ident: 1963_CR23
– ident: 1963_CR9
– volume: 25
  start-page: 10
  issue: 2
  year: 2010
  ident: 1963_CR17
  publication-title: IEEE Intell Syst
  doi: 10.1109/MIS.2010.47
– ident: 1963_CR20
  doi: 10.1109/ICCAE.2010.5451977
– ident: 1963_CR7
– ident: 1963_CR18
  doi: 10.1007/978-3-540-28633-2_131
– ident: 1963_CR21
– ident: 1963_CR35
  doi: 10.1007/978-1-4615-5669-5_1
– volume-title: Parallel programming with MPI
  year: 1997
  ident: 1963_CR6
– ident: 1963_CR37
– ident: 1963_CR12
– ident: 1963_CR14
– volume: 30
  start-page: 1197
  issue: 11
  year: 2014
  ident: 1963_CR16
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0886-1
– ident: 1963_CR4
– ident: 1963_CR10
– ident: 1963_CR30
  doi: 10.1109/ICICIS.2010.5534718
– ident: 1963_CR25
  doi: 10.1145/2184751.2184842
– volume: 47
  start-page: 98
  year: 2015
  ident: 1963_CR1
  publication-title: Infor Syst
  doi: 10.1016/j.is.2014.07.006
– ident: 1963_CR29
  doi: 10.1109/ICSESS.2014.6933531
– ident: 1963_CR8
  doi: 10.1145/1272996.1273005
– ident: 1963_CR19
  doi: 10.1109/ITNG.2008.33
– ident: 1963_CR39
– volume: 27
  start-page: 85
  issue: 2
  year: 1998
  ident: 1963_CR5
  publication-title: ACM Sigmod Record
  doi: 10.1145/276305.276313
– ident: 1963_CR24
– ident: 1963_CR31
  doi: 10.1109/IPDPSW.2014.185
– ident: 1963_CR28
  doi: 10.1109/BigData.6691742
– volume: 275
  start-page: 314
  year: 2014
  ident: 1963_CR2
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.01.015
– volume: 51
  start-page: 107
  issue: 1
  year: 2008
  ident: 1963_CR11
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– ident: 1963_CR26
  doi: 10.1109/SNPD.2012.31
– ident: 1963_CR13
– ident: 1963_CR32
  doi: 10.1109/FCST.2015.28
– ident: 1963_CR15
– ident: 1963_CR27
  doi: 10.1049/cp.2014.1525
– volume: 2006
  start-page: 87
  year: 2006
  ident: 1963_CR22
  publication-title: In Proceedings of Fourth International Conference Software Engineering Research Management and applications SERA
– ident: 1963_CR33
  doi: 10.1145/2809890.2809893
– volume-title: Data mining: concepts and techniques
  year: 2011
  ident: 1963_CR3
– ident: 1963_CR36
– ident: 1963_CR38
SSID ssj0004373
Score 2.31999
Snippet Frequent itemset mining is one of the data mining techniques applied to discover frequent patterns, used in prediction, association rule mining,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3652
SubjectTerms Algorithms
Big Data
Compilers
Computer Science
Data management
Data mining
Data processing
Datasets
Interpreters
Iterative algorithms
Processor Architectures
Programming Languages
Scanning
Title HFIM: a Spark-based hybrid frequent itemset mining algorithm for big data processing
URI https://link.springer.com/article/10.1007/s11227-017-1963-4
https://www.proquest.com/docview/1921214985
Volume 73
WOSCitedRecordID wos000406215500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-YnTKTl4UgJtk7apNxHHPDiETdmtpEk6h_uiq4L_vUnaWhUV9NzXEF5e8t6P9_EDONUIw5OCOzhRMsA0UBJzEflYCkKZ1M-hotKSTYS9HhsOo7uyj3tZVbtXKUn7UtfNbq7nmTLJEBurwXQV1nwzbMZA9P5D3QxJirRypHER86lXpTK_W-KzM6ojzC9JUetrOs1_7XILNsvQEl0WtrANK2q2A82KtgGVt3gXBt3Oze0F4qi_4NkTNn5MosdX07qF0syWVufIMrSpHE0tgQTik9E8G-ePU6SDXJSMR8iUlqJF0WagJfbgvnM9uOriklwBC-IGOY60X0p0MJhERCnm-pKEfsQDIgJFAuGYBlflhm4SpYwR6WhclSZapZJJETKpke0-NGbzmToAZHKlKZWcpExQT_lcUmqmWvGIaLykRAucSsuxKCePGwKMSVzPTDZai7XWYqO1mLbg7P2XRTF24zfhdnV0cXkDl7GZ8-Zp-Mf8FpxXR_Xh80-LHf5J-gg2PHPWtiKwDY08e1bHsC5e8vEyO7GG-QaN-Ns9
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4pATWJm0T30QcG84hOGVvJU3Sbbgvuir435t0rVNRQZ97DeFyyd2P-_gBnBqE4SopajjSysfU1woLyT2sJKFMmedQU5WRTQTtNut2-V3exz0rqt2LlGT2Ui-a3RzXtWWSAbZWg-kyrFDLsmMh-v3johmSzNPK3OAi5lG3SGV-t8RnZ7SIML8kRTNfUy__a5ebsJGHluhybgtbsKTH21AuaBtQfot3oNOoN28vkED3U5E8YevHFOq_2tYtFCdZaXWKMoY2naJRRiCBxLA3SQZpf4RMkIuiQQ_Z0lI0nbcZGIldeKhfd64aOCdXwJI4foq58UuRCQYjTrRmjqdI4HHhE-lr4suabXDVTuBEPGaMqJrBVXFkVKqYkgFTBtnuQWk8Get9QDZXGlMlSMwkdbUnFKV2qpXgxOAlLStQK7QcynzyuCXAGIaLmclWa6HRWmi1FtIKnL3_Mp2P3fhNuFocXZjfwFlo57wZ6-DMq8B5cVQfPv-02MGfpE9grdG5bYWtZvvmENZde-5ZdWAVSmnyrI9gVb6kg1lynBnpG91l3iE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IV58i_W5B0_K0ia7STbeRC0WtRRbpbew2d20xTaWNAr-e3fzsCoqiOdMljAzm5mPeXwARxph2FLwGg6VdDF1lcRc-A6WglAm9e9QUZmRTXjNJut2_VbBczopu93LkmQ-02C2NMVpdSyj6nTwzbJt0zLpYeNBmM7CPNVAxvR03bUfpoORJC8x-xojMYfaZVnzuyM-B6ZptvmlQJrFnfrKv794FZaLlBOd5T6yBjMqXoeVks4BFbd7AzpX9cbtKeKoPebJIzbxTaL-qxnpQlGStVynKGNuUykaZcQSiA97T8kg7Y-QTn5ROOgh03KKxvn4gZbYhPv6Zef8ChekC1gQy02xr-NVqJPE0CdKMcuRxHN87hLhKuKKmhl8VZZnhX7EGJE1jbeiUKtXMik8JjXi3YK5-ClW24BMDTWikpOICWorh0tKzbYr7hONo5SoQK3UeCCKjeSGGGMYTHcpG60FWmuB0VpAK3D8_so4X8fxm_BeacaguJmTwOx_szUsZE4FTkqzfXj802E7f5I-hMXWRT24aTSvd2HJNmbPmgb3YC5NntU-LIiXdDBJDjJ_fQNAZecF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HFIM%3A+a+Spark-based+hybrid+frequent+itemset+mining+algorithm+for+big+data+processing&rft.jtitle=The+Journal+of+supercomputing&rft.au=Sethi%2C+Krishan+Kumar&rft.au=Ramesh%2C+Dharavath&rft.date=2017-08-01&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=73&rft.issue=8&rft.spage=3652&rft.epage=3668&rft_id=info:doi/10.1007%2Fs11227-017-1963-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_017_1963_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon