Scheduling Distributed Clusters of Parallel Machines : Primal-Dual and LP-based Approximation Algorithms

The Map-Reduce computing framework rose to prominence with datasets of such size that dozens of machines on a single cluster were needed for individual jobs. As datasets approach the exabyte scale, a single job may need distributed processing not only on multiple machines, but on multiple clusters ....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 80; číslo 10; s. 2777 - 2798
Hlavní autoři: Murray, Riley, Khuller, Samir, Chao, Megan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.10.2018
Springer Nature B.V
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The Map-Reduce computing framework rose to prominence with datasets of such size that dozens of machines on a single cluster were needed for individual jobs. As datasets approach the exabyte scale, a single job may need distributed processing not only on multiple machines, but on multiple clusters . We consider a scheduling problem to minimize weighted average completion time of n jobs on m distributed clusters of parallel machines. In keeping with the scale of the problems motivating this work, we assume that (1) each job is divided into m “subjobs” and (2) distinct subjobs of a given job may be processed concurrently. When each cluster is a single machine, this is the NP-Hard concurrent open shop problem. A clear limitation of such a model is that a serial processing assumption sidesteps the issue of how different tasks of a given subjob might be processed in parallel. Our algorithms explicitly model clusters as pools of resources and effectively overcome this issue. Under a variety of parameter settings, we develop two constant factor approximation algorithms for this problem. The first algorithm uses an LP relaxation tailored to this problem from prior work. This LP-based algorithm provides strong performance guarantees. Our second algorithm exploits a surprisingly simple mapping to the special case of one machine per cluster. This mapping-based algorithm is combinatorial and extremely fast. These are the first constant factor approximations for this problem.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-017-0345-x