On the Global Convergence of a Projective Trust Region Algorithm for Nonlinear Equality Constrained Optimization

A trust-region sequential quadratic programming (SQP) method is developed and analyzed for the solution of smooth equality constrained optimization problems. The trust-region SQP algorithm is based on filter line search technique and a composite-step approach, which decomposes the overall step as su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta mathematica Sinica. English series Ročník 34; číslo 12; s. 1804 - 1828
Hlavní autoři: Pei, Yong Gang, Zhu, De Tong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society 01.12.2018
Springer Nature B.V
Témata:
ISSN:1439-8516, 1439-7617
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A trust-region sequential quadratic programming (SQP) method is developed and analyzed for the solution of smooth equality constrained optimization problems. The trust-region SQP algorithm is based on filter line search technique and a composite-step approach, which decomposes the overall step as sum of a vertical step and a horizontal step. The algorithm includes critical modifications of horizontal step computation. One orthogonal projective matrix of the Jacobian of constraint functions is employed in trust-region subproblems. The orthogonal projection gives the null space of the transposition of the Jacobian of the constraint function. Theoretical analysis shows that the new algorithm retains the global convergence to the first-order critical points under rather general conditions. The preliminary numerical results are reported.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-018-7063-4