Characterization of 1-almost greedy bases

This article closes the cycle of characterizations of greedy-like bases in the “isometric” case initiated in Albiac and Wojtaszczyk (J. Approx. Theory 138(1):65–86, 2006 ) with the characterization of 1-greedy bases and continued in Albiac and Ansorena (J. Approx. Theory 201:7–12, 2016 ) with the ch...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Revista matemática complutense Ročník 30; číslo 1; s. 13 - 24
Hlavní autoři: Albiac, F., Ansorena, J. L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Milan Springer Milan 01.01.2017
Springer Nature B.V
Témata:
ISSN:1139-1138, 1988-2807
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article closes the cycle of characterizations of greedy-like bases in the “isometric” case initiated in Albiac and Wojtaszczyk (J. Approx. Theory 138(1):65–86, 2006 ) with the characterization of 1-greedy bases and continued in Albiac and Ansorena (J. Approx. Theory 201:7–12, 2016 ) with the characterization of 1-quasi-greedy bases. Here we settle the problem of providing a characterization of 1-almost greedy bases in Banach spaces. We show that a basis in a Banach space is almost greedy with almost greedy constant equal to 1 if and only if it has Property (A). This fact permits now to state that a basis is 1-greedy if and only if it is 1-almost greedy and 1-quasi-greedy. As a by-product of our work we also provide a tight estimate of the almost greedy constant of a basis in the non-isometric case.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1139-1138
1988-2807
DOI:10.1007/s13163-016-0204-3