Calibration of Genetic Algorithm Parameters for Mining-Related Optimization Problems

Genetic algorithms (GA) are widely used to solve engineering optimization problems. The quality and performance of the solution generated strongly depend on the selection of the GA parameter values (crossover and mutation rates and population size). We propose an approach based on full factorial and...

Full description

Saved in:
Bibliographic Details
Published in:Natural resources research (New York, N.Y.) Vol. 28; no. 2; pp. 443 - 456
Main Authors: Villalba Matamoros, Martha E., Kumral, Mustafa
Format: Journal Article
Language:English
Published: New York Springer US 01.04.2019
Springer Nature B.V
Subjects:
ISSN:1520-7439, 1573-8981
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Genetic algorithms (GA) are widely used to solve engineering optimization problems. The quality and performance of the solution generated strongly depend on the selection of the GA parameter values (crossover and mutation rates and population size). We propose an approach based on full factorial and response surface methodology experimental designs to calibrate GA parameters such that the objective function is maximized/minimized and the relative importance of the parameters is quantified. The approach was tested by applying it to stope optimization of underground mines, where profit can vary ± 7% based solely on GA parameters. Results showed that: (1) a larger population size did not always increase solution time; (2) solution time was positively related to crossover and mutation rates; and (3) simultaneous analysis of solution time and profit illustrated the trade-off between acceptable computing time and profit desirability through GA parameter selection. This approach can be used to calibrate parameters of other metaheuristics.
AbstractList Genetic algorithms (GA) are widely used to solve engineering optimization problems. The quality and performance of the solution generated strongly depend on the selection of the GA parameter values (crossover and mutation rates and population size). We propose an approach based on full factorial and response surface methodology experimental designs to calibrate GA parameters such that the objective function is maximized/minimized and the relative importance of the parameters is quantified. The approach was tested by applying it to stope optimization of underground mines, where profit can vary ± 7% based solely on GA parameters. Results showed that: (1) a larger population size did not always increase solution time; (2) solution time was positively related to crossover and mutation rates; and (3) simultaneous analysis of solution time and profit illustrated the trade-off between acceptable computing time and profit desirability through GA parameter selection. This approach can be used to calibrate parameters of other metaheuristics.
Author Villalba Matamoros, Martha E.
Kumral, Mustafa
Author_xml – sequence: 1
  givenname: Martha E.
  surname: Villalba Matamoros
  fullname: Villalba Matamoros, Martha E.
  organization: Department of Mining and Materials Engineering, McGill University
– sequence: 2
  givenname: Mustafa
  surname: Kumral
  fullname: Kumral, Mustafa
  email: mustafa.kumral@mcgill.ca
  organization: Department of Mining and Materials Engineering, McGill University
BookMark eNp9kE9LAzEQxYNUsFU_gLcFz9H82XSzx1K0CpUWqeeQbGZryu6mJulBP71bVxAEPc0c5vfevDdBo853gNAVJTeUkOI2UkoEx4RKXPJSYHaCxlQUHMtS0tFxZwQXOS_P0CTGHekZLsUYbea6cSbo5HyX-TpbQAfJVdms2frg0mubrXXQLSQIMat9yJ5c57otfoZGJ7DZap9c6z4Gfh28aaCNF-i01k2Ey-95jl7u7zbzB7xcLR7nsyWuOJ0mLK0006KmwKFggtpc5BbElOTWMs1qzkxpjNC2YkTLWpuSWQ2sYtrktk_F-Dm6HnT3wb8dICa184fQ9ZaKlVRyRmVO-is6XFXBxxigVvvgWh3eFSXqWJ4aylN9eepYnjoqF7-YyqWvkClo1_xLsoGMvUu3hfDz09_QJywwhl8
CitedBy_id crossref_primary_10_1007_s10479_023_05401_7
crossref_primary_10_1080_0305215X_2019_1624739
crossref_primary_10_3390_min12040437
crossref_primary_10_1007_s11053_021_09864_y
crossref_primary_10_1007_s11771_019_4241_1
crossref_primary_10_1007_s11053_020_09628_0
crossref_primary_10_1108_DTA_10_2020_0256
crossref_primary_10_1080_17480930_2024_2325758
Cites_doi 10.1016/j.ejor.2012.05.029
10.1179/037178404225004940
10.1111/1467-9469.00174
10.1016/j.ejor.2014.07.040
10.1023/A:1010113930770
10.1016/j.asoc.2014.08.025
10.1179/174328607X228848
10.1057/palgrave.jors.2601902
10.1007/s11053-016-9296-1
10.1007/s11053-016-9301-8
10.1080/08982119608919043
10.1504/IJMME.2017.082680
10.1016/j.asoc.2015.11.038
10.1109/Tsmc.1986.289288
10.1007/0-306-48056-5_3
10.1016/j.talanta.2008.05.019
10.1016/j.aca.2007.07.011
10.1080/00224065.1980.11980968
10.1109/4235.771166
10.1111/j.2517-6161.1951.tb00067.x
10.1080/17480930.2018.1486692
10.1109/CEC.2007.4424460
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2018
International Association for Mathematical Geosciences 2018.
Copyright_xml – notice: International Association for Mathematical Geosciences 2018
– notice: International Association for Mathematical Geosciences 2018.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.1007/s11053-018-9395-2
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Geology
Physics
Computer Science
EISSN 1573-8981
EndPage 456
ExternalDocumentID 10_1007_s11053_018_9395_2
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: 242984
  funderid: http://dx.doi.org/10.13039/501100000038
GroupedDBID -5A
-5G
-BR
-EM
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
PATMY
PCBAR
PDBOC
PF0
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
Z81
Z85
Z86
Z8S
Z8T
Z8U
Z8Z
ZMTXR
~02
~A9
~KM
-Y2
2.D
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADPHR
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFFHD
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
CITATION
COF
H13
HZ~
IHE
NDZJH
O9-
OVD
PHGZM
PHGZT
PQGLB
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
8FE
8FG
AZQEC
D1I
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-8d8b67f1e3e7251d454de5604dd2a2f32b9bb5adc20a8fab92dae2c2ab4d98123
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000460665100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-7439
IngestDate Wed Nov 05 08:39:04 EST 2025
Sat Nov 29 05:56:45 EST 2025
Tue Nov 18 21:50:02 EST 2025
Fri Feb 21 02:32:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Underground mine planning
Genetic algorithms (GA)
Stope layout optimization
Response surface methodology
GA parameters
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8d8b67f1e3e7251d454de5604dd2a2f32b9bb5adc20a8fab92dae2c2ab4d98123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918321840
PQPubID 2043663
PageCount 14
ParticipantIDs proquest_journals_2918321840
crossref_primary_10_1007_s11053_018_9395_2
crossref_citationtrail_10_1007_s11053_018_9395_2
springer_journals_10_1007_s11053_018_9395_2
PublicationCentury 2000
PublicationDate 20190401
2019-4-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 4
  year: 2019
  text: 20190401
  day: 1
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Natural resources research (New York, N.Y.)
PublicationTitleAbbrev Nat Resour Res
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Snyman (CR30) 2005
Telford (CR31) 2007; 27
Ruiseco, Williams, Kumral (CR26) 2016; 25
Mitchell (CR18) 1999
Villalba, Kumral (CR33) 2017; 8
Eiben, Hinterding, Michalewicz (CR6) 1999; 3
Montgomery (CR19) 1997
Leite, Dimitrakopoulos (CR15) 2007; 116
CR35
CR34
Deutsch, Journel (CR5) 1998
Lamghari, Dimitrakopoulos (CR14) 2012; 222
CR32
Kumral (CR12) 2004; 113
Pandey, Chaudhary, Mehrotra (CR22) 2014; 24
Melvin (CR17) 2000
Goodfellow, Dimitrakopoulos (CR8) 2016; 40
Shi, Bloom, Mueller (CR28) 2000; 9
Ruiseco, Kumral (CR25) 2017; 26
Osman, Laporte (CR21) 1996
Derringer, Suich (CR4) 1980; 12
Kumral, Dowd (CR13) 2005; 56
Bezerra, Santelli, Oliveira, Villar, Escaleira (CR1) 2008; 76
Helland (CR10) 2000; 27
Sauvageau, Kumral (CR27) 2016; 32
Box, Wilson (CR2) 1951; 13
Reeves (CR24) 2003
Grefenstette (CR9) 1986; 16
Johnson, Wichern (CR11) 2007
Manchuk, Deutsch (CR16) 2008; 324
CR20
Shishvan, Sattarvand (CR29) 2015; 240
Clifton Young (CR3) 1996; 9
Ferreira, Bruns, Ferreira, Matos, David, Brandao (CR7) 2007; 597
Rayward-Smith, Rayward-Smith, Osman, Reeves, Smith (CR23) 1996
RA Johnson (9395_CR11) 2007
J Manchuk (9395_CR16) 2008; 324
M Kumral (9395_CR13) 2005; 56
M Mitchell (9395_CR18) 1999
ME Villalba (9395_CR33) 2017; 8
MA Bezerra (9395_CR1) 2008; 76
HM Pandey (9395_CR22) 2014; 24
RC Goodfellow (9395_CR8) 2016; 40
M Kumral (9395_CR12) 2004; 113
M Sauvageau (9395_CR27) 2016; 32
9395_CR32
MS Shishvan (9395_CR29) 2015; 240
JR Ruiseco (9395_CR25) 2017; 26
A Leite (9395_CR15) 2007; 116
A Lamghari (9395_CR14) 2012; 222
IS Helland (9395_CR10) 2000; 27
IH Osman (9395_CR21) 1996
9395_CR35
9395_CR34
C Reeves (9395_CR24) 2003
ÁE Eiben (9395_CR6) 1999; 3
JR Ruiseco (9395_CR26) 2016; 25
SL Ferreira (9395_CR7) 2007; 597
DC Montgomery (9395_CR19) 1997
T Melvin (9395_CR17) 2000
GE Box (9395_CR2) 1951; 13
B Shi (9395_CR28) 2000; 9
JJ Grefenstette (9395_CR9) 1986; 16
9395_CR20
J Snyman (9395_CR30) 2005
CV Deutsch (9395_CR5) 1998
VJ Rayward-Smith (9395_CR23) 1996
JK Telford (9395_CR31) 2007; 27
G Derringer (9395_CR4) 1980; 12
J Clifton Young (9395_CR3) 1996; 9
References_xml – volume: 222
  start-page: 642
  issue: 3
  year: 2012
  end-page: 652
  ident: CR14
  article-title: A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.05.029
– year: 2007
  ident: CR11
  publication-title: Applied multivariate statistical analysis
– volume: 113
  start-page: A83
  issue: 2
  year: 2004
  end-page: A88
  ident: CR12
  article-title: Optimal location of a mine facility by genetic algorithms
  publication-title: IMM Transactions, Mining Technology
  doi: 10.1179/037178404225004940
– volume: 27
  start-page: 1
  issue: 1
  year: 2000
  end-page: 20
  ident: CR10
  article-title: Model reduction for prediction in regression models
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/1467-9469.00174
– volume: 240
  start-page: 825
  issue: 3
  year: 2015
  end-page: 836
  ident: CR29
  article-title: Long term production planning of open pit mines by ant colony optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.07.040
– volume: 9
  start-page: 53
  issue: 1
  year: 2000
  end-page: 64
  ident: CR28
  article-title: Applications of conditional simulation to a positively skewed platinum mineralization
  publication-title: Natural Resources Research
  doi: 10.1023/A:1010113930770
– year: 2005
  ident: CR30
  publication-title: Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms
– year: 1997
  ident: CR19
  publication-title: Design and analysis of experiments
– volume: 24
  start-page: 1047
  year: 2014
  end-page: 1077
  ident: CR22
  article-title: A comparative review of approaches to prevent premature convergence in GA
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.08.025
– ident: CR35
– volume: 116
  start-page: 109
  issue: 3
  year: 2007
  end-page: 118
  ident: CR15
  article-title: Stochastic optimisation model for open pit mine planning: Application and risk analysis at copper deposit
  publication-title: Mining Technology
  doi: 10.1179/174328607X228848
– volume: 56
  start-page: 922
  issue: 8
  year: 2005
  end-page: 930
  ident: CR13
  article-title: A simulated annealing approach to mine production scheduling
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2601902
– year: 1998
  ident: CR5
  publication-title: Geostatistical software library and user’s guide
– volume: 25
  start-page: 473
  issue: 4
  year: 2016
  end-page: 485
  ident: CR26
  article-title: Optimizing ore–waste dig-limits as part of operational mine planning through genetic algorithms
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9296-1
– volume: 26
  start-page: 23
  issue: 1
  year: 2017
  end-page: 35
  ident: CR25
  article-title: A practical approach to mine equipment sizing in relation to dig-limit optimization in complex orebodies: Multi-rock type, multi-process, and multi-metal case
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9301-8
– volume: 32
  start-page: 1
  year: 2016
  end-page: 19
  ident: CR27
  article-title: Genetic algorithms for the optimisation of the Schwartz-Smith two-factor model: A case study on a copper deposit
  publication-title: International Journal of Mining, Reclamation and Environment
– volume: 9
  start-page: 269
  issue: 2
  year: 1996
  end-page: 277
  ident: CR3
  article-title: Blocking, replication, and randomization—The key to effective experimentation: A case study
  publication-title: Quality Engineering
  doi: 10.1080/08982119608919043
– year: 1999
  ident: CR18
  publication-title: An introduction to genetic algorithms
– year: 1996
  ident: CR21
  publication-title: Metaheuristics: A bibliography
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  end-page: 18
  ident: CR33
  article-title: Heuristic stope layout optimization accounting for variable stope dimensions and dilution management
  publication-title: International Journal of Mining and Mineral Engineering
  doi: 10.1504/IJMME.2017.082680
– volume: 13
  start-page: 1
  year: 1951
  end-page: 45
  ident: CR2
  article-title: On the experimental attainment of optimum conditions
  publication-title: Journal of the Royal Statistical Society (Series B)
– volume: 40
  start-page: 292
  year: 2016
  end-page: 304
  ident: CR8
  article-title: Global optimization of open pit mining complexes with uncertainty
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.11.038
– volume: 16
  start-page: 122
  issue: 1
  year: 1986
  end-page: 128
  ident: CR9
  article-title: Optimization of control parameters for genetic algorithms
  publication-title: IEEE Transactions on Systems Man and Cybernetics
  doi: 10.1109/Tsmc.1986.289288
– volume: 27
  start-page: 224
  issue: 3
  year: 2007
  end-page: 232
  ident: CR31
  article-title: A brief introduction to design of experiments
  publication-title: Johns Hopkins APL Technical Digest
– start-page: 55
  year: 2003
  end-page: 82
  ident: CR24
  article-title: Genetic algorithms
  publication-title: Handbook of metaheuristics
  doi: 10.1007/0-306-48056-5_3
– ident: CR32
– year: 2000
  ident: CR17
  publication-title: Response surface optimization using JMP Software
– ident: CR34
– volume: 76
  start-page: 965
  issue: 5
  year: 2008
  end-page: 977
  ident: CR1
  article-title: Response surface methodology (RSM) as a tool for optimization in analytical chemistry
  publication-title: Talanta
  doi: 10.1016/j.talanta.2008.05.019
– volume: 597
  start-page: 179
  issue: 2
  year: 2007
  end-page: 186
  ident: CR7
  article-title: Box–Behnken design: An alternative for the optimization of analytical methods
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2007.07.011
– volume: 12
  start-page: 214
  issue: 4
  year: 1980
  end-page: 219
  ident: CR4
  article-title: Simultaneous optimization of several response variables
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.1980.11980968
– volume: 3
  start-page: 124
  issue: 2
  year: 1999
  end-page: 141
  ident: CR6
  article-title: Parameter control in evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.771166
– volume: 324
  start-page: 67
  year: 2008
  end-page: 75
  ident: CR16
  article-title: Optimizing stope designs and sequences in underground mines
  publication-title: SME Transactions
– ident: CR20
– start-page: 1
  year: 1996
  end-page: 25
  ident: CR23
  article-title: Modern heuristic techniques
  publication-title: Modern heuristic search methods
– volume: 113
  start-page: A83
  issue: 2
  year: 2004
  ident: 9395_CR12
  publication-title: IMM Transactions, Mining Technology
  doi: 10.1179/037178404225004940
– volume-title: Metaheuristics: A bibliography
  year: 1996
  ident: 9395_CR21
– volume: 13
  start-page: 1
  year: 1951
  ident: 9395_CR2
  publication-title: Journal of the Royal Statistical Society (Series B)
  doi: 10.1111/j.2517-6161.1951.tb00067.x
– volume: 12
  start-page: 214
  issue: 4
  year: 1980
  ident: 9395_CR4
  publication-title: Journal of Quality Technology
  doi: 10.1080/00224065.1980.11980968
– volume: 76
  start-page: 965
  issue: 5
  year: 2008
  ident: 9395_CR1
  publication-title: Talanta
  doi: 10.1016/j.talanta.2008.05.019
– volume: 597
  start-page: 179
  issue: 2
  year: 2007
  ident: 9395_CR7
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2007.07.011
– volume: 3
  start-page: 124
  issue: 2
  year: 1999
  ident: 9395_CR6
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.771166
– volume: 240
  start-page: 825
  issue: 3
  year: 2015
  ident: 9395_CR29
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2014.07.040
– volume-title: Response surface optimization using JMP Software
  year: 2000
  ident: 9395_CR17
– volume-title: An introduction to genetic algorithms
  year: 1999
  ident: 9395_CR18
– volume: 56
  start-page: 922
  issue: 8
  year: 2005
  ident: 9395_CR13
  publication-title: Journal of the Operational Research Society
  doi: 10.1057/palgrave.jors.2601902
– ident: 9395_CR32
– volume: 25
  start-page: 473
  issue: 4
  year: 2016
  ident: 9395_CR26
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9296-1
– volume: 32
  start-page: 1
  year: 2016
  ident: 9395_CR27
  publication-title: International Journal of Mining, Reclamation and Environment
– volume: 24
  start-page: 1047
  year: 2014
  ident: 9395_CR22
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.08.025
– volume: 8
  start-page: 1
  issue: 1
  year: 2017
  ident: 9395_CR33
  publication-title: International Journal of Mining and Mineral Engineering
  doi: 10.1504/IJMME.2017.082680
– volume: 324
  start-page: 67
  year: 2008
  ident: 9395_CR16
  publication-title: SME Transactions
– volume: 26
  start-page: 23
  issue: 1
  year: 2017
  ident: 9395_CR25
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-016-9301-8
– volume: 9
  start-page: 269
  issue: 2
  year: 1996
  ident: 9395_CR3
  publication-title: Quality Engineering
  doi: 10.1080/08982119608919043
– volume: 16
  start-page: 122
  issue: 1
  year: 1986
  ident: 9395_CR9
  publication-title: IEEE Transactions on Systems Man and Cybernetics
  doi: 10.1109/Tsmc.1986.289288
– volume: 27
  start-page: 1
  issue: 1
  year: 2000
  ident: 9395_CR10
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/1467-9469.00174
– volume: 40
  start-page: 292
  year: 2016
  ident: 9395_CR8
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.11.038
– ident: 9395_CR34
  doi: 10.1080/17480930.2018.1486692
– volume-title: Geostatistical software library and user’s guide
  year: 1998
  ident: 9395_CR5
– volume: 116
  start-page: 109
  issue: 3
  year: 2007
  ident: 9395_CR15
  publication-title: Mining Technology
  doi: 10.1179/174328607X228848
– volume: 9
  start-page: 53
  issue: 1
  year: 2000
  ident: 9395_CR28
  publication-title: Natural Resources Research
  doi: 10.1023/A:1010113930770
– volume-title: Applied multivariate statistical analysis
  year: 2007
  ident: 9395_CR11
– volume-title: Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms
  year: 2005
  ident: 9395_CR30
– start-page: 1
  volume-title: Modern heuristic search methods
  year: 1996
  ident: 9395_CR23
– volume: 27
  start-page: 224
  issue: 3
  year: 2007
  ident: 9395_CR31
  publication-title: Johns Hopkins APL Technical Digest
– volume-title: Design and analysis of experiments
  year: 1997
  ident: 9395_CR19
– ident: 9395_CR20
  doi: 10.1109/CEC.2007.4424460
– ident: 9395_CR35
– volume: 222
  start-page: 642
  issue: 3
  year: 2012
  ident: 9395_CR14
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.05.029
– start-page: 55
  volume-title: Handbook of metaheuristics
  year: 2003
  ident: 9395_CR24
  doi: 10.1007/0-306-48056-5_3
SSID ssj0007385
Score 2.2257411
Snippet Genetic algorithms (GA) are widely used to solve engineering optimization problems. The quality and performance of the solution generated strongly depend on...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 443
SubjectTerms Algorithms
Calibration
Chemistry and Earth Sciences
Computer Science
Computing time
Crossovers
Earth and Environmental Science
Earth Sciences
Fossil Fuels (incl. Carbon Capture)
Genetic algorithms
Geography
Heuristic methods
Mathematical Modeling and Industrial Mathematics
Mineral Resources
Mutation
Mutation rates
Objective function
Optimization
Original Paper
Parameters
Physics
Population number
Response surface methodology
Statistics for Engineering
Sustainable Development
Underground mines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60KujBR1WsVsnBkxLcJtvt5iRVWj1oLVKhtyVPFfqyrYL_3mQ326pgL553E5adyeSbzOT7AE4Vr5ioGkosFathi28VFpxSHHMacGWoxagpZf5drdWKu13W9gduE99WmcfENFCroXRn5BeEOedz-cjl6A071ShXXfUSGsuw4pjKrJ-vXDVa7cdZLHZcLSljqk2SHPTO65rp5TkLLVwvkV3wlFUx-bkzzeHmrwppuvE0t_77yduw6SEnqmc-sgNLelCEjW9EhEVYu0kFfj93oeMua4nMLdDQIEdLbceheu_ZTj196aM2d_1cjpQTWcCL7lOFCZw21WmFHmwI6vu7naidqdVM9uCp2ehc32KvvIAlrURTHKtYRDVT0VTXLABSYTVU2mKjUCnCiaFEMCGqXEkS8NhwwYjimkjCRaiYhQx0HwqD4UAfAKrIKBBxFBliTMiDUMjYRDaHoSQwmsmgBEH-1xPpacmdOkYvmRMqO0Ml1lCJM1RCSnA2GzLKODkWvVzOjZP45TlJ5pYpwXlu3vnjPyc7XDzZEaxbPMWyxp4yFKbjd30Mq_Jj-joZn3jf_AJTrupg
  priority: 102
  providerName: ProQuest
Title Calibration of Genetic Algorithm Parameters for Mining-Related Optimization Problems
URI https://link.springer.com/article/10.1007/s11053-018-9395-2
https://www.proquest.com/docview/2918321840
Volume 28
WOSCitedRecordID wos000460665100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PCBAR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: PATMY
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: KB.
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: BENPR
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-8981
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007385
  issn: 1520-7439
  databaseCode: RSV
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54RX3wMhXnZeTBJyXSJW3XPG7iBdQ5vOFbydUJusk6Bf-9Sdo6FRX0rdAkLSfJyXfIOd8HsK143cRRKLFUrIEtvlVYcEpxwmnAlaEWo3rK_NNGu53c3rJOUcedldnu5ZWk99SjYjcLBVzuj92glEXY-t3JyJHNuBD98ubd_Tp6Fk-SauMih7bLq8zvhvh8GI0Q5pdLUX_WHC786y8XYb6AlqiZr4UlGNO9CiyUsg2o2MUVmPvAQViBmUIGvftagekjr_PrnnxmqMyW4cpVb4l8naC-QY6n2n4ANR_u-oP7YfcRdbhL8HIsncgiYHTmJSewz7LTCp1bn_RYFHuiTi5fk63A9eHB1f4xLqQYsKT1eIgTlYi4Yeqa6oZFRCqMQqUtWAqVIpwYSgQTIuJKkoAnhgtGFNdEEi5CxSyGoKsw0ev39BqguowDkcSxIcaEPAiFTExsgxpKAqOZDKoQlHOSyoKn3MllPKQjhmVn49TaOHU2TkkVdt67POUkHb813iwnOi32a5YS5lybi3arsFtO7Oj1j4Ot_6n1BsxavMXyxJ9NmBgOnvUWTMmX4X02qMFk66DduajB-Elrr-YX9Ru2je4R
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUER7gJaHSHnUh_YCstjY3s36UCFoeYmQRlWQuC1-AhIkNElb5U_1N3a8D9IiwY1Dz7u25PXnmW_WM98AfLCq4ZNYGGqsbFLkt5ZqxTlNFY-U9Rw5ai6Z32q22-n5uexMwe-qFiakVVY2MTfUtm_CP_JtJgP4Qjyyc_edhq5R4Xa1aqFRwOLEjX9hyDb8dPwF9_cjYwf73c9HtOwqQA1vJCOa2lQnTd9w3DXRuVsRC-vQ7wtrmWKeMy21jpU1LFKpV1oyqxwzTGlhJbpDjvO-gGnBRRLXYHpvv935dm_7gzZMrtCKQVmg-tU9al6sh1Qm5C6hgeEypuxfTzihtw9uZHNHdzD_v32iNzBXUmqyW5yBtzDlegvw-i-hxQWYOcwbGI8XoRuK0XQBe9L3JMhu4ziye3OJSxld3ZKOCvlqQXSUIKEnp3kHDZonDTpLvqKJvS1rV0mn6MYzXIKzZ1ngMtR6_Z5bAdIwSaTTJPHMe6EioU3qE4zROIu8kyaqQ1TtcmZK2fXQ_eMmmwhGB2BkCIwsACNjddi8H3JXaI489fJaBYasND_DbIKEOmxVcJo8fnSyd09P9h5mj7qnrax13D5ZhVfIHWWRxLQGtdHgh1uHl-bn6Ho42CjPBYGL58bZH9cASZ8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAGP0Qdw8uVbGuc_CkDE1n0jRzLGpV1Frc8BZmtQVtSxMF_70zWayKCuItkGQSZvnmfcz73gPYVbxqgpovsVSsji2-VVhwSnHIqceVoRajppL55_VWK7y_Z-3c5zQu2O7FkWRW0-BUmnpJZaBMZVT4ZmGB4wHZxUpZDdsYPOHbRMZxuq6u795DsZNqSQVTbY7kkHdxrPldE583phHa_HJAmu47zYV___EizOeQEzWyObIEY7pXgoXCzgHlq7sEcx-0CUswk9ujd15LMHWc-v-6q5QxKuNluHFVXSKbP6hvkNOvth9AjceH_rCbdJ5Qmzvil1PvRBYZo4vUigKn7Dut0KWNVU95EShqZ7Y28QrcNo9uDk5wbtGAJa0GCQ5VKIK6qWqq6xYpKb_mK21BlK8U4cRQIpgQNa4k8XhouGBEcU0k4cJXzGILugrjvX5PrwGqysATYRAYYozPPV_I0AQ22aHEM5pJrwxeMT6RzPXLnY3GYzRSXnZ9HNk-jlwfR6QMe--vDDLxjt8e3iwGPcrXcRwR5kKey4LLsF8M8uj2j42t_-npHZhuHzaj89PW2QbMWkjGMm7QJownw2e9BZPyJenGw-10dr8ByLj3Yw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibration+of+Genetic+Algorithm+Parameters+for+Mining-Related+Optimization+Problems&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Villalba+Matamoros%2C+Martha+E.&rft.au=Kumral%2C+Mustafa&rft.date=2019-04-01&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=28&rft.issue=2&rft.spage=443&rft.epage=456&rft_id=info:doi/10.1007%2Fs11053-018-9395-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11053_018_9395_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon