Computational mean-field information dynamics associated with reaction-diffusion equations

We formulate and compute a class of mean-field information dynamics for reaction-diffusion equations. Given a class of nonlinear reaction-diffusion equations and entropy type Lyapunov functionals, we study their gradient flows formulations with generalized optimal transport metrics and mean-field co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 466; s. 111409
Hlavní autoři: Li, Wuchen, Lee, Wonjun, Osher, Stanley
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Elsevier Science Ltd 01.10.2022
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We formulate and compute a class of mean-field information dynamics for reaction-diffusion equations. Given a class of nonlinear reaction-diffusion equations and entropy type Lyapunov functionals, we study their gradient flows formulations with generalized optimal transport metrics and mean-field control problems. We apply the primal-dual hybrid gradient algorithm to compute the mean-field control problems with potential energies. A byproduct of the proposed method contains a new and efficient variational scheme for solving implicit in time schemes of mean-field control problems. Several numerical examples demonstrate the solutions of mean-field control problems.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2022.111409